High-Speed Query
Processing over

High-S

eed

Networks
- Aboli

Introduction

- Networks - no longer a bottleneck (InfiniBand TCP RDI\/IA)

- Only increasing bandwidth - ‘*Network S
not much benefit : ._.’f

- Distributed query engines should adapt "

—i— RDMA (40 Gb/s InfiniBand) + scheduling
—@— TCP/IP (40 Gb/s InfiniBand)
| 4 TCP/IP (1 Gb/s Ethernet)

w
X

- AR P 4

I **Query Engines

N
X

speed-up of
query response times
x

o
X

number of servers

Figure 3: Simply increasing the network bandwidth
is not enough; a novel RDMA-based communication
multiplexer is required (HyPer, TPC-H, SF 100)

High Speed Networks

- InfiniBand
(High bandwidth, low latency cluster connect)

- Large amount of data shuffled during
joins and aggregations

- Tune existing protocol for analytical workloads

uning TCP

Use data direct I/0

-
>

LLC 3. 5 RAM LLC RAM 6.
socket buffer < — socket buffer 7.
dats —4> socket buffer et «4— socket buffer
4 2. V8.
application application application application
buffer data 1. buffer buffer data o. buffer

sender receiver

(a) Classic I/O involves three memory trips at sender/receiver

.

LLC 3. RAM LLC 4. RAM

socket buffer socket buffer

socket buffer socket buffer

data data
42 V¥ 5.
application o __ application application » application
buffer data S = buffer buffer data 6. buffer
sender receiver

(b) Data direct I/O reduces this to only one memory trip each

Figure 4: Data direct I/0O significantly reduces the
memory bus traffic for TCP compared to classic I/O

Tuning RDMA

- Asynchronous operation
- Infinibands verbs API -

Asynchronous
- Work requests handled async
via queue

- Kernel Bypassing
No copying between buffers

->no sys calls
- Memory regions

-> map virtual to physical
- Message pools

SEND REQUEST

WAIT FOR RESPONSE

'\‘ibv _get_cq_evenl()

User appllcllon

.....................................

v post sand() \

Channel Adapter

sand queve

Fabric

Channel Adapter

80V queue

send queve

.................................

" ‘\‘
/ X
ibvm_wcvo @

i ibv_get_oq_evant() ibv_poll_cq) complétion queue
il (it -
180V qUALR

A

completion queue

e
/ ibw. DOSl sand)

User application

i ibv_get_cq_event) itw_poll_ca()

|
»
|

o G [~

L T
' '

|tw gel ocLevem()

A1S3ND3H 504 LIvVM

ISNOJS3H AON3S

Tuning RDMA

- Channel semantics
- Read/write needs to have

memory key
- 2 sided operations
- No separate exchange of

memory keys

- Event notification
- Polling vs Interrupt

- CPU use vs latency

Copy
Operations

Server: Initiator Server: Initiator

M Application

Server. Target

LG Application

Transport Protocol Driver

NIC Driver

NIC Driver NIC Driver

s ROMANIC { ROMANIC

Network

High Speed Queries e

Print

Join

CLASSIC EXCHANGE OPERATORS
- Introduced in Volcano - Goetz Graefe (UW-Madison o S
() N |
P a per ||nk Exchlangc Exch|angc Scan
- Allows parallel query evaluation (Exchange operator) Scan Scan

Fig. 5. Operator model of parallelization.

