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GPUs for Data Analytics

e Growing Interest in using GPUS for Accelerated Data Analytics

e Massive Parallelism and High Memory Bandwidth

e GPU databases have been studied in both academic research and developed as
commercial products, demonstrating more than 10x speedup over the CPU

counterparts.
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What’s the challenge then?

GPUs are expensive and offer limited capacity of GPU memory!!

Upto
~ 80 GBs
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Any Solutions?

Solution I:
1. Transfer data to GPU on demand through PCle when a query accesses data that is
not in GPU.
2. Pros: Straightforward Solution with commercial and academic implementations.

3. Cons: Potentially significant data traffic over PCle, which can become a new

performance bottleneck.
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Any Better Solutions?

Solution ll:
1. Leverage both CPU and GPU for heterogeneous query processing.
2. Pros: Fully exploit the computational power of both devices and avoid excessive
data transfer over PCle by running certain sub-queries in CPU.
3. Cons: Trade-off with higher design complexity for data placement and

heterogeneous query execution across devices.
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Solution Il Focus:

Data Placement:
e How do we place data between GPU and CPU for a

Heterogenous query executor.

Heterogeneous Query Executor:
e How does the Heterogeneous query executor exploit data

for a such devised data placement strategy?
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________________________________________

GPU Architecture:

1. GPUs use streaming multiprocessors e e R e g

Local to each SM "»

(SM) as the basic computing unit.

2. Each SM has fixed registers and

shared memory (SMEM), with global
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memory accesses cached in L1 and L2

caches.

L2 cache (6MB)
PCle NVLink

A )
: Read-only :

into blocks executed on an SM, with p— p————

3. GPU programming organizes threads

Global memory (32GB)

threads in a warp following the SIMT

model for optimized memory access.
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GPU Data Analytics

GPU as the

primary
execution engine

Heterogeneous
CPU-GPU query
execution

GPU as a
coprocessor
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Crystal Library

1. Mordred utilizes Crystal, a CUDA library, employing a
tile-based execution model for GPU analytic queries.

2. Crystal treats thread blocks as the basic units,
processing 512-entry tiles in shared memory to

minimize global memory round-trips. nVI DIA,

3. Crystal enables pipelined execution for faster 2
analytics query speeds. C U DA
4. Mordred adopts Crystal's cost model to estimate

query runtimes for its replacement policy.
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Data Placement:

1. Mordred treats data placement as a caching problem.

2. The complete data set resides in CPU memory and a mirrored subset of data is cached in

GPU.

3. How to Cache: Follows a sub-column fine-grained policy.

4. What to Cache: Semantic-Aware Fine-Grained Caching.

Cached

Uncached

Relation R

Relation S

Relation R

Relation S

\

| Join Keys

(a) Coarse-grained caching

Relation R Relation S

| Join Keys

(b) Fine-grained caching

\

| Join Keys

(c) Fine-grained semantic-aware caching

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Semantic-Aware Fine-Grained Caching:

1. Extend conventional LFU with weighted
frequency counters.

2. The weight reflects the potential benefits of
caching the segment and is derived using a
cost model.

3. The cost model captures:

a. The relative speedup of caching a
segment
b. The correlation among segments from

different columns.

Algorithm 1: Update the weighted frequency counter
for segment S

1 UpdateWeightedFreqCounter(segment S)

2

# estimate query runtime when S is not cached.

RT yncached = estimateQueryRuntime(cached_segments \ S)

# estimate query runtime when S and segments correlated with S
are cached.

RT 4cheq = estimateQueryRuntime(cached_segments U S U
correlated_segments)

weight = RTyncached = RTcached

S.weighted_freq_counter += weight

for C in correlated_segments do

# evenly distribute weight to all segments correlated with S
C.weighted_freq_counter += weight / [correlated_segments|

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Heterogeneous Query Execution

1. Fine-grained caching policy == Extra complexity of query execution
2. Goals:

a. Minimize inter-device data transfer
b. Minimize CPU/GPU memory traffic
c. Fully exploit parallelism in both CPU and GPU

3. Operator Placement:

a.

Data-driven operator placement heuristic applied at segment granularity
b.

A single operator can be split to run in both CPU and GPU depending on the
location of input segments.

4. Resulting Plan as Segment-Level Query Plan.



CS839: Mordred Heterogeneous CPU-GPU DBMS

Heterogeneous Query Execution
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Figure 3: Example of Segment-level Query Plan.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Other Optimizations

1. Late materialization
2. Operator Pipelining
3. Segment Skipping
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Overall System

1. The Cache Manager performs periodic data
replacement in GPU memory based on the
caching policy.

2. The Query Optimizer module converts a query
plan into a segment-level query plan.

3. The Query Execution Engine executes
segment-level query plan generated by the

query optimizer.

Cache Information

query plan
|

Query
Optimizer
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segment-level query plan
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Figure 4: Mordred System Overview

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Semantic Caching Vs Others
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Figure 5: Execution Time of Various Caching Policies with
Replacement Policy

Different Cache Size (Uniform distribution with 6 = 0)
Figure 6: Memory Traffic Breakdown for Each Caching Policy

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Optimizations Evaluations
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Figure 10: Impact of Segment Grouping in Mordred
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Figure 11: Performance Speedup after Each Optimization

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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Mordred VS DBs
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Figure 13: SSB Query Performance of Different CPU/GPU DBMS (Data fits in GPU)
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Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022
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THANK YOU

\\\N



