
DBOS: a DBMS-oriented
Operating System

Paper by: Skiadopoulos, Athinagoras, et al.

Presentation by: Sahil Naphade

Paper by: Skiadopoulos, Athinagoras, et al.
Presentation by: Sahil Naphade

DBOS: a DBMS-oriented

Operating System

https://pages.cs.wisc.edu/~yxy/cs839-f23/papers/dbos.pdf
https://pages.cs.wisc.edu/~yxy/cs839-f23/papers/dbos.pdf
https://pages.cs.wisc.edu/~yxy/cs839-f23/papers/dbos.pdf

Inspiration

Challenges with current OS:

• Scale

• Cloud proliferation

• Parallel computation

• Heterogenous HW

• New applications

• New programming model

• Age

• Provenance

Original Idea: 2020

Partial Execution: 2022

Proposal (2020)
• A new OS with a data-centric architecture

 All states: Data structures -> DB tables (everything-is-a-file -> everything-is-a-
table)

 State transitions -> use transactions

 All operations performed as queries

 Leverage DBMS for all of possible capabilities

 Separate data from computations

 OS states represented as uniform data model

What are the benefits?
• Performance Optimization

• Security

• Virtualization + Containerization

• Geographic distribution

• (Sophisticated) file management

• Better scheduling

• Improved state management

DBOS stack

Img. Credit: DBOS (VLDB-2022)

https://doi.org/10.14778/3485450.3485454

Layer 4: User space

• Distributed applications

• Serverless model

Layer 3: OS Functionality

• Task scheduling, Distributed FS, IPC

Layer 2: DBMS

• High-performance, multi-node, main-memory T-DB

• NoSQL can also be used

• Manages own memory

Layer 1: Microkernel

• No sophisticated Memory Mgmt

Implementation time!
Prototype in 3 stages

1. Straw

Possible to provide reasonable performance for 3 operations?

a. Task scheduling

b. Providing a Filesystem

c. Supporting IPC

Building the prototype with

Layer 1: Linux

Layer 2: RDBMS (VoltDB)

Layer 3: Coding by hand

Layer 4: Test programs

Image credits: Google search

DBMS Straw
• Why VoltDB?

 Parallel, high-performance, multi-node, transactional (+ One more reason)

 Tables are hashed on a user-specified key across nodes

 Serializability and transactional failover

 User-defined DBMS procedures, which are compiled and optimized

• As expected, highest performance is obtained when

 Data in a Single partition

 User task + data partition -> On the same node

• A task and worker

Task (p_key#, task_id, worker_id, other_fields)

Worker (p_key#, worked_id, unused_capacity)

DBMS Straw - Scheduling

DBMS Straw - IPC
• Compare against TCP/IP and gRPC

• Ping-pong benchmark

• A message:

Message(sender_id, receiver_id#, message_id, data)

• Replicated Message table

• In-order delivery with message_id, exactly-once

• Limitations:

• Periodic Polling -> Mitigate with Triggers (VoltDB
does not support!, But Postgres does)

DBMS Straw – IPC Performance
• DBOS achieves 24%–49% lower

throughput and 1.3 – 2.5× higher median
latency compared to gRPC

• DBOS achieves 4–9.5× lower
performance than TCP/IP.

• Can be further optimized!

 VoltDB uses TCP/IP as msg substrate

 Next -> Run bare-bones data transport

 Next-> Eliminate polling in DBOS

 Still competitive enough! (Against gRPC)

DBMS Straw – Filesystems
• Transactional and multi-node filesystem

• Two filesystems supported

1. Stores data for the user on a single partition – partitioned on user_name

2. Partitioned on block_no

• No need of “open” and “close”

DBMS Straw – Filesystems Perf

No need of directory traversal – only

single insert. Same for delete!

DBMS Straw – Filesystems Perf

Implementation time!
Prototype Stages

2. Wood

Can OS functions be readily and compactly coded in SQL?

Can FS, Scheduling and IPC implementation work well?

Installing prototype in Linux is User space

Processes -> collection of short-running tasks assembled in a graph

Currently On-going!

Image credits: Google search

Implementation time!
Prototype Stages

3. Brick

Beg, borrow, steal, or implement a micro-kernel

Not yet started!

Image credits: Google search

Thoughts and
questions

Thank you!

