Cloud Native Transactions and Analytics in SingleStore
Motivation

- Complexity and Cost of multiple specialized systems in a single application environment
- Need for a unified data platform for OLTP and OLAP transactions
- Highly available, durable storage and elastic compute instances
- Store more data and access with lower latency and high throughput
Goals

• Build a fast, distributed general purpose SQL database
• Unified database that handles transactional and analytical workloads with strong performance
• Support a breadth of workload over disaggregated storage
Background

- Horizontally partitioned shared-nothing DBMS
- S2DB cluster is made up of aggregator nodes and leaf nodes – holds partitions of data
 - Aggregator nodes responsible for coordination of queries
 - Leaf nodes responsible for compute of queries – master(reads/writes) and replicas (reads)
 - Stores multiple replicas of each partition on different nodes in a cluster
- Uses LLVM for full query code generation in contrast to hand built interpreters
Components of S2DB

- Separation of storage and compute
- Unified table storage
Table storage format

- **Rowstore storage**
 - In memory rowstore table uses lockfree skiplist
 - Readers don’t wait on writers
 - Writers use pessimistic concurrency control
 - Log created for each database partition and persisted to disk

- **Columnstore storage**
 - Data stored in segments as an LSM tree stored on disk as data files
 - Common encodings – bit packing, dictionary, run length encoding used on columns
 - Segment metadata stored
Separation of Storage and Compute

• Blob storage and local storage
 • Without blob storage, like a typical shared nothing architecture
 • Newly written data is persisted on the local storage moved to blob storage asynchronously

• Fast in-cluster replication and log pages replicated out of order

• Data for a partition of a columnstore stored as an LSM tree
 • Lower levels have persistent data stored on disk and logs and datafiles of the columnstore
 • Top levels have the in memory rowstore
Staging Data from Local to Remote Storage

- Transactions are committed to the tail of the log
- Hot data files are kept in a cache & cold data files are moved to blob storage
- Snapshots of rowstore data are taken only on master partitions
- New replicas take snapshots and logs they need from blob storage and replicate tail of the log
Capabilities of Separated Storage

- Faster ephemeral SSDs for local storage
- Stores history/ Blob storage acts as backup
- Enables PITR to a previous state
- Supports creation of read only workspaces
Unified Table Storage

- Single table that internally makes use of rowstore and columnstore
- Works well for OLTP, OLAP and demanding HTAP transactions
- Columnstore data organized into:
 - LSM trees: avoids merge based reconciliation for reads, minimize disk access
 - Secondary indexes
- Extensive set of features supporting sort keys, secondary keys, shard keys, unique keys and row level locking
Secondary indexes

- Commonly used structures: per segment filtering index and external index structure
- Inverted index – maps indexed column values to a posting list
- Global index – maps values of indexed columns to the ids of segments
- Row locking for updating/deleting rows
Adaptive query execution

- Multiple ways to access data on the HTAP database
- Query execution engine combines and applies in optimal order
- S2DB adopts adaptive query engine for data access which performs:
 - Finding list of segments to read – Secondary indexes or min/max values from segment metadata
 - Filtering to find rows from segments – regular filtering, encoded filtering, group filtering, secondary index filtering
 - Selectively decodes and outputs rows
 - Select optimal strategy by costing each method on a small batch
Experimental Results

- CDW1, CDW2 – Two cloud data warehouses for comparison on TPC-C benchmarking with 1000 warehouses
- CDB – cloud operational database for TPC-H benchmarking
- Ran using S2DB’s unified table storage: used indexes, sort key and shard key
- Comparison: TPC-H at scale factor of 1TB and TPC-C at 1000 warehouses
- S2DB scales better in both

<table>
<thead>
<tr>
<th>Product</th>
<th>vCPU</th>
<th>Size (warehouses)</th>
<th>Throughput (tpmC)</th>
<th>Throughput (% of max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDB</td>
<td>32</td>
<td>1000</td>
<td>12,582</td>
<td>97.8%</td>
</tr>
<tr>
<td>S2DB</td>
<td>32</td>
<td>1000</td>
<td>12,556</td>
<td>97.7%</td>
</tr>
<tr>
<td>S2DB</td>
<td>256</td>
<td>10000</td>
<td>121,432</td>
<td>94.4%</td>
</tr>
</tbody>
</table>

Table 1: TPC-C results (higher is better, up to the limit of 12.86 tpmC/warehouse)

<table>
<thead>
<tr>
<th>Product</th>
<th>Cluster price per hour</th>
<th>TPC-H geomean (sec)</th>
<th>TPC-H geomean (cents)</th>
<th>TPC-H throughput (QPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2DB</td>
<td>$16.50</td>
<td>8.57 s</td>
<td>3.92 ¢</td>
<td>0.078</td>
</tr>
<tr>
<td>CDW1</td>
<td>$16.00</td>
<td>10.31 s</td>
<td>4.58 ¢</td>
<td>0.069</td>
</tr>
<tr>
<td>CDW2</td>
<td>$16.30</td>
<td>10.06 s</td>
<td>4.55 ¢</td>
<td>0.082</td>
</tr>
<tr>
<td>CDB</td>
<td>$13.92</td>
<td>Did not finish within 24 hours</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of TPC-H (1TB) results
• TPC-C specifies a maximum possible result of 12.86 tpmC per warehouse at 1000 warehouses
• Scales linearly at 10000 warehouses
• S2DB achieves competitive performance with leading databases
• S2DB, CDW1 and CDW2 all have competitive performance on TPC-H

Figure 4: TPC-H 1TB query runtimes (lower is better)

Figure 5: Summary of TPC-C and TPC-H throughputs (higher is better)
Success Story

SingleStoreDB is used by a variety of companies across a wide range of industries, including:

- Technology: Dell, HP, Siemens, GE, NVIDIA, Airbnb, Uber
- Financial services: Goldman Sachs, Morgan Stanley, Citigroup, Bank of America
- Retail: Walmart, Target, Home Depot, Lowe's, Kroger
- Healthcare: Kaiser Permanente, UnitedHealth Group, CVS Health, Walgreens Boots Alliance
- Media and entertainment: Disney, WarnerMedia, Netflix, Spotify
- Telecommunications: AT&T, Verizon, T-Mobile, Sprint
Thoughts and Questions?