Efficient Memory
Disaggregation with

InfiniSwap

Divy Patel (dspatel6@wisc.edu)

Challenges

® Memory-intensive apps are usually low latency and high throughput due
to their access patterns
® But see performance loss, when working sets do not fully fit in the
memory
o Potential Mitigation: Right-sizing memory allocation, but leads to
under-utilization and unbalanced memory usage across the cluster
® Cannot leverage under-utilized remote memory when paging out to disks
® Existing memory disaggregation solutions requires change in:
O Operating System
O Infrastructure
o Applications

Characteristics of Memory Imbalance (1 of 2)

® Presence of Imbalance
O Memory usage across machines can be substantially

unbalanced in the short term(within 10 seconds) MMW L.
o Memory utilization imbalance is measured by calculating the
99th-percentile to the median usage ratio over 10-seconds
intervals
O Inideal case, this should be 1 for most of the time
o However, from production traces, it was 2.4 in Facebook
and 3.35 in Google more than half the time
o Implies, most of the time, more than a half of the cluster’s

aggregate memory remains unutilized.

0]
0]

Characteristics of Memory Imbalance (2 of 2)

® Temporal Variabilities

Although skewed, memory utilizations remained stable over short intervals
Ut(m) at time t to be stable for the duration T if the difference between
Ut(m) and the average value of Ut(m) over the duration T remains within
10% of Ut(m)

For most unpredictable machine in the Facebook cluster, the probabilities
of Ut(m) being stable for the next 10, 20, and 40 seconds were 0.74, 0.58,
and 0.42, respectively

For Google, the corresponding numbers were 0.97, 0.94, and 0.89,
respectively

Higher probabilities in the Google cluster are due to its long-running
services, whereas the Facebook cluster runs data analytics with many short
tasks

RDMA(Remote Direct Memory Access) (1 of 3)

Buffers Buffers
I BN N LT RPMA App

Sockets API RDMA Verbs API

Kernel Sockets
TCP

IPv4/IPv6

siopeaH Jayng
ssedAg |sula)

Network Device

J— WARP

RDMA (2 of 3)

Communications over TCP

Vs.

Communications over RDMA/RoCE

Server - Initiator

Server - Target

Server - Initiator

Server - Target

—ED - CHD
—_—

RDMA (3 of 3)

® Analogous to REST API verbs => get, put, post
® One-sided RDMA verbs

o READ and WRITE

O Bypasses remote CPU, hence, low latency and high throughput
e Two-sided RDMA verbs

O SEND and RECV

O Used for cases where the nodes require sync

Node 1 One-sided (READ) —Node 2
) 1 NIC [*
Two-sided (SEND) | |RECV [DRAM

CPU

Architecture (1 of 2) % =l |D|D1m;-,-::;::

Kernel Spac

Virtual Memory Manager (VMM) I Kemel Sp;m‘

ﬁ Machine-2
@ T TTTTTETTmE T 1

e T I% Page fault
AN
1 [J Individual page

I

I

. Infiniswap Block Device 1 E

® Two primary components: v DL Sy Em i
H H ocal Dis RNIC ! Slab whose es are .

o Infiniswap Daemon =T

Machige-1 T TTTTTTTssossssss

O Infiniswap Block Device
e Block device exposes a conventional block device 1/0 interface to the virtual memory
manager
e Address space is logically partitioned into fixed-size slabs
Slab is the unit of remote mapping and load balancing
On the daemon side, a slab is a physical memory chunk of SlabSize that is mapped to
and used by an block device as remote memory
® Slabs from the same device can be mapped to multiple remote machines” memory
for performance and load balancing

Architecture (2 of 2)

For page-out requests, if a slab is mapped to remote memory
O sync to remote memory using RDMA WRITE

O async to the local disk "c* CMWA'DIDI.,.;):.::::

] If it iS not mapped | Virtual Memory Manager (VMM) | __________ KL,_“:];[,TL:
. Machine-2

o sync only to the local disk @ ﬁ S ,

'—"—1'—"? Page fault :

® For page-in requests or reads ,QVDI,%'HQH | il o ;

o consult the slab mapping = {pierivey

2ol | =

O read from remote memory using RDMA READ Machinel | tme—-------m-oe- '
Daemon responds to slab-mapping requests of block device
Also, pre allocates its local memory to minimize time overheads
Proactively evicts slabs, when necessary, to minimize impacts on local applications
Control plane communications take place using RDMA SEND/RECV.

