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• Remote Direct Memory Access (RDMA)
• InfiniBand
• Performance benchmarks
• New architectures
• Distributed OLTP with RDMA

• 2PL does scale
• Distributed OLAP with RDMA

• Joins, aggregations, NAM arch.

• “we argue that it is time for a complete re-design of traditional distributed DBMS 
architectures to fully leverage the next generation of network technologies.”
• Distributed transactions? More from Geoffrey



InfiniBand

• High-performance network supporting both IP (IPoIB) and RDMA
• Historically very expensive
• Bandwidth of FDR 4x is about the same as a memory channel



Remote Direct Memory Access (RDMA)

• This paper: RDMA over InfiniBand
• as opposed to RDMA over Converged Ethernet

• Bypass Kernel TCP/UDP stack
• Supported “verbs”: one-sized atomics, read, write; two-sided send, 

recv
Kernel-bypass
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Figure 2: Network Throughput and Latency

unsignaled and the n-th WQE signaled. Once the comple-
tion event (i.e., the acknowledgment message of the server)
for the n-th WQE arrives, the client implicitly knows that
the previous n � 1 WQEs have also been successfully pro-
cessed. In this scenario, computation and communication
on the client can be e�ciently overlapped without expen-
sive synchronization mechanisms.

Another interesting aspect is how RDMA operations of
an RNIC interfere with CPU operations if data is concur-
rently accessed. Recent Intel CPUs (Intel Sandy-Bridge and
later) provide a feature called Data Direct I/O (DDIO) [5].
With DDIO the DMA executed by the RNIC to read (write)
data from (to) remote memory places the data directly in the
CPU L3 cache if the memory address is resident in the cache
to guarantee coherence. On other systems without DDIO,
the cache is flushed/invalidated by the DMA operation to
guarantee coherence. Finally, non-coherent systems leave
the coherency problem to the software. These e↵ects must
be considered when designing distributed RDMA-based al-
gorithms. Note that this only concerns coherence between
the cache and memory, not the coherence between remote
and local memory, which is always left to the software.

2.2 Microbenchmarks
This section presents microbenchmarks that compare the

throughput and latency of: (1) a TCP/IP stack over 1Gb/s
Ethernet (IPoEth), (2) IPoIB, and (3) RDMA. These re-
sults form the basis of our proposals for the redesign of dis-
tributed DBMSs in order to fully leverage high-performance
networks.

Experimental Setup: Our microbenchmarks used two
machines, each with an Intel Xeon E5-2660 v2 processor and
256GB RAM, running Ubuntu 14.04 with the OFED 2.3.1
RNIC driver. Both machines were equipped with a Mel-
lanox Connect IB FDR 4⇥ dualport RNIC, and each RNIC
port has a full-duplex bandwidth of 54.54Gb/s (6.8GB/s).
Additionally, each machine had a 1Gb/s Ethernet NIC (one
port) connected to the same Ethernet switch. We used only
one port on each RNIC to ensure a fair comparison be-
tween InfiniBand and Ethernet, and all microbenchmarks
used single-threaded execution in order to isolate low-level
network properties.

Throughput and Latency (Figure 2): For this ex-
periment, we varied the message size from 32B up to 32MB
to simulate the characteristics of di↵erent workloads (i.e.,
OLTP and OLAP), measuring the throughput and latency
for IPoEth, IPoIB, and RDMA send/receive and read/write.
Additionally, we measured the RDMA atomic operations
but omitted the results from the figure, since they only sup-
port a maximum message size of 8B and provide the same
throughput/latency as 8B READs.

While all RDMA verbs saturate the InfiniBand network
bandwidth (⇡ 6.8GB/s) for message sizes greater than 2KB,
IPoIB only achieves a maximum throughput of 3.5GB/s de-
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Figure 3: CPU Overhead for Network Operations

spite using the same network hardware. Moreover, the la-
tency of sending a message (i.e., 1/2 RTT) over IPoIB is
also higher than the latency of RDMA verbs. In fact, for
small message sizes, the latency of IPoIB is much closer to
the latency of the 1Gb/s Ethernet network (IPoEth). For
example, for a message size of 8B, the latency is 20µs for
IPoIB and 30µs for IPoEth, while an RDMA WRITE takes
only 1µs. This is because the TCP/IP stack for IPoIB has
a very high CPU overhead per message for small messages,
as discussed in following section. For larger message sizes
(� 1MB), the latency of IPoIB is closer to the latency of
RDMA but still a factor of 2.5⇥ higher. For example, send-
ing a 1MB message has a latency of 393µs over IPoIB com-
pared to 161µs for RDMA.
An interesting observation is that RDMA WRITE/SEND

operations take only 1µs for message sizes less than 256B,
while RDMA READ operations take 2µs, since payloads
of less than 256B can be inlined into the PIO to avoid a
subsequent DMA read [40].
CPU Overhead (Figure 3): We also measured the

overhead in CPU cycles for messages over di↵erent com-
munication stacks on both the client and server, varying the
message sizes as in the previous experiment. RDMA has
a constant overhead on both the client and server that is
independent of message size because of the constant cost of
registering a WQE on the RNIC. The actual data transfer is
executed by the RNIC, which acts as a coprocessor to han-
dle a given WQE. On the client side, the overhead is ⇡ 450
cycles regardless of the RDMA verb used, including atomic
operations. On the server side, only the RECEIVE verb in-
curs CPU overhead, as expected. All other one-sided verbs
(i.e., READ/WRITE and atomic operations) do not incur
any overhead on the server side.
The CPU overhead of IPoIB is very di↵erent from that

of RDMA and is in fact much closer to the Ethernet-based
TCP/IP stack (IPoEth). Unlike RDMA, the CPU overhead
per message grows linearly with the message size after ex-
ceeding the TCP window size for both IPoEth and IPoIB. In
our experiments, the default TCP window size was 1488B for
IPoEth and 21888B for IPoIB. For small message sizes, the
CPU overhead per message for IPoIB is even higher than for
IPoEth. For example, an 8B message requires 13264 cycles
for IPoIB compared to only 7544 cycles for IPoEth.

