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Introduction

- Networks - no longer a bottleneck (InfiniBand TCP RDI\/IA)

- Only increasing bandwidth - ‘*Network S
not much benefit : ._.’f

- Distributed query engines should adapt "
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Figure 3: Simply increasing the network bandwidth
is not enough; a novel RDMA-based communication
multiplexer is required (HyPer, TPC-H, SF 100)




High Speed Networks

- InfiniBand
(High bandwidth, low latency cluster connect)

- Large amount of data shuffled during
joins and aggregations

- Tune existing protocol for analytical workloads




uning TCP

Use data direct I/0
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(a) Classic I/O involves three memory trips at sender/receiver
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(b) Data direct I/O reduces this to only one memory trip each

Figure 4: Data direct I/0O significantly reduces the
memory bus traffic for TCP compared to classic I/O



Tuning RDMA

- Asynchronous operation
- Infinibands verbs API -

Asynchronous
- Work requests handled async
via queue

- Kernel Bypassing
No copying between buffers

->no sys calls
- Memory regions

-> map virtual to physical
- Message pools
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Tuning RDMA

- Channel semantics
- Read/write needs to have

memory key
- 2 sided operations
- No separate exchange of

memory keys

- Event notification
- Polling vs Interrupt

- CPU use vs latency
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High Speed Queries e

Print

Join

CLASSIC EXCHANGE OPERATORS
- Introduced in Volcano - Goetz Graefe (UW-Madison o S
( ) N |
P a per ||nk Exchlangc Exch|angc Scan
- Allows parallel query evaluation (Exchange operator) Scan Scan

Fig. 5. Operator model of parallelization.

Parent process consumes data from child process
(Bushy parallelism - diff subtrees, Intra-operator - same operator on diff data)

Threads execute parallel copies - communicate via exchange operator



https://paperhub.s3.amazonaws.com/dace52a42c07f7f8348b08dc2b186061.pdf

ssues with classical exchange operator

- All parallel units are same - local or | 4 3 l
remote - Locgy
- Every exchange operator talks to other falle| ypjt Remote
- (nxt)—-1for nservers and t local exchange ' Paralle/ unit
operators per server
Limits use of broadcast join A - :
Many connections required - scalability === “Potwood MNEN ariitie picture.
issues "f ———

mClassical Exchange Op
A

ANSWER - Hybrid Parallelism

JERRANINIT

- Decoupled exchange operator
- RDMA based, NUMA aware multiplexer
- Application level Network Scheduling




Decoupled Exchange Operators

All parallel units only interact with the multiplexer
Minimizes the number of connections

Locally units can steal work
Better load balancing

Further optimizations
Efficient serialization/deserialization
Unnecessary columns pruned



NUMA

- Every CPU - local memory controller
- Access remote memory via QPI - slower, expensive
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Query engine - CPUs must access local memory addresses as much as possible




RDMA-hased, NUMA aware multiplexer

- Network thread - exchange between local and remote servers via RDMA
- Multiplexers connected together
- Maintains message pools - registered with HCA for RDMA

- One receive queue per NUMA socket
- Work stealing - NUMA local empty -> take from remote
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Figure 7: Interaction of decoupled exchange operators with the RDMA-based, NUMA-aware multiplexer



Application level network scheduling

- All to all traffic - switch contention

- Round robin algorithm
- Send and receive from one server in each phase
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£a) Round-robin scheduling with conflict- (b) Application-level network schedul-
ree phases; three phases for four servers ingimproves throughput by up to 40 %



Evaluations

- HyPer - in-memory database, columnar storage
- TPC-H queries for different servers

RDMA (40 Gb/s InfiniBand)
-, network scheduling

—@— TCP/IP (40 Gb/s InfiniBand)
~h— TCP/IP (1 Gb/s Ethernet)
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Figure 11: Scalability of the individual TPC-H queries for different query execution engines (HyPer, SF 100)




Evaluations

- Distributed SQL systems comparison
- Spark SQL, Impala, MemSQL, Vectorwise
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Figure 12: Comparing distributed analytical SQL systems for the TPC-H benchmark (6 servers, SF 100)



Concluding Remarks

- Full fledged query engine based on RDMA - good approach

- Implementation on HyPer - other databases?




THOUGHTS?