Slab Management Acurrent(s) = & Amegsured(s) + (1 = @) Agiq(s)

Logical division of its entire address space into multiple slabs of fixed size(SlabSize),
simplifies slab placement and eviction algorithms

Each slab starts in the unmapped state

Monitoring the page activity rates of each slab using an exponentially weighted

moving average (EWMA) with one second period

When the rate crosses a threshold (HotSlab), remote placement is initiated
HotSlab => 20 page 1/0 requests/second

To keep track of location, it maintains a bitmap of all pages

All bits are zero. If a page is written out to remote memory => corresponding bit is

set
Remove a slab from remote memory if rate goes below a ColdSlab threshold

Select the least-loaded of the

Remote Slab Placement
BILEIGIB TSI

Infiniswap Block Device N

I
. Infiniswap
Dll e
R ‘“;";'::.::z
® Goal: Must distribute slabs from the same block device across as many remote
machines as possible. To minimize the impacts of future evictions/failures
It is decentralized to provide low-latency mapping without central coordination
Leverages power of two choices, when slab is marked as HotSlab

Divides all the machines into two sets: those who already have any slab of this block
device (M,4) and those who do not (M,.,,)

e From M,.,, it contacts two daemons and selects the one with the lowest memory
usage

/O Pipelines (1 of 3)

Each CPU core has a staging queue, where block(page)
requests are staged

Request router consults the slab mapping and the page
bitmap to determine how to forward them to disk
and/or remote memory

Number of RDMA dispatch queues is the same as that
of CPU cores

Each request is assigned to a random dispatch queue
by hashing to load balance

Paging Requests

Submit IO

1 S

Per Core

m
0 g
T

=

Dispatc
Queues

Disk ‘__L’ ‘%
& &

RDMA
Dispatch

ueues
E ? Sync

/O Pipelines: Page-Write

Page write: if slab is mapped, put into both RDMA and
disk dispatch queues

e Contentis copied into RDMA dispatch entry, and shared
between the requests

e After RDMA WRITE completes, the page write is
completed and its physical memory is reclaimed by the
kernel without waiting for the disk write

e RDMA dispatch entry and its buffer will not be released
until the completion of the disk write operation

e For unmapped slabs, only put into the disk dispatch

queue

Paging Requests

Submit IO

7 N

Per Core

E’ I
H L
T

Dispatch o
Queues

Disk%%
LJ L

RDMA
Dispatch

ueues
E ? Sync

/O Pipelines: Page-Read

® Page Reads: if the slab is mapped and the page bitmap is
set, an RDMA READ operation is put into the RDMA

dispatch queue
e When the RDMA READ completes, page-in is completed

e Otherwise, reads it from the disk.

Paging Requests

Submit 10

"
-

[

m
T

4 .,
S
~

Sof
% é;:;:zf

~
S

]
[~]
(= |

Request Router

bl

s o e
Bitmap

Slab
E Mapping

Disk
Dispatch
Queues

IEEES
T

#Ker

(g}
-

Asyn

)

RDMA
Dispatch
ueues

DDD—

Sync

RNIC

Handling Slab Evictions/Remote Failures

e Remote Eviction: Decision to evict a slab is communicated to a block device via the
EVICT message from the corresponding INFINISWAP daemon

e Upon receiving this message, the block device marks the slab as unmapped and
resets the corresponding portion of the bitmap. All future requests will go to disk

e Remote Failures: If the requests to remote memory do not complete, this is
considered to be as remote failure, and the corresponding slab is marked as
unmapped and bitmaps are reset to 0

® Inthe current implementation, INFINISWAP does not handle transient failures

separately. A possible optimization would be to use a timeout before marking the

corresponding slabs unmapped

= 4000

7000 4
= 6000
2 som |

«&-nbdX Read = =

2000 -
1000 -

Evaluation: Performance as Block Device

«8— Infiniswap Write
~@= Infiniswap Read
~#=nbdX Write

[
[

N

-
™

% CPU Usage of 32 vCPUs
m 2

I =>=Infiniswap
~»nbdX
T T T T T 1 0 L ——
4K 8k 16K 32k 64K 128k 4K 8k 16K 32k 64K 128k
Block Size Block Size

(a) Bandwidth (b) Remote CPU Usage

(a) Without INFINISWAP

Evaluation: Impact on Applications

(b) INFINISWAP

Evaluation: Cluster-wide Performance

w/o Infiniswap 4
Infiniswap
0 20 40 60 80 100
Cluster Memory Utilization (%)

(a) Cluster memory utilization

& 80

= 60

-

DE" 40 Infiniswap Moo

g 20 ===-w/o Infiniswap ~ ~77"" Sen
E o -
=

hwEANANENIRAR S
Rank of Machines

(b) Memory utilization of individual machines

Thank you

