

Self-Driving Database Management Systems

Yushan Qin UW-Madison

Self-driving Database

- No human intervention in making decisions about changes to database
- Autonomic configure, tune, and optimize itself
 - Database Design
 - Data Placement
 - Query Optimization

- Knob Configuration
- Back-up & Recovery
- Provisioning

·	Types	Actions
TV	Indexes	AddIndex, DropIndex, Rebuild, Convert
PHYSIC	Materialized Views	AddMatView, DropMatView
	Storage Layout	$\verb Row \rightarrow \verb Columnar, Columnar \rightarrow \verb Row, Compress $
DATA	Location	MoveUpTier, MoveDownTier, Migrate
	Partitioning	RepartitionTable, ReplicateTable
RUNTIME	Resources	AddNode, RemoveNode
	Configuration Tuning	IncrementKnob, DecrementKnob, SetKnob
	Query Optimizations	CostModelTune, Compilation, Prefetch

What is Peloton

- A self-driving SQL database management system
- Integrating deep learning framework for workload forecasting and action deployment
- Uses a variant of multi-version concurrency control that interleaves OLTP transactions and actions without blocking OLAP queries
- Uses an in-memory storage manager with lock-free data structures and flexible layouts that allows for fast execution of HTAP workloads
- Uses LLVM to do query compilation and code generation.

Peloton-Monitor

Workload Monitor

- collecting relevant information about all running workloads. In addition to SQL queries, it records data manipulation quantities, resource utilization, and other related metrics
- The stream is also periodically punctuated with (1) DBMS/OS telemetry data and (2) the begin/end events for optimization actions.

Figure 1: Peloton Self-Driving Architecture - An overview of the forecasting and runtime workflow of Peloton's self-driving components.

Peloton-Modelling

Clustering

- Cluster OLTP query by DBSCAN
- Retrain when error rate > threshold

Pelotor Workload Classification Planning Module Action Generator RHCM Searc . Workload Clustering Physical Opts Application Monitor Algorithm Data Opts Execution Opts Cost Estimator Workload Forecasting cution Thr 0,0 In-Memory Action Database Catalog _مک Time Estimates ource Estimate **Runtime Architecture** Workload Modeling Control Framework

Figure 1: Peloton Self-Driving Architecture - An overview of the forecasting and runtime workflow of Peloton's self-driving components.

Forecasting

- Integrated classified query on time-series
- Use Multiple RNNs to predict the arrival rate of queries for each workload cluster
- Also constructs similar models for the other DBMS/OS metrics in the event stream

Peloton-Optimization

Action Generator

 Store many actions with corresponding consequences that may improve performance, select action based on forecasts, the current database configuration, and objective function

Action Plan

Figure 1: Peloton Self-Driving Architecture - An overview of the forecasting and runtime workflow of Peloton's self-driving components.

- DBMS chooses which one to deploy based on its forecasts, the current database configuration, and objective function. Decision: Cost & Benefit
- RHCM(receding-horizon control model)

Peloton-Performance

	Model (a)	Model (b)
Error Rate	11.3%	13.2%
Training Time	11min	18min
Model Size	2 MB	2 MB
Probe Time	2ms	2ms
Update Time	5ms	5ms

Peloton-Performance

Self-Driving Database Management Systems

Questions?