
Crystal GPU Database
By Devesh

Intro to GPUS

Latencies, Bandwidths, and Limits

It's all about threads

Executing the blocks

Memory Hierarchy

Or as the Mythbusters explained

http://www.youtube.com/watch?v=-P28LKWTzrI&t=36

Previous Works

GPU as a Co Processor

Data resides in CPU memory and is moved to the GPU during query execution

SSB Benchmark

13 different queries like this

Using SF = 20

Comparison against other OLAP databases

On average GPU co processing is 1.4x times slower than Hyper

Crystal

Solution
Store the working set in the GPU memory itself as done by

Crystal builds on these using a tile based execution model

Problem with current GPU approach
Motivating query

How current systems do it
“Each thread strides through the dataset and determines
number of matching rows”

If 100 total threads then
Thread 0 checks rows 0, 100, 200, …
Thread 1 checks rows 1, 101, 201, …

Example count arr: [1, 3, 4, 2, 5]

Prefix sum: [0, 1, 4, 8, 10, 15]

Thread 0 will write result in indices [0, 1)
Thread 1 will write result in indices [1, 4)
Thread 2 will write result in [4, 8)
…

Problem: Requires 3 kernels and 2 iterations over the dataset

Introducing Tile Based Execution Model

Tiles rather than threads
are basic units of execution

Load all of tile’s data into
shared memory once and
reuse it

Going back to the example

SELECT Y FROM R WHERE Y > 5

Converting this to code

Crystal provides primitives for each of these steps

Tuning some key parameters
● Thread Block Size: Number of threads per thread block
● Items per thread: Number of rows each thread will process

● R has 2^29 rows
● Selectivity factor: 0.5

Projection Queries

Note: Q2 is performing a sigmoid operation

Will Crystal against

● CPU based multi threaded implementation

● CPU-Opt: CPU + Non temporal writes (write out cache line to main

memory) + SIMD optimizations

● Modeling: Calculating expected runtimes given hardware

specifications

How does modeling work
For query

Time to

load both

columns

Time to
write
result back

● N = # of rows

● Br = Read bandwidth

● Bw = Write bandwidth

Projection Performance

Table with 2^29 rows

Selection

Two possible approaches:

GPU IF GPU Pred

Selection Performance

Hash Join

Important points:

● Probe table: 256 million rows, 50% fill rate, linear probing

● Crystal approach:

1. Load dating using BlockLoad

2. Each thread finds matching entries and maintains a local sum

3. Get overall sum using BlockAggergate

Hash Join Performance

Build hash table size

SSB Comparison

Takeaway: Crystal is around 25x than SOTA OLAP

The $$$ effect

GPUS are 6x more expensive but 25x faster

Limitations
Limited amount of GPU memory:

● Use multiple GPUs

● Bit compression to store

more data

Only supports numeric formats

● Strings, Dates, etc..

Thoughts?