3. RETHINKING THE ARCHITECTURE
In this section, we discuss why the traditional shared-

nothing architecture for distributed in-memory DBMSs is
suboptimal for high-performance networks and present novel
alternatives that directly leverage RDMA. We then discuss
research challenges that arise for these new architectures.

3.1 Architecture Types
Distributed DBMSs face two primary challenges: (1) dis-

tributed control-flow (e.g., synchronization), and (2) dis-
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unsignaled and the n-th WQE signaled. Once the comple-
tion event (i.e., the acknowledgment message of the server)
for the n-th WQE arrives, the client implicitly knows that
the previous n � 1 WQEs have also been successfully pro-
cessed. In this scenario, computation and communication
on the client can be e�ciently overlapped without expen-
sive synchronization mechanisms.

Another interesting aspect is how RDMA operations of
an RNIC interfere with CPU operations if data is concur-
rently accessed. Recent Intel CPUs (Intel Sandy-Bridge and
later) provide a feature called Data Direct I/O (DDIO) [5].
With DDIO the DMA executed by the RNIC to read (write)
data from (to) remote memory places the data directly in the
CPU L3 cache if the memory address is resident in the cache
to guarantee coherence. On other systems without DDIO,
the cache is flushed/invalidated by the DMA operation to
guarantee coherence. Finally, non-coherent systems leave
the coherency problem to the software. These e↵ects must
be considered when designing distributed RDMA-based al-
gorithms. Note that this only concerns coherence between
the cache and memory, not the coherence between remote
and local memory, which is always left to the software.

2.2 Microbenchmarks
This section presents microbenchmarks that compare the

throughput and latency of: (1) a TCP/IP stack over 1Gb/s
Ethernet (IPoEth), (2) IPoIB, and (3) RDMA. These re-
sults form the basis of our proposals for the redesign of dis-
tributed DBMSs in order to fully leverage high-performance
networks.

Experimental Setup: Our microbenchmarks used two
machines, each with an Intel Xeon E5-2660 v2 processor and
256GB RAM, running Ubuntu 14.04 with the OFED 2.3.1
RNIC driver. Both machines were equipped with a Mel-
lanox Connect IB FDR 4⇥ dualport RNIC, and each RNIC
port has a full-duplex bandwidth of 54.54Gb/s (6.8GB/s).
Additionally, each machine had a 1Gb/s Ethernet NIC (one
port) connected to the same Ethernet switch. We used only
one port on each RNIC to ensure a fair comparison be-
tween InfiniBand and Ethernet, and all microbenchmarks
used single-threaded execution in order to isolate low-level
network properties.

Throughput and Latency (Figure 2): For this ex-
periment, we varied the message size from 32B up to 32MB
to simulate the characteristics of di↵erent workloads (i.e.,
OLTP and OLAP), measuring the throughput and latency
for IPoEth, IPoIB, and RDMA send/receive and read/write.
Additionally, we measured the RDMA atomic operations
but omitted the results from the figure, since they only sup-
port a maximum message size of 8B and provide the same
throughput/latency as 8B READs.

While all RDMA verbs saturate the InfiniBand network
bandwidth (⇡ 6.8GB/s) for message sizes greater than 2KB,
IPoIB only achieves a maximum throughput of 3.5GB/s de-
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spite using the same network hardware. Moreover, the la-
tency of sending a message (i.e., 1/2 RTT) over IPoIB is
also higher than the latency of RDMA verbs. In fact, for
small message sizes, the latency of IPoIB is much closer to
the latency of the 1Gb/s Ethernet network (IPoEth). For
example, for a message size of 8B, the latency is 20µs for
IPoIB and 30µs for IPoEth, while an RDMA WRITE takes
only 1µs. This is because the TCP/IP stack for IPoIB has
a very high CPU overhead per message for small messages,
as discussed in following section. For larger message sizes
(� 1MB), the latency of IPoIB is closer to the latency of
RDMA but still a factor of 2.5⇥ higher. For example, send-
ing a 1MB message has a latency of 393µs over IPoIB com-
pared to 161µs for RDMA.
An interesting observation is that RDMA WRITE/SEND

operations take only 1µs for message sizes less than 256B,
while RDMA READ operations take 2µs, since payloads
of less than 256B can be inlined into the PIO to avoid a
subsequent DMA read [40].
CPU Overhead (Figure 3): We also measured the

overhead in CPU cycles for messages over di↵erent com-
munication stacks on both the client and server, varying the
message sizes as in the previous experiment. RDMA has
a constant overhead on both the client and server that is
independent of message size because of the constant cost of
registering a WQE on the RNIC. The actual data transfer is
executed by the RNIC, which acts as a coprocessor to han-
dle a given WQE. On the client side, the overhead is ⇡ 450
cycles regardless of the RDMA verb used, including atomic
operations. On the server side, only the RECEIVE verb in-
curs CPU overhead, as expected. All other one-sided verbs
(i.e., READ/WRITE and atomic operations) do not incur
any overhead on the server side.
The CPU overhead of IPoIB is very di↵erent from that

of RDMA and is in fact much closer to the Ethernet-based
TCP/IP stack (IPoEth). Unlike RDMA, the CPU overhead
per message grows linearly with the message size after ex-
ceeding the TCP window size for both IPoEth and IPoIB. In
our experiments, the default TCP window size was 1488B for
IPoEth and 21888B for IPoIB. For small message sizes, the
CPU overhead per message for IPoIB is even higher than for
IPoEth. For example, an 8B message requires 13264 cycles
for IPoIB compared to only 7544 cycles for IPoEth.

3. RETHINKING THE ARCHITECTURE
In this section, we discuss why the traditional shared-

nothing architecture for distributed in-memory DBMSs is
suboptimal for high-performance networks and present novel
alternatives that directly leverage RDMA. We then discuss
research challenges that arise for these new architectures.

