
High-Speed Query 
Processing over 

High-Speed 
Networks

- Aboli



Introduction
- Networks - no longer a bottleneck (InfiniBand TCP, RDMA)
- Only increasing bandwidth - 

not much benefit
- Distributed query engines should adapt



High Speed Networks
- InfiniBand 

(High bandwidth, low latency cluster connect)

- Large amount of data shuffled during 
joins and aggregations

- Tune existing protocol for analytical workloads



Tuning TCP
- Use data direct I/O



- Asynchronous operation
- Infinibands verbs API -

Asynchronous
- Work requests handled async

via queue

- Kernel Bypassing
- No copying between buffers 

-> no sys calls
- Memory regions 

-> map virtual to physical
- Message pools

Tuning RDMA



- Channel semantics
- Read/write needs to have 

memory key

- 2 sided operations 

- No separate exchange of 

memory keys

- Event notification
- Polling vs Interrupt

- CPU use vs latency

Tuning RDMA



High Speed Queries
CLASSIC EXCHANGE OPERATORS

- Introduced in Volcano - Goetz Graefe (UW-Madison)

Paper link

- Allows parallel query evaluation (Exchange operator)

- Parent process consumes data from child process

(Bushy parallelism - diff subtrees, Intra-operator - same operator on diff data)

- Threads execute parallel copies - communicate via exchange operator

https://paperhub.s3.amazonaws.com/dace52a42c07f7f8348b08dc2b186061.pdf


Issues with classical exchange operator
- All parallel units are same - local or 

remote
- Every exchange operator talks to other

- (n × t) − 1 for n servers and t local exchange 
operators per server 

- Limits use of broadcast join
- Many connections required - scalability 

issues

ANSWER - Hybrid Parallelism

- Decoupled exchange operator
- RDMA based, NUMA aware multiplexer
- Application level Network Scheduling



Decoupled Exchange Operators

- All parallel units only interact with the multiplexer
- Minimizes the number of connections

- Locally units can steal work
- Better load balancing

- Further optimizations
- Efficient serialization/deserialization
- Unnecessary columns pruned



NUMA
- Every CPU - local memory controller
- Access remote memory via QPI - slower, expensive

Query engine - CPUs must access local memory addresses as much as possible



RDMA-based, NUMA aware multiplexer
- Network thread - exchange between local and remote servers via RDMA
- Multiplexers connected together
- Maintains message pools - registered with HCA for RDMA
- One receive queue per NUMA socket

- Work stealing - NUMA local empty -> take from remote



Application level network scheduling

- All to all traffic - switch contention
- Round robin algorithm

- Send and receive from one server in each phase



Evaluations
- HyPer - in-memory database, columnar storage
- TPC-H queries for different servers



Evaluations
- Distributed SQL systems comparison
- Spark SQL, Impala, MemSQL, Vectorwise



Concluding Remarks
- Full fledged query engine based on RDMA - good approach

- Implementation on HyPer - other databases?



THOUGHTS?


