((@\XI@)\))
N\
CS 839: Cloud Native Databases

Mordred:
Heterogeneous CPU-GPU DBMS

Harshit Sharma

Dec 22, 2023

\\\N

CS839: Mordred Heterogeneous CPU-GPU DBMS

01 | Introduction

02 | Background

03 | Methodology

04 | System Evaluation

05 | Endnote

INTRODUCTION

I
i

CS839: Mordred Heterogeneous CPU-GPU DBMS

GPUs for Data Analytics

e Growing Interest in using GPUS for Accelerated Data Analytics

e Massive Parallelism and High Memory Bandwidth

e GPU databases have been studied in both academic research and developed as
commercial products, demonstrating more than 10x speedup over the CPU

counterparts.

Data

- =10x

CS839: Mordred Heterogeneous CPU-GPU DBMS

What’s the challenge then?

GPUs are expensive and offer limited capacity of GPU memory!!

Upto
~ 80 GBs

CS839: Mordred Heterogeneous CPU-GPU DBMS

Any Solutions?

Solution I:
1. Transfer data to GPU on demand through PCle when a query accesses data that is
not in GPU.
2. Pros: Straightforward Solution with commercial and academic implementations.

3. Cons: Potentially significant data traffic over PCle, which can become a new

performance bottleneck.

CS839: Mordred Heterogeneous CPU-GPU DBMS

Any Better Solutions?

Solution ll:
1. Leverage both CPU and GPU for heterogeneous query processing.
2. Pros: Fully exploit the computational power of both devices and avoid excessive
data transfer over PCle by running certain sub-queries in CPU.
3. Cons: Trade-off with higher design complexity for data placement and

heterogeneous query execution across devices.

CS839: Mordred Heterogeneous CPU-GPU DBMS

Solution Il Focus:

Data Placement:
e How do we place data between GPU and CPU for a

Heterogenous query executor.

Heterogeneous Query Executor:
e How does the Heterogeneous query executor exploit data

for a such devised data placement strategy?

BACKGROUND

I
i

CS839: Mordred Heterogeneous CPU-GPU DBMS

__

GPU Architecture:

1. GPUs use streaming multiprocessors e e R e g

Local to each SM "»

(SM) as the basic computing unit.

2. Each SM has fixed registers and

shared memory (SMEM), with global

\
1
1
1
1
1
1
1
1
1
1
1
1
1
!,

r

memory accesses cached in L1 and L2

caches.

L2 cache (6MB)
PCle NVLink

A)
: Read-only :

into blocks executed on an SM, with p— p————

3. GPU programming organizes threads

Global memory (32GB)

threads in a warp following the SIMT

model for optimized memory access.

P

CS839: Mordred Heterogeneous CPU-GPU DBMS

GPU Data Analytics

GPU as the

primary
execution engine

Heterogeneous
CPU-GPU query
execution

GPU as a
coprocessor

CS839: Mordred Heterogeneous CPU-GPU DBMS

Crystal Library

1. Mordred utilizes Crystal, a CUDA library, employing a
tile-based execution model for GPU analytic queries.

2. Crystal treats thread blocks as the basic units,
processing 512-entry tiles in shared memory to

minimize global memory round-trips. nVI DIA,

3. Crystal enables pipelined execution for faster 2
analytics query speeds. C U DA
4. Mordred adopts Crystal's cost model to estimate

query runtimes for its replacement policy.

METHODOLOGY

I
i

CS839: Mordred Heterogeneous CPU-GPU DBMS

Data Placement:

1. Mordred treats data placement as a caching problem.

2. The complete data set resides in CPU memory and a mirrored subset of data is cached in

GPU.

3. How to Cache: Follows a sub-column fine-grained policy.

4. What to Cache: Semantic-Aware Fine-Grained Caching.

Cached

Uncached

Relation R

Relation S

Relation R

Relation S

\

| Join Keys

(a) Coarse-grained caching

Relation R Relation S

| Join Keys

(b) Fine-grained caching

\

| Join Keys

(c) Fine-grained semantic-aware caching

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS839: Mordred Heterogeneous CPU-GPU DBMS

Semantic-Aware Fine-Grained Caching:

1. Extend conventional LFU with weighted
frequency counters.

2. The weight reflects the potential benefits of
caching the segment and is derived using a
cost model.

3. The cost model captures:

a. The relative speedup of caching a
segment
b. The correlation among segments from

different columns.

Algorithm 1: Update the weighted frequency counter
for segment S

1 UpdateWeightedFreqCounter(segment S)

2

estimate query runtime when S is not cached.

RT yncached = estimateQueryRuntime(cached_segments \ S)

estimate query runtime when S and segments correlated with S
are cached.