3.1 Architecture Types
Distributed DBMSs face two primary challenges: (1) dis-

tributed control-flow (e.g., synchronization), and (2) dis-
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Architecture

• Need to solve “distributed control-flow (synchronization)” and 
“distributed data-flow (data exchange between nodes)”
• Traditional Shared Nothing
• Shared-Nothing for IPoIB
• Distributed Shared-Memory
• Network-Attached Memory



Traditional Shared Nothing

• Ethernet network
• Data transfer is slow, avoid whenever 

possible
• Choose partitioning carefully to 

minimize data transfer

tributed data-flow (e.g., data exchange between nodes). We
describe how three existing distributed DBMS architectures
handle these challenges and then propose a new architecture
designed specifically for fast networks.

3.1.1 Traditional Shared-Nothing
Figure 4(a) shows the shared-nothing (SN) architecture

for distributed in-memory DBMSs. Data is partitioned across
each of the nodes, and each node has direct access only to its
local partition. In order to implement distributed control-
flow and data-flow, nodes communicate with each other us-
ing socket-based send and receive operations.

E�cient distributed query and transaction processing aims
to maximize data-locality for a given workload by applying
locality-aware partitioning schemes or employing strategies
to avoid communication (e.g., semi-joins). In the extreme
case, no communication would need to occur between nodes.
For many real-world workloads, however, network commu-
nication cannot be entirely avoided, resulting in large per-
formance penalties for slow networks. For example, even
using the best techniques for co-partitioning tables [18, 45],
it is not always possible to avoid expensive distributed join
operations or distributed transactions, leading to high com-
munication costs [47]. Furthermore, workloads change over
time, making it di�cult to find a good static partitioning
scheme [21], while dynamic strategies often require moving
huge amounts of data, further restricting the bandwidth for
the actual work. As a result, the network limits the through-
put of the system as well its scalability; that is, the more
machines that are added, the more of a bottleneck the net-
work becomes.

3.1.2 Shared-Nothing for IPoIB
An easy way to migrate a traditional shared-nothing ar-

chitecture to a high-performance network is to simply use
IPoIB as shown in Figure 4(b). A big advantage of this ar-
chitecture is that almost no change to the DBMS is required,
but the system can still benefit from the higher bandwidth.
In particular, data-flow operations that send large messages
(e.g., data re-partitioning) will benefit tremendously from
this change. However, as shown in Section 2, IPoIB cannot
fully leverage the network. Perhaps surprisingly, for some
types of operations, upgrading the network and using IPoIB
can actually decrease performance, particularly for control-
flow operations which send many small messages. Figure 3
shows that the CPU overhead of IPoIB is greater than the
CPU overhead of IPoEth for small messages. In fact, as we
will show in Section 4, these small di↵erences can have a
negative impact on the overall performance of distributed
transaction processing.

3.1.3 Distributed Shared-Memory
Obviously, to better leverage the network we have to take

advantage of RDMA. RDMA not only allows the system to
fully utilize the bandwidth (see Figure 2(a)), but also re-
duces network latency and CPU overhead (see Figures 2(b)
and 3). Unfortunately, changing an application from a socket-
based message passing interface to RDMA verbs is not triv-
ial. One possibility is to treat the cluster as a shared-
memory system (shown in Figure 4(c)) with two types of
communication patterns: (1) message passing using RDMA-
based SEND/RECEIVE verbs, and (2) remote direct mem-
ory access through one-sided RDMA READ/WRITE verbs.
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However, as previously mentioned, there is no mechanism
for cache-coherence. Moreover, machines need to carefully
declare the shareable memory regions a priori and connect
via queue pairs. The latter, if not used carefully, can also
have a negative e↵ect on the performance [29]. In addi-
tion, a memory access via RDMA is very di↵erent than that
of a shared-memory system. While a local memory access
only keeps one copy of the data around (i.e., conceptually it
moves the data from main memory to the cache of a CPU),
a remote memory access creates a fully independent copy.
This has a range of implications including garbage collec-
tion, cache/bu↵er management, and consistency protocols.
Thus, in order to achieve the appearance of a shared-

memory system, the software stack has to hide the dif-
ferences and provide a distributed shared-memory space.
There have been recent attempts to create a distributed
shared-memory architecture over RDMA [19]. However, we
believe that a single abstraction for local and remote mem-
ory is the wrong approach. Since DBMSs prefer to have
full control over memory management (e.g., virtual memory
can interfere with a DBMS), we believe the same is true for
shared-memory over RDMA. While we had the ambitions
to validate this assumption through our experiments, we
only found one commercial o↵ering for IBM mainframes [4].
Instead, for our OLTP comparison, we implemented a sim-
plified version of this architecture by essentially using a SN
architecture and replacing socket communication with two-
sided RDMA verbs (send and receive). We omit this archi-
tecture entirely from our OLAP comparison since two-sided
RDMA verbs would have added additional synchronization
overhead (i.e., an RDMA RECEIVE must be issued strictly
before the RDMA SEND arrives at the RNIC).

3.1.4 Network-Attached Memory
Based on the previous considerations, we envision a new

type of architecture, referred to as network-attached mem-
ory (NAM) and shown in Figure 4(d). In a NAM archi-
tecture, compute and storage are logically decoupled. The
storage servers provide a shared distributed memory pool,
which can be accessed from any compute node. However,
the storage nodes are not aware of any DBMS specific op-
erations (e.g., joins or consistency protocols). These are
implemented by the compute nodes.
This logical separation helps to control the complexity
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Shared-Nothing for IPoIB

• Same design, but with InfiniBand
• Good for large data movement
• High overhead of IPoIB stack means 

bad at small messages

tributed data-flow (e.g., data exchange between nodes). We
describe how three existing distributed DBMS architectures
handle these challenges and then propose a new architecture
designed specifically for fast networks.

3.1.1 Traditional Shared-Nothing
Figure 4(a) shows the shared-nothing (SN) architecture

for distributed in-memory DBMSs. Data is partitioned across
each of the nodes, and each node has direct access only to its
local partition. In order to implement distributed control-
flow and data-flow, nodes communicate with each other us-
ing socket-based send and receive operations.

