
Autoscaling Tiered Cloud Storage in Anna

Ranjitha Kosgi

● A Distributed KV Store where values are lattices

● Not Strongly Consistent

● Highly Performant

● Sharded(consistent hashing) and Replicated

● Coordination free consistency

● Shared Nothing Architecture

● Multi Master Replication

What is Anna

Taxonomy of existing KVS systems

Auto Scaling

The automatic adjustment of resources to handle changes in workload demand

Why Autoscaling is Challenging?

- Scaling Stateless applications is easy - Just bring up/down new instance

- Scaling Stateful applications is challenging - Involves redistribution of data
along with handling current requests.

- Adjusting resources should not impact the latency requirements.

Motivation & Existing Challenges

● Large-Scale variations in the workload
○ Many applications generate a skewed access distribution, where some data

is hot, while other is cold

● Cost-Performance Barriers
○ Data should move adaptively across storage tiers, to match with workload

skew and shifting hotspots

● Static Deployment Barriers
○ No existence of truly Auto scaling service
○ Elasticache needs manual allocation and deallocation of services.
○ S3 autoscales to data volume but ignores workload

Objective

● Design system to dynamically adjust configuration and match resources to the
workloads.

● Emphasis on Efficiency - performance to cost ratio

Goals

● Horizontal elasticity to adaptively scale deployments - Performance
● Vertical data movement in storage hierarchy to reduce cost by demoting cold

keys to cheaper storage - Cost
● Multi-master selective replication of hot keys across nodes and cores to

efficiently scale request handling for non-uniform access patterns - Performace

Architecture to Support autoscaling

- Multiple storage tiers and uniformity across tiers. Only
difference is the procedure for translating data for
persistence

- Modified Consistent hashing algorithm to partition and
replicate keys

- Coordination free execution model - each thread has its
own private memory

- Gossip protocol to exchange updates with other replicas

- Shared-nothing, asynchronous messaging
scheme eliminates thread synchronization and
asynchronously resolves conflicting updates to replicas.

Architecture - Storage Kernel

Architecture - Metadata Management

● Global hash ring G - each storage tier maintains G to determine the nodes in the tier responsible for
a key

● Local hash ring L - each storage tier maintains L to determine the threads in a node responsible for
a key

● Replication Vector - each key has the replication vector [< R1, ……Rn >, < T1,.....Tn >]. Ri
represents the number of nodes in tier i storing key K, and Ti represents the number of threads per
node in tier i storing key. Currently i is either M(memory) or E(EBS)

● Monitoring statistics - Access frequency of each key and storage consumption of each node.

Storage system is used to store all kinds of metadata & autoscaling is achieved by
just making updated to the metadata

Architecture - Monitoring & Policy Engine

- Monitoring thread periodically retrieves the
stored statistics from the storage engine
and triggers the policy engine

- Policy engine analyzes these stats and
issues actions to meet SLOs

- Latency
- Cost budget
- Fault tolerance (allowed number of

replica failures)

- Cluster manager performs the actions
specified by Policy engine

Cross-Tier Data movement

● Policy engine uses its monitoring statistics to calculate how frequently each key
was accessed in the past T seconds.

● Access frequency exceeding the threshold - at least one replica promoted to
memory tier

● Access frequency below threshold - replicas in memory tier are demoted to EBS
tier

Hot-Key Replication

● When access frequency of a key stored in the memory tier increases, hot-key
replication increases the number of memory-tier replicas of that key.

● Only increase in memory tier replication factor as only that will ensure better
performance

● The policy engine computes the target replication factor, R_ideal, using the ratio
between the observed latency for the key and the latency objective.

● Replication across nodes rather than replicating across cores in a node as
network is typical bottleneck in distributed systems.

Elasticity

● To handle insufficient storage and compute capacity

● Insufficient storage - new storage nodes based on the data size

● Insufficient compute - new memory tier nodes.

● Node removal - Scale down memory tier based on compute consumption.

Fault Tolerance

● All components except storage kernel are stateless or maintain soft state which
can be reconstructed

● Anna guarantees k-fault tolerance by ensuring k+1 replicas to be alive at all
times.

● On a storage node failure, other nodes detect via timeout and remove node from
the hash ring. Repartitioning of keys done by Anna on the update of hash ring.

Evaluation - Setup and workload

● 1 million key-value pairs, with keys being 8 bytes and values being 256KB

● Replication factor - 3

● YCSB-style read-modify-write of a single key chosen from a Zip an distribution
○ Zipfian coefficient is used to vary the contention levels - a higher coefficient

value mean a more skewed workload

● Client machines - 40 client machines with 8 threads each

Evaluation - Replica Placement

● Comparison of Intra-node vs cross-node replication

● Single replica of key in single node - 2000 ops/sec
● 4 replicas across 4 nodes - 8000 ops/sec
● 4 replicas in single node - 4000 ops/sec

Evaluation - Selective Replication

● Comparison of Anna's memory-tier against
Anna v0, AWS ElastiCache (using managed
Memcached), and Masstree, at various cost
points.

● Tuned Anna v0's single replication factor to
the optimal value for each Zipfian setting

● Anna consistently outperforms both
Masstree and ElastiCache under low
contention

● Under high contention Anna's throughput
increases linearly with cost

Evaluation - Dynamic Workload Skew & Volume

Evaluation - Varying Hotspot

● Evaluate Anna's ability to detect and react to changes in
workload hotspots.

● At minute 0, the workload centered around one hotspot. At
minute 5, it is switched to a different, largely non-
overlapping hotspot, and at minute 10, it is again switched to
a third, unique hotspot.

Blue - moderately skewed
data
Green - Highly skewed data

Evaluation - Cost-Performance Tradeoffs

● Given cost budget, minimize latency
● Given latency objective, minimize cost

Conclusion & Thoughts

● A highly performant, scalable key value store, with consistency put at stake

● Use of coordination free mechanisms to achieve high performance

● Detailed evaluation of all the goals stated.

Questions?

Thank You

