SERVERLESS
COMPUTING:
ONE STEP FORWARD,

TWO STEPS BACK

JOSEPH M. HELLERSTEIN, JOSE FALEIRO, JOSEPH E. GONZALEZ,
JOHANN SCHLEIER-SMITH, VIKRAM SREEKANTI, ALEXEY
TUMANOV AND CHENGGANG WU

UC BERKELEY

allling !

WHAT IS , X auto scaling
SERVERLESS ? g ines\\foraccuracy

Has Serverless become a marketing
term ?

WHAT [S
SERVERLESS ?

Has Serverless become a marketing

term ?

Yes and No

Ben Kehoe
£ @ben1lkehoe
199199 "serverless" was always destined to become as meaningless as
“cloud”, and it's always been a spectrum anyway. Don't argue about what
is orisn't serverless, it's to talk about what the desired *benefits* of

serverless are, and how much a given technology provides them

) Linda Nichols @lynnaloo - May 26, 2021

Here’s your annual reminder that #Serverless is a catchy, made-up marketing
word.

I’m not sure it’s worth all of the Twitter gatekeeping and gaslighting to protect
the virtue of tech buzzwords.

Matt Coulter

@NIDeveloper
Even though | have been a huge proponent of serverless 1st archs to
enable rapid dev of business value over the past 5ish years I no longer

say serverless because it is a hijacked term with no meaning. We need a
new approach to realise what serverless wanted to achieve

. Matt Coulter @NIDeveloper - Jan 5
Replying to @LeeJamesGilmore

I have flipped on this but when | think deeply, the agile manifesto is more toxic
overall than helpful. | honestly think we should stop basing our strategies on
marketing terms that shift and define an architecture style but the name
serverless is gone for that purpose

5:31AM - Jan 5, 2023 - 23.5K Views

WHAT IS SERVERLESS ? #j Smonvrerder

@swardley

X :How do you define serverless?

Me : Roughly speaking it's an event driven, utility based, stateless, code
execution environment in which you write code and consume services. A

boundary condition is "write code" i.e. any lower than this and it's not
serverless.

Is Serverless a marketing term ?
= Yes and No
g Kelsey Hightower 2

@kelseyhightower

I now understand what all the Serverless fuss is about. When you have a
great idea the last thing you want to do is setup infrastructure.

COMPUTING
TRENDS WITH
SERVERLESS

1st Gen Serverless platforms place
autoscaling at odds with dominant
trends in modern computing:

= Data-centric
= Distributed Computing
= QOpen source

= Custom hardware

These gaps limit current serverless
offerings !!

DevOps

Serverless is awesome (if you
overlook inflated costs, dislike
distributed computing, love vendor
lock-in), say boffins

If 2019 is the year you try AWS Lambda et al, then
here are pitfalls to look out for

By Thomas Claburn in San Francisco 19 Dec 2018 at 21:06 25() SHARE ¥

IN PRACTICE

New computing platforms have fostered Cloud today is used as an outsourcing Multitenancy & Administrative simplicity
innovation in PLs and there's now new platform for standard enterprise data is desirable given the millions of cores
PLs for the Cloud services. and exabytes of storage

DEVELOPERS NEED
NOT WORRY ABOUT
PROVISIONING

There has been an increasing
interest from the research
community:

functions

machines,
VMS, containers,
scaling,
provisioning,
idleness,
failover

]

Tihisione am’é’ Sparkijoy:
" dailen

Google Trends: Serverless vs MapReduce
1/2004 - 12/2018

100
90
80
70
60
50
40
30
20
10

0
01/2004 05/2007 09/2010 01/2014 05/2017

% of Peak Popularity

e Serverless e+« "map reduce" + mapreduce

Figure 1: Google Trends for “Serverless” and “Map Reduce”
from 2004 to time of publication.

"SERVERLESS" GOES
FAAS

"A FaaS offering by itself is of little value, since each function
execution is isolated and ephemeral. Building applications on FaaS
requires data management in both persistent and temporary storage,
in addition to mechanisms to trigger and scale function execution.
As a result, cloud providers are quick to emphasize that serverless

is not only FaaS. It is FaaS supported by a “standard library”: the

various multitenanted, autoscaling services provided by the vendor."

