
Mordred:
Heterogeneous CPU-GPU DBMS 

Dec 22, 2023

CS 839: Cloud Native Databases

Harshit Sharma



01 | Introduction

02 | Background

03 | Methodology

04 | System Evaluation

05 | Endnote

CS839: Mordred Heterogeneous CPU-GPU DBMS 

2



INTRODUCTION

3



CS839: Mordred Heterogeneous CPU-GPU DBMS 

4

GPUs for Data Analytics
● Growing Interest in using GPUS for Accelerated Data Analytics

● Massive Parallelism and High Memory Bandwidth

● GPU databases have been studied in both academic research and developed as 

commercial products, demonstrating more than 10× speedup over the CPU 

counterparts.



CS839: Mordred Heterogeneous CPU-GPU DBMS 

5

What’s the challenge then?
GPUs are expensive and offer limited capacity of GPU memory!!



CS839: Mordred Heterogeneous CPU-GPU DBMS 

6

Any Solutions?

Solution I:
1. Transfer data to GPU on demand through PCIe when a query accesses data that is 

not in GPU.

2. Pros: Straightforward Solution with commercial and academic implementations.

3. Cons: Potentially significant data traffic over PCIe, which can become a new 

performance bottleneck.



CS839: Mordred Heterogeneous CPU-GPU DBMS 

7

Any Better Solutions?

Solution II:
1. Leverage both CPU and GPU for heterogeneous query processing.

2. Pros: Fully exploit the computational power of both devices and avoid excessive 

data transfer over PCIe by running certain sub-queries in CPU.

3. Cons: Trade-off with higher design complexity for data placement and 

heterogeneous query execution across devices.



CS839: Mordred Heterogeneous CPU-GPU DBMS 

8

Solution II Focus:
Data Placement:

● How do we place data between GPU and CPU for a 

Heterogenous query executor.

Heterogeneous Query Executor:

● How does the Heterogeneous query executor exploit data 

for a such devised data placement strategy?



BACKGROUND

9



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
0

GPU Architecture:
1. GPUs use streaming multiprocessors 

(SM) as the basic computing unit.

2. Each SM has fixed registers and 

shared memory (SMEM), with global 

memory accesses cached in L1 and L2 

caches.

3. GPU programming organizes threads 

into blocks executed on an SM, with 

threads in a warp following the SIMT 

model for optimized memory access.



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
1

GPU Data Analytics

GPU as the 
primary 

execution engine

GPU as a 
coprocessor

Heterogeneous 
CPU-GPU query 

execution



Crystal Library
1. Mordred utilizes Crystal, a CUDA library, employing a 

tile-based execution model for GPU analytic queries.

2. Crystal treats thread blocks as the basic units, 

processing 512-entry tiles in shared memory to 

minimize global memory round-trips.

3. Crystal enables pipelined execution for faster 

analytics query speeds.

4. Mordred adopts Crystal's cost model to estimate 

query runtimes for its replacement policy.

CS839: Mordred Heterogeneous CPU-GPU DBMS 



METHODOLOGY

1
3



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
4

Data Placement:
1. Mordred treats data placement as a caching problem.

2. The complete data set resides in CPU memory and a mirrored subset of data is cached in 

GPU.

3. How to Cache: Follows a sub-column fine-grained policy.

4. What to Cache: Semantic-Aware Fine-Grained Caching.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
5

Semantic-Aware Fine-Grained Caching:
1. Extend conventional LFU with weighted 

frequency counters.

2. The weight reflects the potential benefits of 

caching the segment and is derived using a 

cost model. 

3. The cost model captures:

a. The relative speedup of caching a 

segment

b. The correlation among segments from 

different columns. 

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
6

Heterogeneous Query Execution
1. Fine-grained caching policy == Extra complexity of query execution

2. Goals:

a. Minimize inter-device data transfer

b. Minimize CPU/GPU memory traffic

c. Fully exploit parallelism in both CPU and GPU

3. Operator Placement:

a. Data-driven operator placement heuristic applied at segment granularity

b. A single operator can be split to run in both CPU and GPU depending on the 

location of input segments. 

4. Resulting Plan as Segment-Level Query Plan.



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
7

Heterogeneous Query Execution

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
8

Other Optimizations

1. Late materialization

2. Operator Pipelining

3. Segment Skipping



CS839: Mordred Heterogeneous CPU-GPU DBMS 

1
9

Overall System

1. The Cache Manager performs periodic data 

replacement in GPU memory based on the 

caching policy.

2. The Query Optimizer module converts a query 

plan into a segment-level query plan. 

3. The Query Execution Engine executes 

segment-level query plan generated by the 

query optimizer.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



SYSTEM EVALUATION

2
0



CS839: Mordred Heterogeneous CPU-GPU DBMS 

2
1

Semantic Caching Vs Others

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



CS839: Mordred Heterogeneous CPU-GPU DBMS 

2
2

Optimizations Evaluations

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



CS839: Mordred Heterogeneous CPU-GPU DBMS 

2
3

Mordred VS DBs

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022



THANK YOU

CS 839: Cloud Native Databases


