
NAM DB (Cont.)
VLDB 2017

The End of a Myth: Distributed Transactions Can Scale

Geoffrey Xue



1 year later…



NAM DB - Introduction

Shared-nothing logically decoupled

Compute Servers

Query Processor, Transaction Manager

- Each thread executes a transaction

Memory Servers

Stores Data, Metadata, Timestamps, etc.



The End of Slow Networks: It’s Time for a Redesign (2016)

Limitations

- Versioning and Snapshots don’t actually work
- Aborts trxs requiring an older snapshot

- No fault tolerance



Transactions



NAM DB - Continued

Snapshot Isolation Baseline

Timestamp Oracle

Multi-versioning

Memory Management

Indexes, Catalog

Fault Tolerance



Snapshot Isolation Baseline 

Assumptions

- Up-to-date Catalog Service (Data → Address lookup)
- Ignoring fault tolerance
- One version only

 



Snapshot Isolation Baseline*

Read*

1. Get read timestamp from global
2. Execute transaction, build read/write sets

Commit

3. Get unique commit timestamp*
4. Locks record blocks in write set
5. Writes records
6. Send commit status Timestamp Oracle

Scan tail of completed to update read
*Different from 2016 paper



Snapshot Isolation Baseline 

Challenges

- Global fetch-and-add timestamps do not scale well 
- Stragglers/Long transactions → High aborts from read 

update slowdown
- No Fault-tolerance



Timestamp Oracle

Timestamp Vector

- For n threads
- Stored in single memory server

Record’s Latest Update

- Thread identifier
- Commit Timestamp



Timestamp Oracle - Snapshot Isolation

Read

1. Get read timestamp from global by getting copy of timestamp vector
2. Execute transaction, build read/write sets. For each record:

a. Get newest record
b. Ensure that record is visible to read snapshot
c. Otherwise, grab older version



Timestamp Oracle - Optimizations

Detached Fetch Thread → Fetch/cache

Timestamp Vector Compression → Compute Server granularity

- Threads share slot. Atomically update between each other, like original

Partitioning → Loses strict monotonicity



Multi-versioning

Current, Old-Version, Overflow
Current → Old-Version

- Handled on commit

Old-Version → Overflow

- Detached version-mover thread
- Sets “moved” bit to 1

Overflow → Deletion: Timer-based

Table: Key → 4 pointers



Multi-versioning - Current → Old-Version

Commit

1. Get unique commit timestamp
2. Locks record blocks in write set
3. Writes records. For each record

a. Look at pointer for record to evict
b. If record has “moved” bit 1, replace. Otherwise, advance
c. Copy existing “current version” to old

4. Send commit status



Memory Management

Pinning/Registering is expensive

Allocates large region first

When compute adds row, allow extend as needed

Garbage Collection (See multi-versioning)



Indexes, Catalog

Indexes

Hash Index → Linked List, Partitioned, One-sided RDMA

Put in single memory region to avoid pointer chasing

B+ Tree Index → Partitioned, Two-sided RDMA

Catalog

Lookup for tables and indexes, partitioned, Two-sided RDMA

Cache, update if catalog version metadata is stale on fetch



Fault Tolerance - Memory Servers

Log 

Threads RDMA write log to multiple memory servers

In the form

- Timestamp vector
- Statement executed

Detached Checkpoint Thread → Writes checkpoints to disk to truncate log



Fault Tolerance - Memory Servers

Commit

1. Get unique commit timestamp
2. Locks record blocks in write set
3. Ensure that log is persisted
4. Writes records. For each record

a. Look at pointer for record to evict
b. If record has “moved” bit 1, replace. Otherwise, advance
c. Copy existing “current version” to old

5. Send commit status



Fault Tolerance - Memory Servers

Stateful. Forces complete halt of system, recovery using single compute server 

Recovery

1. Start up single compute server recovery
2. Read logs from memory from last checkpoint
3. Partially order by logged read timestamp snapshot
4. Replay merged log back to memory servers



Fault Tolerance - Compute Servers

Compute Servers are stateless, but failure can result in abandoned locks

Monitoring Compute Server → Compute Server monitoring Peer

1. Detect that peer Compute Server fails
2. Read logs made by execution threads, find locks
3. Release abandoned locks



Evaluation

TPC-C Benchmark, or the Order Entry Benchmark 

Cluster A → 57 total, 28 type 1 (compute), 29 type 2 (memory + timestamp oracle)

Cluster B → 8 total for other testing

Single InfiniBand FDR 4X, Mellanox Connect IB (2011, 54.54 Gb/s)

Hash and B+ tree indexes included



Evaluation - System Scalability

Cluster A

Compute, Threads/C, Memory

Without locality: 28 C, 60 T/C, 28 M

With locality: 56 C, 30 T/C, 56 M

- Paired per physical machine

2-sided: Two-sided RDMA 2PC



Cluster B

7 Compute, 1 Memory

Detached Fetch Thread

Timestamp Vector Compression 

Theoretical limit: 60 500 clients

Evaluation - Timestamp Scalability



Probability of Distribution → Chance of remote access

Locality adds ~30%, no longer order-of-magnitude difference

Evaluation - Locality, Contention, RDMA Queue Pairs



Extremely high skew workloads are inherently unscalable

High Queue Pairs may overflow NIC cache, but is not limit for most workloads

Evaluation - Locality, Contention, RDMA Queue Pairs



Thank you!
Questions?


