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What is Anna

A Distributed KV Store where values are lattices
Not Strongly Consistent

Highly Performant

Sharded(consistent hashing) and Replicated
Coordination free consistency

Shared Nothing Architecture

Multi Master Replication




Taxonomy of existing KVS systems

System Scale Memory Model Per-Key Consistency Multi-key Consistency
Masstree M SM Linearizable None
Bw-tree M SM Linearizable None
PALM M SM Linearizable None
MICA M SM Linearizable None
Redis S N/A Linearizable Serializable
COPS, Bolt-on D MP Causal Causal
Bayou D MP Eventual, Monotonic Reads/Writes, Read Your Writes Eventual
Dynamo D MP Linearizable, Eventual None
Cassandra D MP Linearizable, Eventual None
PNUTS D MP Linearizable Writes, Monotonic Reads None
CouchDB D MP Eventual None
Voldemort D MP Linearizable, Eventual None
HBase D MP Linearizable None
Riak D MP Eventual None
DocumentDB D MP Eventual, Session, Bounded Staleness, Linearizability None
Memcached M&D SM & MP Linearizable None
MongoDB M&D SM & MP Linearizable None
H-Store M & D MP Linearizable Serializable
ScyllaDB M &D MP Linearizable, Eventual None
P M&D MP Eventual, Causal, Item Cut, Writes Follow Reads Renl Gommitied, ReadiUnemnnitied

Monotonic Reads/Writes, Read Your Writes, PRAM




Auto Scaling

The automatic adjustment of resources to handle changes in workload demand

Why Autoscaling is Challenging?

- Scaling Stateless applications is easy - Just bring up/down new instance

- Scaling Stateful applications is challenging - Involves redistribution of data
along with handling current requests.

- Adjusting resources should not impact the latency requirements.




Motivation & Existing Challenges

e Large-Scale variations in the workload
o Many applications generate a skewed access distribution, where some data
is hot, while other is cold

e (Cost-Performance Barriers
o Data should move adaptively across storage tiers, to match with workload
skew and shifting hotspots

e Static Deployment Barriers
o No existence of truly Auto scaling service
o Elasticache needs manual allocation and deallocation of services.
o S3 autoscales to data volume but ignores workload




Objective

Design system to dynamically adjust configuration and match resources to the
workloads.
Emphasis on Efficiency - performance to cost ratio

Goals

Horizontal elasticity to adaptively scale deployments - Performance

Vertical data movement in storage hierarchy to reduce cost by demoting cold
keys to cheaper storage - Cost

Multi-master selective replication of hot keys across nodes and cores to
efficiently scale request handling for non-uniform access patterns - Performace




Architecture to Support autoscaling
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Architecture - Storage Kernel

Storage Kernel

Multicast

Storage . Storage
Medium Medium
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Worker Worker
Thread e Thread

Global Local
Hash Hash
Ring Ring
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User wine User

Multiple storage tiers and uniformity across tiers. Only
difference is the procedure for translating data for
persistence

Modified Consistent hashing algorithm to partition and
replicate keys

Coordination free execution model - each thread has its
own private memory

Gossip protocol to exchange updates with other replicas
Shared-nothing, asynchronous messaging

scheme eliminates thread synchronization and
asynchronously resolves conflicting updates to replicas.




Architecture - Metadata Management

Global hash ring G - each storage tier maintains G to determine the nodes in the tier responsible for
a key

Local hash ring L - each storage tier maintains L to determine the threads in a node responsible for
a key

Replication Vector - each key has the replication vector [< R1, ...... Rn>,<T1,....Tn >]. Ri
represents the number of nodes in tier i storing key K, and Ti represents the number of threads per
node in tier i storing key. Currently i is either M(memory) or E(EBS)

Monitoring statistics - Access frequency of each key and storage consumption of each node.

Storage system is used to store all kinds of metadata & autoscaling is achieved by

just making updated to the metadata




Architecture - Monitoring & Policy Engine

Monitoring Node
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Monitoring thread periodically retrieves the

stored statistics from the storage engine
and triggers the policy engine

Policy engine analyzes these stats and
issues actions to meet SLOs
- Latency
- Cost budget
- Fault tolerance (allowed number of
replica failures)

Cluster manager performs the actions
specified by Policy engine




Cross-Tier Data movement

Policy engine uses its monitoring statistics to calculate how frequently each key
was accessed in the past T seconds.

Access frequency exceeding the threshold - at least one replica promoted to
memory tier

Access frequency below threshold - replicas in memory tier are demoted to EBS
tier




Hot-Key Replication

When access frequency of a key stored in the memory tier increases, hot-key
replication increases the number of memory-tier replicas of that key.

Only increase in memory tier replication factor as only that will ensure better
performance

The policy engine computes the target replication factor, R_ideal, using the ratio
between the observed latency for the key and the latency objective.

Replication across nodes rather than replicating across cores in a node as
network is typical bottleneck in distributed systems.




Elasticity

To handle insufficient storage and compute capacity
Insufficient storage - new storage nodes based on the data size
Insufficient compute - new memory tier nodes.

Node removal - Scale down memory tier based on compute consumption.




Fault Tolerance

All components except storage kernel are stateless or maintain soft state which
can be reconstructed

Anna guarantees k-fault tolerance by ensuring k+1 replicas to be alive at all
times.

On a storage node failure, other nodes detect via timeout and remove node from
the hash ring. Repartitioning of keys done by Anna on the update of hash ring.




Evaluation - Setup and workload

1 million key-value pairs, with keys being 8 bytes and values being 256KB

Replication factor - 3

YCSB-style read-modify-write of a single key chosen from a Zip an distribution
o Zipfian coefficient is used to vary the contention levels - a higher coefficient

value mean a more skewed workload

Client machines - 40 client machines with 8 threads each




Evaluation - Replica Placement

Comparison of Intra-node vs cross-node replication

Single replica of key in single node - 2000 ops/sec
4 replicas across 4 nodes - 8000 ops/sec
4 replicas in single node - 4000 ops/sec




Evaluation - Selective Replication

e Comparison of Anna's memory-tier against

(a) Low contention (zipf coefficient = 0.5)
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Anna v0, AWS ElastiCache (using managed
Memcached), and Masstree, at various cost

points.
e Tuned Anna v0Q's single replication factor to
o 1 2 3 4 5 6 7 8 the optimal value for each Zipfian setting
 Cost (dollarhour) e Anna consistently outperforms both
(b) High contention (zipf coefficient = 2) .
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Evaluation - Dynamic Workload Skew & Volume

(a) Latency over time
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Evaluation - Varying Hotspot

Memory Tier Access Percentage

Memory Tier Access Percentage
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Evaluate Anna's ability to detect and react to changes in

workload hotspots.

At minute 0, the workload centered around one hotspot. At
minute 5, it is switched to a different, largely non-
overlapping hotspot, and at minute 10, it is again switched to

a third, unique hotspot.
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Blue - moderately skewed
data
Green - Highly skewed data



Evaluation - Cost-Performance Tradeoffs
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Conclusion & Thoughts

e A highly performant, scalable key value store, with consistency put at stake
e Use of coordination free mechanisms to achieve high performance

e Detailed evaluation of all the goals stated.




Questions?



Thank You
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