
CompuCache : Remote Computatble

Caching using Spot VMs

● Data intensive applications benefit from large in-memory caches
○ Memory is very expensive
○ Limited local memory and workload changes

● Massive amount of unused memory in data centers
○ External fragmentation due to bin packing.
○ Internal fragmentation due to overprovisioning.

● Spot VM characteristics
○ Pros : Cheap and fast
○ Cons: fragmented and unreliable.

Remote Caching With Spot VMs

Limitations of Existing Caching Systems

Query example: Graph traversal

● I/O (r/w) interface
 3 roundtrips : 1 for dereferencing 2 for pointer chasing

● Key-value interface
 2 roundtrips : 1 for dereferencing 1 for pointer chasing

Problem : Network is a major bottleneck

CompuCache Approach

● Support the ideal interface for remote caching using Spot VMs
○ Compute offloading with server side pointer chasing.

● Handle the churn of Spot VMs

CompuCache Overview

Remote Caching + Compute offloading using Stored Procedures (sprocs)

Interface Design

● Challenge #1 : Deciding number of cores when allocating cache space
○ Core count affect runtime of sprocs

● Solution : user specified performance target and runtime CPU adjustment

● Challenge #2 : Server side pointer chasing
● Solution: LocalTranslator for Sproc implementation

Interface Design

● Challenge #3 : Out of Bounds Exception
○ Compucache is distributed in nature across multiple Spot VMs and a VM may not have the

data requested on the server

● Options:
○ Data Shipping : Flow input data from remote VM using Dflow

○ Function Shipping : Ship the execution sproc to remote VM using FFlow

Execution Design

● Challenge #1 : Fast request / response delivery
○ Traditional networking stack suffer from kernel overheads
○ Sproc requests are small in size but responses may vary in size (aggregate vs scan)

● Solution:
○ eRPC, a user-space RPC library using RDMA
○ Adaptive message batching.

Execution Design

● Challenge #2 :Sproc Scheduling
○ Many sproc requests arrive at the same server
○ Different sprocs have different execution times
○ Sprocs may run into out of bounds exception

● Solution : Have a work queue for each core and a server-wide scheduler

Execution Design

● Challenge #3 : LocalTranslator, DFlow, FFlow implementation
○ How to construct LocalTranslator data structure.
○ How to execute DFlow and FFlow requests.

● Solution:
○ Client side mapping : Cache regions -> Server VMs
○ Client broadcasts this mapping to all server which constructs LocalTranslator and route DFlow

and FFlow requests.
○ Implement DFlow as read requests and FFlow as sprocs.

Fault Tolerance

● Spot VMs can be reclaimed by the cloud provider.
○ Cache migration
○ Cache region mapping update
○ Existing requests routing

Evaluation

● Simple Procs - read and check. Compared to Redis Sproc using eval

Evaluation

● Sproc to aggregate 3 records.

Thoughts

● Interesting Idea to use underutilized resources which is cheap for expensive computation.
● Application Driven design : A lot of onus on the author of the sprocs.
● Performance comparison : Claims to be 200x faster than Redis for even simple I/O. Not much

reason mentioned on why Redis is so slow.
● No Key / Value Abstraction
● No discussion on what happens when a server fails unexpectedly. (Not reclaimed)

Questions?

Thank You