E�cient distributed query and transaction processing aims
to maximize data-locality for a given workload by applying
locality-aware partitioning schemes or employing strategies
to avoid communication (e.g., semi-joins). In the extreme
case, no communication would need to occur between nodes.
For many real-world workloads, however, network commu-
nication cannot be entirely avoided, resulting in large per-
formance penalties for slow networks. For example, even
using the best techniques for co-partitioning tables [18, 45],
it is not always possible to avoid expensive distributed join
operations or distributed transactions, leading to high com-
munication costs [47]. Furthermore, workloads change over
time, making it di�cult to find a good static partitioning
scheme [21], while dynamic strategies often require moving
huge amounts of data, further restricting the bandwidth for
the actual work. As a result, the network limits the through-
put of the system as well its scalability; that is, the more
machines that are added, the more of a bottleneck the net-
work becomes.

3.1.2 Shared-Nothing for IPoIB
An easy way to migrate a traditional shared-nothing ar-

chitecture to a high-performance network is to simply use
IPoIB as shown in Figure 4(b). A big advantage of this ar-
chitecture is that almost no change to the DBMS is required,
but the system can still benefit from the higher bandwidth.
In particular, data-flow operations that send large messages
(e.g., data re-partitioning) will benefit tremendously from
this change. However, as shown in Section 2, IPoIB cannot
fully leverage the network. Perhaps surprisingly, for some
types of operations, upgrading the network and using IPoIB
can actually decrease performance, particularly for control-
flow operations which send many small messages. Figure 3
shows that the CPU overhead of IPoIB is greater than the
CPU overhead of IPoEth for small messages. In fact, as we
will show in Section 4, these small di↵erences can have a
negative impact on the overall performance of distributed
transaction processing.

3.1.3 Distributed Shared-Memory
Obviously, to better leverage the network we have to take

advantage of RDMA. RDMA not only allows the system to
fully utilize the bandwidth (see Figure 2(a)), but also re-
duces network latency and CPU overhead (see Figures 2(b)
and 3). Unfortunately, changing an application from a socket-
based message passing interface to RDMA verbs is not triv-
ial. One possibility is to treat the cluster as a shared-
memory system (shown in Figure 4(c)) with two types of
communication patterns: (1) message passing using RDMA-
based SEND/RECEIVE verbs, and (2) remote direct mem-
ory access through one-sided RDMA READ/WRITE verbs.
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However, as previously mentioned, there is no mechanism
for cache-coherence. Moreover, machines need to carefully
declare the shareable memory regions a priori and connect
via queue pairs. The latter, if not used carefully, can also
have a negative e↵ect on the performance [29]. In addi-
tion, a memory access via RDMA is very di↵erent than that
of a shared-memory system. While a local memory access
only keeps one copy of the data around (i.e., conceptually it
moves the data from main memory to the cache of a CPU),
a remote memory access creates a fully independent copy.
This has a range of implications including garbage collec-
tion, cache/bu↵er management, and consistency protocols.
Thus, in order to achieve the appearance of a shared-

memory system, the software stack has to hide the dif-
ferences and provide a distributed shared-memory space.
There have been recent attempts to create a distributed
shared-memory architecture over RDMA [19]. However, we
believe that a single abstraction for local and remote mem-
ory is the wrong approach. Since DBMSs prefer to have
full control over memory management (e.g., virtual memory
can interfere with a DBMS), we believe the same is true for
shared-memory over RDMA. While we had the ambitions
to validate this assumption through our experiments, we
only found one commercial o↵ering for IBM mainframes [4].
Instead, for our OLTP comparison, we implemented a sim-
plified version of this architecture by essentially using a SN
architecture and replacing socket communication with two-
sided RDMA verbs (send and receive). We omit this archi-
tecture entirely from our OLAP comparison since two-sided
RDMA verbs would have added additional synchronization
overhead (i.e., an RDMA RECEIVE must be issued strictly
before the RDMA SEND arrives at the RNIC).

3.1.4 Network-Attached Memory
Based on the previous considerations, we envision a new

type of architecture, referred to as network-attached mem-
ory (NAM) and shown in Figure 4(d). In a NAM archi-
tecture, compute and storage are logically decoupled. The
storage servers provide a shared distributed memory pool,
which can be accessed from any compute node. However,
the storage nodes are not aware of any DBMS specific op-
erations (e.g., joins or consistency protocols). These are
implemented by the compute nodes.
This logical separation helps to control the complexity
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Distributed Shared-Memory

• All InfiniBand
• Create an illusion of one shared 

memory pool

tributed data-flow (e.g., data exchange between nodes). We
describe how three existing distributed DBMS architectures
handle these challenges and then propose a new architecture
designed specifically for fast networks.

3.1.1 Traditional Shared-Nothing
Figure 4(a) shows the shared-nothing (SN) architecture

for distributed in-memory DBMSs. Data is partitioned across
each of the nodes, and each node has direct access only to its
local partition. In order to implement distributed control-
flow and data-flow, nodes communicate with each other us-
ing socket-based send and receive operations.

E�cient distributed query and transaction processing aims
to maximize data-locality for a given workload by applying
locality-aware partitioning schemes or employing strategies
to avoid communication (e.g., semi-joins). In the extreme
case, no communication would need to occur between nodes.
For many real-world workloads, however, network commu-
nication cannot be entirely avoided, resulting in large per-
formance penalties for slow networks. For example, even
using the best techniques for co-partitioning tables [18, 45],
it is not always possible to avoid expensive distributed join
operations or distributed transactions, leading to high com-
munication costs [47]. Furthermore, workloads change over
time, making it di�cult to find a good static partitioning
scheme [21], while dynamic strategies often require moving
huge amounts of data, further restricting the bandwidth for
the actual work. As a result, the network limits the through-
put of the system as well its scalability; that is, the more
machines that are added, the more of a bottleneck the net-
work becomes.