FORWARD, BUT ALSO BACKWARD

- Faas offerings ignore efficient data processing

= Faas offerings are autoscaling

- Faas offerings stymie the development of
distributed systems

S SERVERLESS
MORE ? (USE
CASES)

Embarrassingly parallel functions:
Independent tasks that don't need
communication with other functions

Orchestration functions: Orchestrate
calls to proprietary autoscaling services
..e. Analytics at scale

Function Composition: Collection of

functions that pass along outputs as
inputs. (Event-driven)

WHY SERVERLESS TODAY IS TOO LESS

Limited Lifetimes: 15 min |/o Bottlenecks: Connect to Communication through slow No specialized hardware: No

timeouts & No recoverable shared storage across a storage: Lambdas are not mechanism/API to access
state across invocations network interface directly network-accessible specialized hardware

(o)

LIMITATIONS IN SCOPE

O

- SERV

-RLESS AP

PS

FAAS IS A DATA-
SHIPPING
ARCHITECTURE

Functions run on VMs separate from data

Functions are short lived

Functions are non-addressable

Internal state caching is limited

FAAS STYMIES —
DISTRIBUTED 5
COMPUTING

The two tribes regarded each other suspiciously
in the glow of their brightly blazing production environments.

Functions pass data through slow
expensive storage

Fine-grained communication

Leader election
DS protocols P
depend on. Data consistency

Transaction commit

MORE] Hardware-accelerated software

LIMITATIONS . . E iInnovation: Big Data setups lack GPU
""" specs for DL.

£ Open Source innovation: OSS
o deployment need human operation

MORE CASE -
STUDIES!! .

= Experiment: Machine Learning Model

Experiments were set up to prove the problems of serverless computing

Experiment Settings: Big Data & Distributed Computing

{ THIS IS FINE.

Func. Invoc. | Lambda /O | Lambda I/O | EC2 /O EC210 EC2 NW
(1KB) (S3) (DynamoDB) (S3) (DynamoDB) (OMQ)
Latency 303ms 108ms 11ms 106ms 11ms 290pus
Compared to best 1,045% 372x 37.9x 365x 37.9x 1X

Table 1: Latencies. We compare the latency of “communicating” 1KB in various ways. To model pure functional event-driven communication, we show the
cost of invoking a no-op Lambda function on a 1KB argument, averaged over 1,000 calls. We then show the cost of two explicit 1KB I/Os (write+read) from
Python Lambda function and an EC2 instance to S3 and DynamoDB, averaged across 5k trials. Finally we show the cost of direct messaging by measuring a
1KB network message roundtrip, measured using python and the ZeroM(Q message library running across two EC2 instances, averaged across 10k trials.

SILVER LINING OQ ((:)Opnet;g}ional flexibility over developer

Enable easy to write and debug code

Think deeply about why & when to
use coordination protocols

That’s not necessarily a bad thing!

EARLY OBJECTIONS

100 NOT THINK IT MEMIS
WHAT YOU

Paper addresses limitations of Public FaaS as solution to general-purpose data rich programing
O: “You keep using that word. | do not think it means what you think it means.”

R: The delivery of a particular special purpose autoscaling backend service does not solve the problem of enabling general-
purpose cloud programming.

O: ‘Just wait for the next network announcement!”
R: ... Data center networks will surely improve, yet continue to play a limiting role in a larger memory hierarchy
O: "The main point is simple economics: Serverless is inevitable.”

R: ... this business motion will not accelerate the sea change in computing that the cloud offers. Specifically, it will not
encourage—and may even deter—third-party and open-source development of new stateful services, which are the core of

modern computing.

RESEARCH GOALS FOR THIS PAPER

Push core tech down to the playing fields

Rethink Rethink Infra design & programming models to spark innovation

Vision for the Future: Cloud programmers should leverage compute & storage
of the cloud in an auto-scaling cost effective manner

Vision

Fluid Code and Data Placement

(LU

Long-Running, Addressable Virtual Agents
HOW ?

Disorderly programming

®© X

|;|i Flexible Programming, Common IR

HOW? (CONTINUED)

Heterogeneous Hardware Support: Follow user-
defined SLOs

SLO Guarantees: No available APIs for
SLOs. Pricing is based on RAM(#cores) &

running time.

Security Concerns

Make specialized hardware cost effective

Allow devs target specific hardware features to
foster/innovative hardware/software co-design

Enable upfront SLO pricing with penalties for mis-estimation
Requires smooth cost-surface in optimization

Code between shared data storage
Security Mgt related to multitenancy, rogue code

LAST REMARKS

@ Serverless platforms pose interesting & surmountable challenges

\/ FaaS platform are not open source yet but could be improved with
features like container orchestration

Program analysis & scheduling open up new formal research avenues

h

CONCLUSION

A W
;
o %

IT'S ALWAYS BEEN ONE STEP
FORWARD AND TWO STEPS BACK.

4. Iheauthors are optimistic, about research and its impact on the
&% cloud's future

The subtitle of the paper is relatable to most of the great things that
0 have happened (Ex: MAP REDUCE !!)

THANK YOU

