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Quick Aside on GPU Databases



Background on GPU as relates to Database Systems

• GPU = Graphics Processing Unit
• Initially designed to quickly render high resolution images and video
• However, GPUs are generally good for performing parallel operations 

on multiple sets of data
• Can be used for data analytics and machine learning

Info from: https://www.heavy.ai/learn/gpu-database



CPU vs GPU

CPU GPU

Used for? Complex decision making, 
sequential processing, 
multitasking, diverse workloads

Parallel processing of large 
amounts of data

Memory Hierarchy* More sophisticated; uses caches 
optimized for variety of data 
types & access patterns

Simple, optimized for handling 
large blocks of similar data

Cost & Power Efficiency Generally, more power efficient, 
better for balancing processing 
power and wide variety of tasks

Not as power-efficient, designed 
for max throughput of specific 
types of computation

In other words: if GPUs are so fast, why don’t we just replace CPUs? 



CPU Databases vs GPU Databases

CPU Databases GPU Databases

Used for? Transaction processing, complex 
queries, sophisticated data 
manipulation

Data analytics, machine 
learning, generally applying bulk 
calculations to large volumes of 
data in parallel

Examples MySQL, PostgreSQL, Oracle Crystal, BlazingSQL, HeavyDB, 
TQP, PG-Strom



Paper Review



Introduction

• Paper Motivation: study the resource utilization and bottlenecks in 
existing GPU database systems to propose improvements for better 
GPU database systems. 

• Terminology:
• SF (scaling factor): parameter to adjust size of dataset (larger SF = larger dataset)
• GPU kernel: compute function
• Kernel fusion: combine multiple independent kernels into one



Query Performance vs. GPU Resource Allocation

• Query performance doesn’t scale linearly
with respect to allocated GPU

• Depends on data size and query properties

• Developers have many choices on how to
schedule workloads over GPU, but it’s not
clear how best to utilize the resources



Key Contributions

1. Comparative Analysis of GPU DB systems
• Finding traits that improve query performance

2. Performance Modeling
• When data size changes
• When resource allocation changes (roofline model)

3. Model Driven Resource Management & Scheduling
• To predict workload performance with different resource allocation/degrees of 

concurrency



Databases Studied
Highlights from the Paper:

• Crystal: academic prototype, only 
supports queries from Star Schema Benchmark 
• Heavy DB: LLVM to PTX
• BlazingSQL: sometimes generates 
intermediate results
• TQP: from Microsoft, PyTorch backend
allows it to work with GPU kernels with built in
PyTorch support
• PG-Strom: extension to PostgreSQL, allows
offloading some operators (ex. join, aggregate)
to GPU. Supports CPU + GPU execution

All have built-in query optimization and
query compilation, except for Crystal.



Experimental Setup

• Hardware
• NVIDIA A100 GPU (high end GPU)

• Workload
• SSB benchmark, since Crystal only supports these queries

• Profiling Toolchain
• NVIDIA Nsight System (time breakdown: data transfer, mem alloc, kernel execute)
• Nsight Compute (kernel execution metrics)
• nvidia-smi (power monitoring)



Observed runtime metrics of queries with fixed input size and 
GPU resource allocation

Performance Analysis



Performance Analysis: End-to-End Cold Query Execution

2 main phases dominate run time:
• Data Transfer (Host to Device)
• Query Planning (unavoidable
first time running query)



Performance Analysis: End to End Warm Query Execution

Crystal & TQP: E2E is only the GPU 
compute time (can avoid compilation
overhead)

HeavyDB & BlazingSQL: overhead from 
query plan optimization & compilation
(unexpected)

PG-Strom: transfer of intermediate results
between CPU and GPU is expensive



Performance Analysis: GPU Compute Time

Crystal is still the fastest, but advantage
is less.

E2E execution time doesn’t necessarily 
correlate with GPU compute efficiency



What influences GPU Compute Efficiency?

• Arithmetic Intensity (AI): num operations / num bytes read
• Stalls from loading data from device memory

• Packing complex operations into memory requests doesn’t necessarily help

• Amount of kernels used for a query
• Using large amount of kernels à materializing intermediate data (want to avoid)



Predicting query performance with variable input size and 
resource allocation

Performance Modeling



Performance Modeling: “White Box”

• “White Box”: dependent on implementation of query operators, can 
estimate query performance for different input sizes

Crystal: doesn’t account for less
than full bandwidth utilization of 
DRAM and cache

“Crystal-Opt”: profiles previous run 
to get estimate of bandwidth
utilization; model becomes more 
accurate

Memory bandwidth is often under-
utilized



Performance Modeling: “Black Box”

• “Black Box”: agnostic of query implementation, can predict query 
performance as GPU resource allocation changes

Roofline: assumes that any execution on a 
specific hardware is bounded by either
memory resources or compute resources

Slope = limited by memory resources

Flat = limited by compute resources



DRAM Roofline Model
Arithmetic Intensity (AI): 
# operations / bytes read during execution

Most queries don’t saturate compute 
bandwidth or GPU DRAM bandwidth
(not on the lines in the roofline model)
à maybe another memory constraint?



L2-Cache Roofline Model
AI of a query with respect to the
GPU DRAM is much different than AI
of the same query with respect to
GPU L2 Cache (tends to be less)!

Good L2 Cache saturation leads to 
lower AI with respect to GPU DRAM

Crystal & HeavyDB are optimized to 
saturate the L2 Cache bandwidth

L2 cache utilization also depends on
properties of the query



Resource Allocation Effects (i.e. Concurrent Queries 
sharing GPU)

Peak compute goes down, memory bandwidth same slope Peak compute goes down, so does attainable compute BW



Modeling Query Time
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How accurate is the roofline model vs. naïve linear scaling?

Model is substantially more
accurate than the linear scaling:
• p50 error: 22% vs 48%
• p95 error: 48% vs 140%

Linear is good with large SF or
sequential scan operators

Model is better for more complex
queries

Linear: 𝑡8 = '
"#$%&'()**#+,'-#./,'-#



How beneficial is concurrent query execution?

At small SF, concurrent execution
provides near-linear performance
improvement.

At larger SF, queries are more 
easily affected by resource 
reduction; increase but not linear.

Estimated Throughput (right) very
close to Actual Throughput (left);
model good estimator for E2E
query execution performance vs.
degree of concurrency. 



Research Directions

• Efficient and Automatic Kernel Fusion
• Avoid materializing intermediate data
• Apply CPU research to make fusion more efficient into GPUs

• Flexible Resource Allocation
• GPUs allowing decoupled compute & memory allocation

• GPU Resource-Aware Query Optimization
• Exploiting L1 Cache: Has higher capacity and lower latency now, can help with 

skewed workloads with high data reuse

• Time Prediction for Different GPUs
• Paper only tested NVIDIA A100 



Thank you!