3.1.2 Shared-Nothing for IPoIB
An easy way to migrate a traditional shared-nothing ar-

chitecture to a high-performance network is to simply use
IPoIB as shown in Figure 4(b). A big advantage of this ar-
chitecture is that almost no change to the DBMS is required,
but the system can still benefit from the higher bandwidth.
In particular, data-flow operations that send large messages
(e.g., data re-partitioning) will benefit tremendously from
this change. However, as shown in Section 2, IPoIB cannot
fully leverage the network. Perhaps surprisingly, for some
types of operations, upgrading the network and using IPoIB
can actually decrease performance, particularly for control-
flow operations which send many small messages. Figure 3
shows that the CPU overhead of IPoIB is greater than the
CPU overhead of IPoEth for small messages. In fact, as we
will show in Section 4, these small di↵erences can have a
negative impact on the overall performance of distributed
transaction processing.

3.1.3 Distributed Shared-Memory
Obviously, to better leverage the network we have to take

advantage of RDMA. RDMA not only allows the system to
fully utilize the bandwidth (see Figure 2(a)), but also re-
duces network latency and CPU overhead (see Figures 2(b)
and 3). Unfortunately, changing an application from a socket-
based message passing interface to RDMA verbs is not triv-
ial. One possibility is to treat the cluster as a shared-
memory system (shown in Figure 4(c)) with two types of
communication patterns: (1) message passing using RDMA-
based SEND/RECEIVE verbs, and (2) remote direct mem-
ory access through one-sided RDMA READ/WRITE verbs.
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However, as previously mentioned, there is no mechanism
for cache-coherence. Moreover, machines need to carefully
declare the shareable memory regions a priori and connect
via queue pairs. The latter, if not used carefully, can also
have a negative e↵ect on the performance [29]. In addi-
tion, a memory access via RDMA is very di↵erent than that
of a shared-memory system. While a local memory access
only keeps one copy of the data around (i.e., conceptually it
moves the data from main memory to the cache of a CPU),
a remote memory access creates a fully independent copy.
This has a range of implications including garbage collec-
tion, cache/bu↵er management, and consistency protocols.
Thus, in order to achieve the appearance of a shared-

memory system, the software stack has to hide the dif-
ferences and provide a distributed shared-memory space.
There have been recent attempts to create a distributed
shared-memory architecture over RDMA [19]. However, we
believe that a single abstraction for local and remote mem-
ory is the wrong approach. Since DBMSs prefer to have
full control over memory management (e.g., virtual memory
can interfere with a DBMS), we believe the same is true for
shared-memory over RDMA. While we had the ambitions
to validate this assumption through our experiments, we
only found one commercial o↵ering for IBM mainframes [4].
Instead, for our OLTP comparison, we implemented a sim-
plified version of this architecture by essentially using a SN
architecture and replacing socket communication with two-
sided RDMA verbs (send and receive). We omit this archi-
tecture entirely from our OLAP comparison since two-sided
RDMA verbs would have added additional synchronization
overhead (i.e., an RDMA RECEIVE must be issued strictly
before the RDMA SEND arrives at the RNIC).

3.1.4 Network-Attached Memory
Based on the previous considerations, we envision a new

type of architecture, referred to as network-attached mem-
ory (NAM) and shown in Figure 4(d). In a NAM archi-
tecture, compute and storage are logically decoupled. The
storage servers provide a shared distributed memory pool,
which can be accessed from any compute node. However,
the storage nodes are not aware of any DBMS specific op-
erations (e.g., joins or consistency protocols). These are
implemented by the compute nodes.
This logical separation helps to control the complexity
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Network-Attached Memory (NAM)

• All InfiniBand
• Storage disaggregation: compute 

servers handle DB operations, 
storage servers handle data storage

tributed data-flow (e.g., data exchange between nodes). We
describe how three existing distributed DBMS architectures
handle these challenges and then propose a new architecture
designed specifically for fast networks.

3.1.1 Traditional Shared-Nothing
Figure 4(a) shows the shared-nothing (SN) architecture

for distributed in-memory DBMSs. Data is partitioned across
each of the nodes, and each node has direct access only to its
local partition. In order to implement distributed control-
flow and data-flow, nodes communicate with each other us-
ing socket-based send and receive operations.
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to avoid communication (e.g., semi-joins). In the extreme
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For many real-world workloads, however, network commu-
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munication costs [47]. Furthermore, workloads change over
time, making it di�cult to find a good static partitioning
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huge amounts of data, further restricting the bandwidth for
the actual work. As a result, the network limits the through-
put of the system as well its scalability; that is, the more
machines that are added, the more of a bottleneck the net-
work becomes.

3.1.2 Shared-Nothing for IPoIB
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chitecture to a high-performance network is to simply use
IPoIB as shown in Figure 4(b). A big advantage of this ar-
chitecture is that almost no change to the DBMS is required,
but the system can still benefit from the higher bandwidth.
In particular, data-flow operations that send large messages
(e.g., data re-partitioning) will benefit tremendously from
this change. However, as shown in Section 2, IPoIB cannot
fully leverage the network. Perhaps surprisingly, for some
types of operations, upgrading the network and using IPoIB
can actually decrease performance, particularly for control-
flow operations which send many small messages. Figure 3
shows that the CPU overhead of IPoIB is greater than the
CPU overhead of IPoEth for small messages. In fact, as we
will show in Section 4, these small di↵erences can have a
negative impact on the overall performance of distributed
transaction processing.

3.1.3 Distributed Shared-Memory
Obviously, to better leverage the network we have to take

advantage of RDMA. RDMA not only allows the system to
fully utilize the bandwidth (see Figure 2(a)), but also re-
duces network latency and CPU overhead (see Figures 2(b)
and 3). Unfortunately, changing an application from a socket-
based message passing interface to RDMA verbs is not triv-
ial. One possibility is to treat the cluster as a shared-
memory system (shown in Figure 4(c)) with two types of
communication patterns: (1) message passing using RDMA-
based SEND/RECEIVE verbs, and (2) remote direct mem-
ory access through one-sided RDMA READ/WRITE verbs.
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However, as previously mentioned, there is no mechanism
for cache-coherence. Moreover, machines need to carefully
declare the shareable memory regions a priori and connect
via queue pairs. The latter, if not used carefully, can also
have a negative e↵ect on the performance [29]. In addi-
tion, a memory access via RDMA is very di↵erent than that
of a shared-memory system. While a local memory access
only keeps one copy of the data around (i.e., conceptually it
moves the data from main memory to the cache of a CPU),
a remote memory access creates a fully independent copy.
This has a range of implications including garbage collec-
tion, cache/bu↵er management, and consistency protocols.
Thus, in order to achieve the appearance of a shared-

