

CS 839: Topics in Database Management Systems Lecture 2: Amazon Aurora

Xiangyao Yu 9/11/2023

In-Class Presentation

Signup sheet:

https://docs.google.com/spreadsheets/d/1CTCkPdrX5fU8C_7j73zxJ5 4ZJGg7jgGJfDUG1fS_We0/edit?usp=sharing

Step 1: Pick a topic of interest Step 2: Pick a paper under that topic

Feel free to suggest new topics or papers

Amazon Aurora: Design Considerations for High Throughput Cloud-Native Relational Databases

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, Xiaofeng Bao

Amazon Web Services

ABSTRACT

Amazon Aurora is a relational database service for O workloads offered as part of Amazon Web Services (AWS this paper, we describe the architecture of Aurora and the de considerations leading to that architecture. We believe the ce constraint in high throughput data processing has moved compute and storage to the network. Aurora brings a n architecture to the relational database to address this constr most notably by pushing redo processing to a multi-tenant s out storage service, purpose-built for Aurora. We describe doing so not only reduces network traffic, but also allows for crash recovery, failovers to replicas without loss of data, fault-tolerant, self-healing storage. We then describe how Au achieves consensus on durable state across numerous sto

SIGMOD 2017

Amazon Aurora development team wins the 2019 ACM SIGMOD Systems Award*

By Werner Vogels on 04 July 2019 10:00 AM | Permalink | Comments (2)

Advantages of Storage-Disaggregation

Advantage #1: Elasticity Advantage #2: Low Cost Advantage #3: Availability

Storage-disaggregation architecture widely deployed in cloud databases

Redesign databases in storage-disaggregation architecture

Storage-Disaggregation vs. Shared Disk

The storage service can scale horizontally, has built-in high availability, and has richer APIs

Computation Pushdown in Cloud OLTP

Some database functions can be executed in the storage service

What functions to push to the storage layer?

- Concurrency control
- Indexing
- Buffer manager
- Logging

7

Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?

- Concurrency control
- Indexing
- Buffer manager
- Logging

Push redo processing into the storage service

Control Plane

Amazon DynamoDB

Amazon SWF

Aurora – Single Master

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V_w copies A read must acquire votes from V_r copes

$$V_{w} + V_{w} > V => V_{w} > V / 2$$

 $V_{r} + V_{w} > V$

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V_w copies A read must acquire votes from V_r copes

 $V_w + V_w > V \implies V_w > V / 2$ $V_r + V_w > V$

For three copies $V_w \ge 2$ $V_r \ge 2$

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V_w copies A read must acquire votes from V_r copes

$$V_w + V_w > V => V_w > V / 2$$

 $V_r + V_w > V$

For three copies $V_w \ge 2$ $V_r \ge 2$

For six copies $V_w \ge 4$ $V_r \ge 3$

3-Way Replication

AZ: Availability zone

• AZs fail independently

Data is unavailable if one AZ is unavailable and one other copy is unavailable

6-Way Replication

Can read if one AZ fails and one more node fails (AZ+1)

• Allow to rebuild a write quorum by adding additional replica

Can write if one AZ fails

Segmented Storage

Availability is determined by

- MTTF: Mean time to failure
- MTTR: Mean time to repair

Maximize availability => Minimize MTTR (MTTF is hard to reduce)

Segment: 10 GB block. Basic unit of failure and repair Protection Group (PG): Six replication copies of a segment

Network IO in MySQL

IO traffic

- REDO Log
- Binary log
- Data
- Double-write
- metadata (FRM)

Latency

• Steps 1, 3, and 5 are sequential and synchronous

Binary Log vs. REDO Log in MySQL

- REDO log generated by InnoDB; Binlog generated by MySQL and supports other storage engines
- 2. REDO log is physical, Binlog can be either physical or logical
- 3. A transaction writes a single Binlog record but potentially multiple REDO records

MySQL vs. Aurora

MySQL: DB writes both log and data pages to storage Aurora: DB writes only REDO log to storage

The storage layer replays the log into data pages

MySQL vs. Aurora – Network IO

Table 1: Network IOs for Aurora vs MySQL

Configuration	Transactions	IOs/Transaction
Mirrored MySQL	780,000	7.4
Aurora with Replicas	27,378,000	0.95

Only Steps 1 & 2 are in the foreground path

Gossip with peers to fill gaps

Coalesce log records into data pages

Periodically stage log and pages to S3

Periodically garbage collect old versions and periodically validate CRC code on pages

* Cyclic redundancy check (CRC) is an error-detecting code

Forward Processing – Write and Commit

Write: flush REDO log to storage

Commit: after all the log records are properly flushed

Forward Processing – Read

Buffer hit: read from main memory of the DB server

Forward Processing – Read

Buffer hit: read from main memory of the DB server Buffer miss: read page from storage

Forward Processing – Eviction

28

Buffer hit: read from main memory of the DB server

Buffer miss: read page from storage

Dirty eviction: discard dirty page (no write back to storage)

The page in storage will be updated through replaying the REDO log

Read from One Quorum

Three votes to read data

The DB server knows which node contains the latest value => A single read from the update-to-date node

Replication

If page is in replica's local buffer, update the page Otherwise, discard the log record

Evaluation – Aurora vs. MySQL

Evaluation – Varying Data Sizes

Table 2: SysBench Write-Only (writes/sec)

DB Size	Amazon Aurora	MySQL
1 GB	107,000	8,400
10 GB	107,000	2,400
100 GB	101,000	1,500
1 TB	41,000	1,200

Performance drops when data does not fit in main memory

Evaluation – Real Customer Workloads

Evaluation – Real Customer Workloads

Figure 9: SELECT latency (P50 vs P95)

Figure 10: INSERT per-record latency (P50 vs P95)

Aurora Multi-Master

Multi-master replication: Any DB instance can access any data

The storage nodes detect conflicts at page granularity

• Pushing down concurrency control to the storage layer

* https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

Aurora Serverless

Aurora Database Storage

How does it work . . .

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

aws

How does it work in practice?

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

Amazon Aurora – Q/A

Log sequence number details?

- How does Aurora strike a balance between performance and cost?
- Asynchronous log replay in a non-cloud scenario?
- Performance on frequent cache miss reads?
- Why chose MySQL? Can the design work for other databases?
- Transmit UNDO records over network?
- Is Aurora cost efficient?

Discussion Question

In Aurora, log replay happens in the storage service. An alternative design is to let the database server perform log replay and directly update the page store. What are the advantages and disadvantages of the Aurora design compared to this alternative design?

There are at least two ways to enable multiple write nodes: (1) multimaster replication (2) data partitioning with distributed transactions. What are the tradeoffs between these two design choices?

Please submit your discussion to hotcrp as a new submission

- Title starts with "[Discussion L2]"
- Submit discussion as a file
- Set authors properly
- Abstract can be empty

Before Next Lecture

Submit review for

Benoit Dageville, et al., <u>The Snowflake Elastic Data Warehouse</u>. SIGMOD, 2016