RT 4cheq = estimateQueryRuntime(cached_segments U S U
correlated_segments)

weight = RTyncached = RTcached

S.weighted_freq_counter += weight

for C in correlated_segments do

evenly distribute weight to all segments correlated with S
C.weighted_freq_counter += weight / [correlated_segments|

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS839: Mordred Heterogeneous CPU-GPU DBMS

Heterogeneous Query Execution

1. Fine-grained caching policy == Extra complexity of query execution
2. Goals:

a. Minimize inter-device data transfer
b. Minimize CPU/GPU memory traffic
c. Fully exploit parallelism in both CPU and GPU

3. Operator Placement:

a.

Data-driven operator placement heuristic applied at segment granularity
b.

A single operator can be split to run in both CPU and GPU depending on the
location of input segments.

4. Resulting Plan as Segment-Level Query Plan.

CS839: Mordred Heterogeneous CPU-GPU DBMS

Heterogeneous Query Execution

CPU GPU
| MERGE
SEGMENT SEGMENT SEGMENT
REL ATI ON R RELATION S GROUP3 GROUP2 GROUP1
[GrouP-BY] [GrOUP-BY|

|
/N\
o

(02

GROUP 1 {

Cached

GROUP 2 =
~ 1 Uncached
GROUP3 — neene []2] g
. : . A;[B,|C,
Figure 2: Example of Segment Grouping. N EAEA]
[As[B,]C)] [B.]E]
Relation R Relation S Relation R Relation S
CPU Memory GPU Memory

Figure 3: Example of Segment-level Query Plan.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS839: Mordred Heterogeneous CPU-GPU DBMS

Other Optimizations

1. Late materialization
2. Operator Pipelining
3. Segment Skipping

CS839: Mordred Heterogeneous CPU-GPU DBMS

Overall System

1. The Cache Manager performs periodic data
replacement in GPU memory based on the
caching policy.

2. The Query Optimizer module converts a query
plan into a segment-level query plan.

3. The Query Execution Engine executes
segment-level query plan generated by the

query optimizer.

Cache Information

query plan
|

Query
Optimizer

|

segment-level query plan

—

Data
Query < Processing
Execution e
Engine <:> Data
Processing
update segment T e |
weight Data Caching <:>
Cache [ﬁ
Manager
| & GPU Memory CPU Memory
t t

Cache Replacement

Figure 4: Mordred System Overview

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

SYSTEM EVALUATION

I
i

CS839: Mordred Heterogeneous CPU-GPU DBMS

Semantic Caching Vs Others

[=2)
o

= —
F @
E &
= [
3 40 ~—
8) —_ L
a o=
g o
& [

Do
(=]

80
N —— LFU (Column) N GPU N CPU I Interconnect

—+— LRU (Column)

LRU-2 (Column) 6001
—— LFU (Segment)
~—+— LRU (Segment)

—e— LRU-2 (Segment) 400 1

Semantic-aware <
\\)
0 =

0 2000 4000 6000 8000 U2 9 9 e
Cache Size (MB) LR _RU \Segmf\;\‘u—’z (segmegu (Seg‘“es“emant\c Aw
Figure 5: Execution Time of Various Caching Policies with
Replacement Policy

Different Cache Size (Uniform distribution with 6 = 0)
Figure 6: Memory Traffic Breakdown for Each Caching Policy

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS839: Mordred Heterogeneous CPU-GPU DBMS

Optimizations Evaluations

I Mordred w/o Segment Grouping I Mordred
40 A
) L
| B
800

1600 3200 6400
Cache Size (MB)

Figure 10: Impact of Segment Grouping in Mordred

Execution time (s)

404 WEE Lite Malloc
[Lite Malloc+Late Mat

301 M Lite Malloc+Late Mat+Op Pipelining
o
3 Lite Malloc+Late Mat+Op Pipelining+Seg Skipping
2 201
)

i ‘

et =l

0 2000 4000 8000
Cache Size (MB)

Figure 11: Performance Speedup after Each Optimization

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS839: Mordred Heterogeneous CPU-GPU DBMS

Mordred VS DBs

I BlazingDB CoGaDB I YDB BN HeavyDB Mordred
2 10°
w
£10?
S
5 104
3
i
Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3 mean
Queries
Figure 13: SSB Query Performance of Different CPU/GPU DBMS (Data fits in GPU)
I BlazingDB CoGaDB N YDB I HeavyDB Mordred
—_ 1041
E
s
5 10°
5 10" 4
QL1 Q1.2 Q1.3 Q2.1 Q2.2 Q23 Q3.1 Q3.2 Q33 Q3.4 Q4.1 Q4.2 Q4.3 mean
Queries

Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

CS 839: Cloud Native Databases

THANK YOU

\\\N