memory system, the software stack has to hide the dif-
ferences and provide a distributed shared-memory space.
There have been recent attempts to create a distributed
shared-memory architecture over RDMA [19]. However, we
believe that a single abstraction for local and remote mem-
ory is the wrong approach. Since DBMSs prefer to have
full control over memory management (e.g., virtual memory
can interfere with a DBMS), we believe the same is true for
shared-memory over RDMA. While we had the ambitions
to validate this assumption through our experiments, we
only found one commercial o↵ering for IBM mainframes [4].
Instead, for our OLTP comparison, we implemented a sim-
plified version of this architecture by essentially using a SN
architecture and replacing socket communication with two-
sided RDMA verbs (send and receive). We omit this archi-
tecture entirely from our OLAP comparison since two-sided
RDMA verbs would have added additional synchronization
overhead (i.e., an RDMA RECEIVE must be issued strictly
before the RDMA SEND arrives at the RNIC).

3.1.4 Network-Attached Memory
Based on the previous considerations, we envision a new

type of architecture, referred to as network-attached mem-
ory (NAM) and shown in Figure 4(d). In a NAM archi-
tecture, compute and storage are logically decoupled. The
storage servers provide a shared distributed memory pool,
which can be accessed from any compute node. However,
the storage nodes are not aware of any DBMS specific op-
erations (e.g., joins or consistency protocols). These are
implemented by the compute nodes.
This logical separation helps to control the complexity
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OLTP: Distributed 2PC does not scale

Consider generic 2PC for Snapshot Isolation
• Normal 2PC incurs 9x message delay, can be 

decreased to 6x
• Increased latency means more contention, 

more aborts
• CPU overhead consumes most extra resources 

gained from adding nodes to cluster
Proposed solution (“RSI”) lets clients process 
transactions using RDMA compare-and-swap 

The discussion in this section is based on a 2PC protocol
for generalized SI [36, 22]. However, the findings can also
be generalized to more traditional 2PC protocols [41].

4.1.1 Dissecting 2PC
Figure 5(a) shows a simplified traditional 2PC protocol

with generalized SI guarantees [36, 22], assuming a shared-
nothing architecture and no read-phase (see [13, 15, 48]).That
is, we assume that the client (e.g., application server) has
read all necessary records to issue the full transaction using
a potentially older read timestamp (RID), which guarantees
a consistent view of the data.After the client finishes reading
the records, it sends the commit request to the transaction
manager (TM) [one-way message 1]. Note that there can be
more than one TM to distribute the load across nodes.

As a next step, the TM requests a commit timestamp
(CID) [round-trip message 2]. In this paper, we assume that
an external service provides globally ordered timestamps,
as suggested in [13] or [15]. Since the implementation of
the timestamp service is orthogonal, we assume that it is
not a bottleneck when using approaches like Spanner [15] or
epoch-based SI [61].

After receiving the CID, the TM sends prepare messages
to the resource managers (RMs) of the other nodes involved
in the transaction [round-trip message 3]. Each RM (1)
checks if any records in its partition have been modified since
being read by the transaction and (2) locks each tuple to pre-
vent updates by other transactions after the validation [33],
which normally requires checking if any of the records of the
write-sets has a higher CID than the RID. The TM can then
send commit messages to all involved RMs if the prepare
phase was successful [round-trip message 4], which installs
the new version (value and CID) and releases the locks. In
order to make the new value readable by other transactions,
the TM needs to wait until the second phase of 2PC com-
pletes [message 4], and then inform the timestamp service
that a new version was installed [one-way message 5]. For
the remainder, we assume that the timestamp service im-
plements a logic similar to [13] or Oracle RAC [48] in order
to ensure the SI properties. That is, if a client requests an
RID, the timestamp service returns the largest committed
timestamp. Finally, the TM notifies the client about the
outcome of the transaction [one-way message 6].

Overall the protocol requires nine one-way message delays
if sent in the previously outlined sequential order. However,
some messages can be sent in parallel; in particular, the
CID [message 2] can be requested in parallel to preparing
the RM [message 3], since the CID is not required until
the second phase of 2PC [message 4]. This simplification
is possible because we assume blind writes are not allowed,
such that a transaction must read all data items (and their
corresponding RIDs) in its working set before attempting
to commit. Similarly, the client can be informed [message
6] in parallel with the second phase of 2PC [message 4].
This reduces the number of message delays to four until the
client can be informed about the outcome (one-way message
1, round-trip 3, one-way message 5), and to at least six
until the transaction becomes visible (one-way message 1,
round-trips 3 and 4, one-way message 6). Compared to a
centralized DBMS, the six message delays required for 2PC
substantially increases the execution time for a transaction.

Unlike the described 2PC protocol, a traditional 2PC pro-
tocol [41] does not use a timestamp service but still requires
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Figure 5: Distributed 2PC Commit Protocols for SI

a total delay of six messages (including client notification).
Thus, our analysis is not specific to SI and can be general-
ized to other 2PC protocols.

