
Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, Samuel Madden

Presented By – Vaibhav Nitnaware

Tile-based Lightweight Integer 
Compression in GPU



MOTIVATION

• GPUs have limited memory capacity
• Typically ~80 GB of HBM (High Bandwidth Memory)

CPU GPU

Memory Bandwidth 100 GBps 2 TBps

Compute < 1 TFLOPs 19.5 TFLOPs



COMPUTE INTENSITY

• How many operations must I do on some data to make it worth 
the cost of loading it?

• 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = !"#$%
&'(' )'(*

CPU GPU

Memory Bandwidth 100 GBps 2 TBps

Compute < 1 TFLOPs 19.5 TFLOPs

Compute Intensity ~ 100 ~ 80



COMPRESSION SCHEMES

1. Fit more data in GPU memory
2. Speed up data transfer between CPU and GPU



COMPRESSION SCHEMES LIMITATIONS

1. Cascading multiple compression schemes cause multiple 
passes over the global memory, causing high memory traffic.

2. Bit-level packing is superior, but the SIMT model has a limited 
instruction set for bit-level alignment operations.



COMPRESSION SCHEMES TRADE-OFF

Compression 
Ratio

Decompression 
Speed



COMPRESSION SCHEMES IN COLUMNAR STORES

Compression 
Schemes

Light-weight

FOR

DELTA

DICT

RLE

NS

Heavy-weight



Frame-of-Reference (FOR)

100 101 102 100 102 101 104 102 103 105

100 0 1 2 0 2 1 4 2 3 5

Useful when the integers have similar values



Delta Encoding (DELTA)

100 101 102 100 102 101 104 102 103 105

100 0 1 1 -2 2 -1 3 -2 1 2

Useful when the integers are sorted or semi-sorted



Delta Encoding (DELTA)

100 101 102 100 102 101 104 102 103 105

100 0 1 1 -2 2 -1 3 -2 1 2

Useful when the integers are sorted or semi-sorted



Dictionary Encoding (DICT)

Color

Red

Green

Blue

Green

Blue

Red

Color Value

Red 0

Green 1

Blue 2

Color

0

1

2

1

2

0

Dictionary

Column

Useful when the column has low cardinality



Run-length Encoding (RLE)

101 101 99 99 99 99 111 111 111 111

101 99 111

2 4 4

Values

Run-length

Useful when the data has high average run-length



Null Suppression (NS)

0001001

1001

Useful when the integers have small values



Cascade Compression

DELTA FOR NSF



OBJECTIVES

1. Decompress in single pass over global memory & inline with 
query execution

2. Efficient bit-packing-based compression schemes



Single Pass over Memory & Inline with Query Execution

• Consider each Thread Block as the basic execution unit.
• Each thread block processes over single Tile of data.



GPU ARCHITECTURE



Single Pass over Memory & Inline with Query Execution



Single Pass over Memory & Inline with Query Execution



Efficient bit-packing-based compression schemes

• GPU-FOR
• GPU-DFOR
• GPU-RFOR



GPU-FOR

• Block Size = # of integers per block
• Miniblock Count = # of miniblocks per block
• Total Count = # of integers in data array



GPU-FOR

• Block Size = 16
• Miniblock Count = 2
• Total Count = 16



GPU-FOR ALGORITHM

https://github.com/anilshanbhag/gpu-compression



GPU-FOR ALGORITHM

1. Identify block_start = block_starts[block_id]

2. Read bit_width word

3. Compute miniblock offset

4. Compute offset within the miniblock

5. Add the reference

6. Return decoded integer



GPU-FOR ALGORITHM OPTIMIZATIONS

• Run on synthetic dataset of 500 million 4-byte integers
• Unoptimized Decompression = 18ms
• Reading Uncompressed dataset = 2.4ms



OPTIMIZATION 1: OPERATING IN SHARED MEMORY

• All data is contained within a block
• Load entire data block from global memory to shared 

memory
• Reduces from 18ms to 7ms



OPTIMIZATION 2: PROCESSING MULTIPLE BLOCKS

• Read D+1 blocks from global to shared memory
• Read granularity = 128 bytes
• Block sizes may not be multiples of 128 bytes
• Leading to unaligned read by warps



OPTIMIZATION 2: PROCESSING MULTIPLE BLOCKS

• Each thread block reads D+1 blocks
• Results in runtime of 2.39ms (D=4)



OPTIMIZATION 3: PRECOMPUTING MINIBLOCK OFFSETS

• Miniblock offsets are essentially prefix sum over bit-widths array
• Precompute D*4 miniblock offsets at the start
• Results in final runtime of 2.1ms (D = 4)
• This is better than reading uncompressed data (2.4ms)



GPU-DFOR



PERFORMANCE WITH VARYING BIT-WIDTHS



EVALUATION ON DIFFERENT DATA DISTRIBUTIONS

UNIFORM NORMAL ZIPFIAN



PERFORMANCE ON STAR SCHEMA BENCHMARK

Planner Cascading Decompression

GPU-BP Only Bit-packing

nvCOMP No end-to-end pipelining with query execution

OmniSci Only Dictionary Encoding (DICT)



PERFORMANCE ON STAR SCHEMA BENCHMARK



PERFORMANCE ON STAR SCHEMA BENCHMARK




