
Apiary

Natan Lidukhover



Overview

● DBMS-integrated FaaS platform

● Physically and logically co-locates function 

execution and data management

● Strong transactional guarantees

● Exactly-once semantics

● Fault-tolerant

● Has tracing layer for observability

● Reduces communication overhead

● Designed for short-lived data-centric applications

● Relational



Interface

● Functions stored as stored procedures in 

distributed DBMS

● Functions take in and return serializable objects

● SQL queries static

● Functions deterministic

● Service calls idempotent

● Workflows directed acyclic graph



Fault Tolerance
● Handles DBMS machine failures using DMBS

○ Replica fail-over

○ Data recovery from logs

● Handles workflow failures by recording function 

outputs
○ Associated with client workflow invocation using ID

○ Outputs recorded selectively using SFR algorithm 

(minimize overhead)

● Does not handle dispatcher failures



Observability

● Manual logging is expensive
● Tracing layer collects workflow information

● Collects function invocations per application

● Collects table operations within functions

● Exported to external analytical database (Vertica)



DBMS

● Uses VoltDB for implementation
○ ACID

○ Stored procedures support non-SQL

○ Change data capture for observability

○ Cluster resizing



Evaluation

● Workloads as depicted
● OpenWhisk Java runtime has application logic for FaaS, 

queries external VoltDB
○ Workflows simplified to one big function
○ Apiary outperforms due to scheduling, container initialization 

cost, and message passing overhead

● RPC has microservice containers with application logic 
separate from DBMS machines
○ Apiary outperforms due to less RTT communication per DB 

operation

● Non-linear scaling explained away as VoltDB overhead 
maintaining large network



Evaluation

● SFR fault-tolerance guarantees barely affect 

performance
○ <5%

● Boki non-local reads when write means relatively 

worse when not read-heavy

● Cloudburst performance difference from more 

efficient local cache reads
○ Paper blames Python

○ Also no batched reads



Cost

● Low load relatively higher cost from “keeping the lights on”

● Higher load cost excels due to minimized
○ Less communication, fewer resources



Questions?