4.1.2 Increased Contention Likelihood
The increased transaction latencies due to message delays

increase the chance of contention and aborts. As outlined in
Section 2, the average latency for small one-way messages
over Ethernet is roughly 35µs, whereas the actual work of
a transaction ranges from 10-60µs if no disk or network is
involved [30, 23].2 That is, for short-running transactions,
the dominant factor for latency is the network, and 2PC
amplifies this bottleneck.
In order to model the contention rate e↵ect, we assume

an M/M/1 queue X to estimate the number of waiting (i.e.,
conflicting) transactions for a given record r with some ar-
rival rate �. With this model, a 6⇥ increase in transaction
processing time, referred to as service time t, yields a service
capacity decrease of µ = 1/6t and an increased conflict likeli-
hood of P (X >= 0) = 1�P (X = 0) = 1� (1��/µ) = 6�t.
However, a transaction rarely consists of a single record.
With n records, the likelihood of a conflict increases to
1�

Q
n
P (X = 0) = 1�(1�6�t)n, if we employ the simplify-

ing assumption that the access rate to all records is similar
and independent. Thus, the intuition that the likelihood of
conflicts with 2PC increases is true.
However, we did not consider the read-phase, and it is

easy to show that the relative di↵erence is less severe as
more records are read (it adds a fixed cost to both).In addi-
tion, a redesign of the commit protocol to use RDMA verbs
can significantly decrease the conflict likelihood, since the
latency is much lower for small messages (see Figure 2(b)).
Other recent work has shown that most of these conflicts
can even be avoided by leveraging the properties of com-
mutative updates [8]. In fact, newer consistency protocols
that take advantage of non-blocking commutative updates
can provide high availability without centralized coordina-
tion [32]. We therefore believe that the argument against
distributed transactions on the grounds of increased conflict
likelihood is no longer valid.

4.1.3 CPU Overhead
In addition to the higher likelihood of conflicts, distributed

transactions also require additional network messages that

2For instance, [27] reported 64µs for a single partition trans-
action on an ancient 2008 Xeon processor.
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OLAP: Distributed Hash Join

• Most hash join optimization is 
decreasing data traffic: semi-join, 
bloom filters
• Partition across nodes, then join within 

nodes
• Implemented two proof of concept join 

algorithms
• RDMA Grace Hash Join
• RDMA Radix Join
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Figure 7: Join Cost Analysis

5.1.3 Discussion
Figure 7 plots all the previously mentioned costs of tra-

ditional distributed joins for various join selectivities. For
the network cost cnet per byte, we used the idealized la-
tency per byte from Section 2 for messages of size 2KB. For
the Bloom filters, we assume a 10% error of false positives
(i.e., 50% selectivity still selects 60% of the data). We use
|R| = |S| = 1M as table sizes and wr = ws = 8 as tuple
width. For memory, we assume a cost of cmem = 10�9s for
accessing a single byte. However, the relative relationships
of the di↵erent constants ccpu, cmem, and cnet are more im-
portant than the absolute cost of accessing a single byte
from memory.

For an IPoEth network, the results demonstrate that a
semi-join reduction (GHJ+Red) almost always pays o↵ (Fig-
ure 7(a)). However, the tradeo↵s change and thus, the
optimization, for existing distributed join algorithms (Fig-
ure 7(b)).For example, the network cost is no longer the
dominant factor.Only if the Bloom filter selectivity is below
sel < 0.8 (0.7 in Figure 7(b) due to the 10% Bloom filter
error rate), a semi-join reduction pays o↵ due to reduction
in join and shipping cost. Yet, both GHJ and GHJ+Red for
IPoIB still do not take full advantage of the network capa-
bilities. In the next section, we outline a new join algorithm
that directly fully leverages InfiniBand using RDMA.

We now describe two new join algorithms that leverage
the RDMA-based NAM architecture presented in Section 3.
First, we redesign the GHJ to use one-sided RDMA verbs
to write directly into remote memory of storage nodes for
partitioning. We call this join the RDMA GHJ. The main
goal of the partitioning phase of the RDMA GHJ for the
NAM architecture is to enable data parallel execution of
the join phase by the compute nodes.

The input tables for the partitioning phase are pre-fetched
from the storage nodes to the compute nodes. Moreover, for
writing the output partitions back to the storage nodes, the
RDMA GHJ leverages selective signaling to overlap com-
putation and communication. Thus, only the CPU of the
sender is active during the partitioning phase, and the cost
of partitioning reduces to Tpart = Tmem(R) + Tmem(S) be-
cause the remote data transfer for writing is executed in the
background by the RNICs when using selective signaling.
Finally, the join phase also uses pre-fetching of the parti-
tioned tables. This leads to reduced overall join costs which
renders a semi-join reduction even less beneficial when com-
pared to the classical GHJ as shown in Figure 7(b).

While this optimization may sound trivial, however, it re-
quires a significant redesign of the join algorithm’s bu↵er
management to work e�ciently on the NAM architecture.
Each server needs to reserve a bu↵er for every output par-
tition on the storage servers to ensure that data is not over-
written during the shu✏ing phase. Moreover, the partition-
ing phase must be designed such that the compute nodes
which execute the partitioning phase can be scaled-out in-

(a) Join (b) Aggregation

Figure 8: Traditional vs RDMA-optimized

dependently from the storage nodes. Describing these tech-
niques in more detail goes beyond the scope of this paper.
However, we can go a step further than just optimizing the

partitioning phase of the GHJ to leverage RDMA. The pre-
viously described partitioning phase of the radix join used to
optimize block sizes for cache-locality is very similar to the
partitioning phase of the GHJ. Therefore, instead of trying
to adjust distributed join algorithms like GHJ, we propose
extending the in-memory radix join [9] to leverage RDMA
directly. We refer to this new algorithm as RRJ (RDMA
Radix Join). A similar algorithm was recently presented
in [11]. However, unlike our algorithm, their join has been
optimized for a shared-nothing architecture while our RRJ
algorithm is optimized for the NAM architecture, enabling
an e�cient scale-out by adding additional compute servers.