Parent process consumes data from child process
(Bushy parallelism - diff subtrees, Intra-operator - same operator on diff data)

Threads execute parallel copies - communicate via exchange operator

https://paperhub.s3.amazonaws.com/dace52a42c07f7f8348b08dc2b186061.pdf

ssues with classical exchange operator

- All parallel units are same - local or | 4 3 l
remote - Locgy
- Every exchange operator talks to other falle| ypjt Remote
- (nxt)—-1for nservers and t local exchange ' Paralle/ unit
operators per server
Limits use of broadcast join A - :
Many connections required - scalability === “Potwood MNEN ariitie picture.
issues "f ———

mClassical Exchange Op
A

ANSWER - Hybrid Parallelism

JERRANINIT

- Decoupled exchange operator
- RDMA based, NUMA aware multiplexer
- Application level Network Scheduling

Decoupled Exchange Operators

All parallel units only interact with the multiplexer
Minimizes the number of connections

Locally units can steal work
Better load balancing

Further optimizations
Efficient serialization/deserialization
Unnecessary columns pruned

NUMA

- Every CPU - local memory controller
- Access remote memory via QPI - slower, expensive

Controller
J13||0u0)

O

o =
2
S5
—_— =
D <
©]

Memory
Controller

QuickPath Interconnect

Query engine - CPUs must access local memory addresses as much as possible

RDMA-hased, NUMA aware multiplexer

- Network thread - exchange between local and remote servers via RDMA
- Multiplexers connected together
- Maintains message pools - registered with HCA for RDMA

- One receive queue per NUMA socket
- Work stealing - NUMA local empty -> take from remote

server O
NUMA socket O persenel . NUMA socket 1 0
sediiadi HIDNACKEY communication multiplexer BUMAROYE 2 TTT porthissidy §
§ N o NUMA node receive queue NUMAnode > t t
3 I Z 5 4.reuse message pool NUMA socket 1 :) nex Opera or
a retain count message :I:I:I:E retain count g " q |
> — = *~ T ” . produce tuples
‘lg’_ | I exchange ID por socker X A 5a. "ef'::’f local exchange ID ._g'_:! |
E 3. send message schedul\e: 5b. steal work § exchange
| [oies ees Bl EHE= T i - T
g |I X ~z receive queue 6. deserialize tuples
o m per server X nd queues NUMA socket 0 m
outgoing ges incoming message

Figure 7: Interaction of decoupled exchange operators with the RDMA-based, NUMA-aware multiplexer

Application level network scheduling

- All to all traffic - switch contention

- Round robin algorithm
- Send and receive from one server in each phase

4
w
hostO host 1 o 3 —8—a—=a
=
g2
L
o
3 17 :
= —&— all-to-all —#— round-robin
=0 , x ‘ !
host3 host 2 2 3 4 5 6 7 8

number of servers

£a) Round-robin scheduling with conflict- (b) Application-level network schedul-
ree phases; three phases for four servers ingimproves throughput by up to 40 %

Evaluations

- HyPer - in-memory database, columnar storage
- TPC-H queries for different servers

RDMA (40 Gb/s InfiniBand)
-, network scheduling

—@— TCP/IP (40 Gb/s InfiniBand)
~h— TCP/IP (1 Gb/s Ethernet)

speed-up of query response times

“NWHPOAO =N “NOPOIO

é‘4‘lt‘32462‘4 6 2 4 6 2 4 6 2 4 6

number of servers

Figure 11: Scalability of the individual TPC-H queries for different query execution engines (HyPer, SF 100)

Evaluations

- Distributed SQL systems comparison
- Spark SQL, Impala, MemSQL, Vectorwise

HyPer (partitioned)
HyPer (chunked)

Vectorwise

~— HyPer (RDMA) —@— HyPer (TCP)
10% | ~h— \ectorwise == MemSQL

20,739

speed-up over GbE

: 5x
MemSQL 2
Impala
1x + & ¢ ¢
Spark SQL
' ‘ GbE SDR DDR QDR
0 5k 10k 15k 20k 25k 0.125 GB/s 1 GB/s 2 GB/s 4 GB/s

queries per hour

network bandwidth
(a) Queries per hour for each distributed SQL system

(b) Impact of network bandwidth on TPC-H performance

Figure 12: Comparing distributed analytical SQL systems for the TPC-H benchmark (6 servers, SF 100)

Concluding Remarks

- Full fledged query engine based on RDMA - good approach

- Implementation on HyPer - other databases?

THOUGHTS?

