
Efficient Memory 
Disaggregation with 

InfiniSwap
Divy Patel (dspatel6@wisc.edu)



Challenges 
● Memory-intensive apps are usually low latency and high throughput due 

to their access patterns
● But see performance loss, when working sets do not fully fit in the 

memory
○ Potential Mitigation: Right-sizing memory allocation, but leads to 

under-utilization and unbalanced memory usage across the cluster
● Cannot leverage under-utilized remote memory when paging out to disks
● Existing memory disaggregation solutions requires change in:

○ Operating System
○ Infrastructure
○ Applications



Characteristics of Memory Imbalance (1 of 2)
● Presence of Imbalance

○ Memory usage across machines can be substantially 
unbalanced in the short term(within 10 seconds)

○ Memory utilization imbalance is measured by calculating the 
99th-percentile to the median usage ratio over 10-seconds 
intervals

○ In ideal case, this should be 1 for most of the time
○ However, from production traces, it was 2.4 in Facebook 

and 3.35 in Google more than half the time
○ Implies, most of the time, more than a half of the cluster’s 

aggregate memory remains unutilized.



Characteristics of Memory Imbalance (2 of 2)

● Temporal Variabilities
○ Although skewed, memory utilizations remained stable over short intervals
○ Ut(m) at time t to be stable for the duration T if the difference between 

Ut(m) and the average value of Ut(m) over the duration T remains within 
10% of Ut(m)

○ For most unpredictable machine in the Facebook cluster, the probabilities 
of Ut(m) being stable for the next 10, 20, and 40 seconds were 0.74, 0.58, 
and 0.42, respectively

○ For Google, the corresponding numbers were 0.97, 0.94, and 0.89, 
respectively

○ Higher probabilities in the Google cluster are due to its long-running 
services, whereas the Facebook cluster runs data analytics with many short 
tasks



RDMA(Remote Direct Memory Access) (1 of 3)



RDMA (2 of 3)



RDMA (3 of 3)
● Analogous to REST API verbs => get, put, post
● One-sided RDMA verbs

○ READ and WRITE
○ Bypasses remote CPU, hence, low latency and high throughput

● Two-sided RDMA verbs
○ SEND and RECV
○ Used for cases where the nodes require sync



Architecture (1 of 2)

● Two primary components:
○ Infiniswap Daemon
○ Infiniswap Block Device

● Block device exposes a conventional block device I/O interface to the virtual memory 
manager

● Address space is logically partitioned into fixed-size slabs 
● Slab is the unit of remote mapping and load balancing
● On the daemon side, a slab is a physical memory chunk of SlabSize that is mapped to 

and used by an block device as remote memory
● Slabs from the same device can be mapped to multiple remote machines’ memory 

for performance and load balancing



Architecture (2 of 2)

● For page-out requests, if a slab is mapped to remote memory 
○ sync to remote memory using RDMA WRITE
○ async to the local disk 

● If it is not mapped
○ sync only to the local disk

● For page-in requests or reads
○ consult the slab mapping
○ read from remote memory using RDMA READ

● Daemon responds to slab-mapping requests of block device
● Also, pre allocates its local memory to minimize time overheads
● Proactively evicts slabs, when necessary, to minimize impacts on local applications
● Control plane communications take place using RDMA SEND/RECV. 



Slab Management

● Logical division of its entire address space into multiple slabs of fixed size(SlabSize), 
simplifies slab placement and eviction algorithms

● Each slab starts in the unmapped state
● Monitoring the page activity rates of each slab using an exponentially weighted 

moving average (EWMA) with one second period
● When the rate crosses a threshold (HotSlab), remote placement is initiated
● HotSlab => 20 page I/O requests/second
● To keep track of location, it maintains a bitmap of all pages
● All bits are zero. If a page is written out to remote memory => corresponding bit is 

set
● Remove a slab from remote memory if rate goes below a ColdSlab threshold



Remote Slab Placement

● Goal: Must distribute slabs from the same block device across as many remote 
machines as possible. To minimize the impacts of future evictions/failures

● It is decentralized to provide low-latency mapping without central coordination
● Leverages power of two choices, when slab is marked as HotSlab
● Divides all the machines into two sets: those who already have any slab of this block 

device (Mold) and those who do not (Mnew)
● From Mnew, it contacts two daemons and selects the one with the lowest memory 

usage



I/O Pipelines (1 of 3)
● Each CPU core has a staging queue, where block(page) 

requests are staged
● Request router consults the slab mapping and the page 

bitmap to determine how to forward them to disk 
and/or remote memory

● Number of RDMA dispatch queues is the same as that 
of CPU cores 

● Each request is assigned to a random dispatch queue 
by hashing to load balance



I/O Pipelines: Page-Write
● Page write: if slab is mapped, put into both RDMA and 

disk dispatch queues
● Content is copied into RDMA dispatch entry, and shared 

between the requests
● After RDMA WRITE completes, the page write is 

completed and its physical memory is reclaimed by the 
kernel without waiting for the disk write

● RDMA dispatch entry and its buffer will not be released 
until the completion of the disk write operation

● For unmapped slabs, only put into the disk dispatch 
queue



I/O Pipelines: Page-Read

● Page Reads: if the slab is mapped and the page bitmap is 
set, an RDMA READ operation is put into the RDMA 
dispatch queue

● When the RDMA READ completes, page-in is completed
● Otherwise, reads it from the disk.



Handling Slab Evictions/Remote Failures 
● Remote Eviction: Decision to evict a slab is communicated to a block device via the 

EVICT message from the corresponding INFINISWAP daemon
● Upon receiving this message, the block device marks the slab as unmapped and 

resets the corresponding portion of the bitmap. All future requests will go to disk
● Remote Failures: If the requests to remote memory do not complete, this is 

considered to be as remote failure, and the corresponding slab is marked as 
unmapped and bitmaps are reset to 0

● In the current implementation, INFINISWAP does not handle transient failures 
separately. A possible optimization would be to use a timeout before marking the 
corresponding slabs unmapped



Evaluation: Performance as Block Device



Evaluation: Impact on Applications



Evaluation: Cluster-wide Performance



Thank you


