

CS 839: Cloud Native Databases

Mordred: Heterogeneous CPU-GPU DBMS

Harshit Sharma

Dec 22, 2023

01 | Introduction

02 | Background

- 03 | Methodology
- 04 | System Evaluation
- 05 | Endnote

INTRODUCTION

GPUs for Data Analytics

- Growing Interest in using GPUS for Accelerated Data Analytics
- Massive Parallelism and High Memory Bandwidth
- GPU databases have been studied in both academic research and developed as commercial products, demonstrating more than 10× speedup over the CPU counterparts.

What's the challenge then?

GPUs are expensive and offer limited capacity of GPU memory!!

Any Solutions?

Solution I:

- 1. Transfer data to GPU on demand through PCIe when a query accesses data that is not in GPU.
- 2. Pros: Straightforward Solution with commercial and academic implementations.
- 3. Cons: Potentially significant data traffic over PCIe, which can become a new performance bottleneck.

Any Better Solutions?

Solution II:

- 1. Leverage both CPU and GPU for heterogeneous query processing.
- 2. Pros: Fully exploit the computational power of both devices and avoid excessive data transfer over PCIe by running certain sub-queries in CPU.
- 3. Cons: Trade-off with higher design complexity for data placement and heterogeneous query execution across devices.

Solution II Focus:

Data Placement:

• How do we place data between GPU and CPU for a Heterogenous query executor.

Heterogeneous Query Executor:

• How does the Heterogeneous query executor exploit data for a such devised data placement strategy?

BACKGROUND

GPU Architecture:

- GPUs use streaming multiprocessors (SM) as the basic computing unit.
- 2. Each SM has fixed registers and shared memory (SMEM), with global memory accesses cached in L1 and L2 caches.
- 3. GPU programming organizes threads into blocks executed on an SM, with threads in a warp following the SIMT model for optimized memory access.

GPU Data Analytics

Heterogeneous CPU-GPU query execution GPU as a coprocessor

Crystal Library

- 1. Mordred utilizes Crystal, a CUDA library, employing a tile-based execution model for GPU analytic queries.
- 2. Crystal treats thread blocks as the basic units, processing 512-entry tiles in shared memory to minimize global memory round-trips.
- 3. Crystal enables pipelined execution for faster analytics query speeds.
- 4. Mordred adopts Crystal's cost model to estimate query runtimes for its replacement policy.

METHODOLOGY

Ô

Data Placement:

- 1. Mordred treats data placement as a caching problem.
- 2. The complete data set resides in CPU memory and a mirrored subset of data is cached in GPU.
- 3. How to Cache: Follows a sub-column fine-grained policy.
- 4. What to Cache: Semantic-Aware Fine-Grained Caching.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

Semantic-Aware Fine-Grained Caching:

- 1. Extend conventional LFU with weighted frequency counters.
- 2. The weight reflects the potential benefits of caching the segment and is derived using a cost model.
- 3. The cost model captures:
 - a. The relative speedup of caching a segment
 - b. The correlation among segments from different columns.

Algorithm 1: Update the weighted frequency counter for segment S

1 UpdateWeightedFreqCounter(segment S)	
	# estimate query runtime when S is not cached.
2	RT _{uncached} = estimateQueryRuntime(cached_segments \ S)
	# estimate query runtime when S and segments correlated with S
	are cached.
3	$RT_{cached} = estimateQueryRuntime(cached_segments \cup S \cup$
	correlated_segments)
4	$weight = RT_{uncached} - RT_{cached}$
5	S.weighted_freq_counter += weight
6	for C in correlated_segments do
	# evenly distribute weight to all segments correlated with S
7	C.weighted_freq_counter += weight / correlated_segments

Heterogeneous Query Execution

- 1. Fine-grained caching policy == Extra complexity of query execution
- 2. Goals:
 - a. Minimize inter-device data transfer
 - b. Minimize CPU/GPU memory traffic
 - c. Fully exploit parallelism in both CPU and GPU
- 3. Operator Placement:
 - a. Data-driven operator placement heuristic applied at segment granularity
 - b. A single operator can be split to run in both CPU and GPU depending on the location of input segments.
- 4. Resulting Plan as Segment-Level Query Plan.

Heterogeneous Query Execution

Figure 2: Example of Segment Grouping.

Figure 3: Example of Segment-level Query Plan.

Other Optimizations

- 1. Late materialization
- 2. Operator Pipelining
- 3. Segment Skipping

Overall System

- 1. The Cache Manager performs periodic data replacement in GPU memory based on the caching policy.
- 2. The Query Optimizer module converts a query plan into a segment-level query plan.
- 3. The Query Execution Engine executes segment-level query plan generated by the query optimizer.

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

SYSTEM EVALUATION

Semantic Caching Vs Others

Different Cache Size (Uniform distribution with $\theta = 0$)

Figure 6: Memory Traffic Breakdown for Each Caching Policy

Optimizations Evaluations

Figure 11: Performance Speedup after Each Optimization

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

Mordred VS DBs

Q1.1

Q1.2

Q1.3

Q3.1

Q3.2

Queries Figure 14: SSB Query Performance of Different CPU/GPU DBMS (Data does not fit in GPU)

Q3.3

Q3.4

Q4.1

Q4.2

Q4.3

mean

Figures credit: Bobbi Yogatama, et al. Orchestrating Data Placement and Query Execution in Heterogeneous CPU-GPU DBMS. VLDB 2022

Q2.2

Q2.3

Q2.1

CS 839: Cloud Native Databases

THANK YOU