5.2 RDMA Join Algorithms
Our new RRJ algorithm uses remote software managed

bu↵ers for the partition phase. Software managed bu↵ers
for the single-node radix join are presented in [9] to achieve
a high fan-out of the radix-partitioning phase and avoid mul-
tiple passes. RRJ adopts this idea to work optimally in the
NAM architecture with RDMA by applying the following
changes: (1) bu↵ers are copied in the background to storage
nodes using selective signaled WRITEs; and (2) bu↵er sizes
are optimized to leverage the full bandwidth of RDMA. Our
micro-benchmarks in Section 2.2 show that 2KB messages
saturate the InfiniBand bandwidth. Moreover, the fan-out
of the remote radix-partitioning phase is selected such that
all bu↵ers fit into the L3 cache of the CPU.
Note that the resulting RRJ algorithm is not simply a

straightforward extension of the radix join. For example,
our current implementation uses manually allocated RDMA-
enabled memory on the bu↵er and storage nodes.In a re-
designed distributed DBMS, a major challenge is to man-
age global memory allocation e�ciently without imposing
a performance penalty on the critical path of distributed
algorithms.
Assuming that the network cost is similar to the memory

cost and that one partitioning pass is su�cient when using
software managed bu↵ers, the RRJ algorithm has a total
expected cost of:

TRRJ = 2 · cmem · (wr · |R|+ ws · |S|)

The results of the cost analysis of both algorithms, the
RDMA GHJ and the RRJ, is shown in Figure 7(b) and
demonstrates that the popular semi-join reduction for dis-
tributed joins only pays o↵ in corner cases (i.e., for very,
very low join selectivities).

5.3 RDMA Aggregation Algorithms
Since the primary concern for distributed aggregation in

a shared-nothing architecture over slow networks is to avoid
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portant than the absolute cost of accessing a single byte
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ure 7(a)). However, the tradeo↵s change and thus, the
optimization, for existing distributed join algorithms (Fig-
ure 7(b)).For example, the network cost is no longer the
dominant factor.Only if the Bloom filter selectivity is below
sel < 0.8 (0.7 in Figure 7(b) due to the 10% Bloom filter
error rate), a semi-join reduction pays o↵ due to reduction
in join and shipping cost. Yet, both GHJ and GHJ+Red for
IPoIB still do not take full advantage of the network capa-
bilities. In the next section, we outline a new join algorithm
that directly fully leverages InfiniBand using RDMA.

We now describe two new join algorithms that leverage
the RDMA-based NAM architecture presented in Section 3.
First, we redesign the GHJ to use one-sided RDMA verbs
to write directly into remote memory of storage nodes for
partitioning. We call this join the RDMA GHJ. The main
goal of the partitioning phase of the RDMA GHJ for the
NAM architecture is to enable data parallel execution of
the join phase by the compute nodes.

The input tables for the partitioning phase are pre-fetched
from the storage nodes to the compute nodes. Moreover, for
writing the output partitions back to the storage nodes, the
RDMA GHJ leverages selective signaling to overlap com-
putation and communication. Thus, only the CPU of the
sender is active during the partitioning phase, and the cost
of partitioning reduces to Tpart = Tmem(R) + Tmem(S) be-
cause the remote data transfer for writing is executed in the
background by the RNICs when using selective signaling.
Finally, the join phase also uses pre-fetching of the parti-
tioned tables. This leads to reduced overall join costs which
renders a semi-join reduction even less beneficial when com-
pared to the classical GHJ as shown in Figure 7(b).

While this optimization may sound trivial, however, it re-
quires a significant redesign of the join algorithm’s bu↵er
management to work e�ciently on the NAM architecture.
Each server needs to reserve a bu↵er for every output par-
tition on the storage servers to ensure that data is not over-
written during the shu✏ing phase. Moreover, the partition-
ing phase must be designed such that the compute nodes
which execute the partitioning phase can be scaled-out in-

 1

 10

 100

1.0 0.75 0.5 0.25

R
u
n
tim

e
 (

in
 s

)

Selectivity Bloom-Filter

GHJ (IPoEth)
GHJ+Red (IPoEth)

GHJ (IPoIB)
GHJ+Red (IPoIB)

RDMA GHJ
RRJ

(a) Join (b) Aggregation

Figure 8: Traditional vs RDMA-optimized

dependently from the storage nodes. Describing these tech-
niques in more detail goes beyond the scope of this paper.
However, we can go a step further than just optimizing the

partitioning phase of the GHJ to leverage RDMA. The pre-
viously described partitioning phase of the radix join used to
optimize block sizes for cache-locality is very similar to the
partitioning phase of the GHJ. Therefore, instead of trying
to adjust distributed join algorithms like GHJ, we propose
extending the in-memory radix join [9] to leverage RDMA
directly. We refer to this new algorithm as RRJ (RDMA
Radix Join). A similar algorithm was recently presented
in [11]. However, unlike our algorithm, their join has been
optimized for a shared-nothing architecture while our RRJ
algorithm is optimized for the NAM architecture, enabling
an e�cient scale-out by adding additional compute servers.

5.2 RDMA Join Algorithms
Our new RRJ algorithm uses remote software managed

bu↵ers for the partition phase. Software managed bu↵ers
for the single-node radix join are presented in [9] to achieve
a high fan-out of the radix-partitioning phase and avoid mul-
tiple passes. RRJ adopts this idea to work optimally in the
NAM architecture with RDMA by applying the following
changes: (1) bu↵ers are copied in the background to storage
nodes using selective signaled WRITEs; and (2) bu↵er sizes
are optimized to leverage the full bandwidth of RDMA. Our
micro-benchmarks in Section 2.2 show that 2KB messages
saturate the InfiniBand bandwidth. Moreover, the fan-out
of the remote radix-partitioning phase is selected such that
all bu↵ers fit into the L3 cache of the CPU.
Note that the resulting RRJ algorithm is not simply a

straightforward extension of the radix join. For example,
our current implementation uses manually allocated RDMA-
enabled memory on the bu↵er and storage nodes.In a re-
designed distributed DBMS, a major challenge is to man-
age global memory allocation e�ciently without imposing
a performance penalty on the critical path of distributed
algorithms.
Assuming that the network cost is similar to the memory

cost and that one partitioning pass is su�cient when using
software managed bu↵ers, the RRJ algorithm has a total
expected cost of:

TRRJ = 2 · cmem · (wr · |R|+ ws · |S|)

The results of the cost analysis of both algorithms, the
RDMA GHJ and the RRJ, is shown in Figure 7(b) and
demonstrates that the popular semi-join reduction for dis-
tributed joins only pays o↵ in corner cases (i.e., for very,
very low join selectivities).

5.3 RDMA Aggregation Algorithms
Since the primary concern for distributed aggregation in

a shared-nothing architecture over slow networks is to avoid
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