WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Topics in Database Management Systems
Lecture 3: Snowflake

Xiangyao Yu
9/13/2023

Presentation Signup

Too many people signed up for
— Auto-scaling
— Multi-cloud

Please either consider another topic or identify a paper/article in “Paper
Signup” sheet by next Monday

Need a few more presenters for
— Storage disaggregation for OLAP

— Storage disaggregation for OLTP
— Auto-tuning
— Memory disaggregation

Please sign up for specific papers/articles

— If you are presenting “disaggregation for OLAP”. Pick your paper today!
— For other topics, try to pick your paper asap

No need to submit review for the lecture where you will present

Group Discussion Summary

Replay in compute node vs. storage node?

Traditional

Aurora

Log replay as a Service

Advantages

Simpler design

* Less network traffic

« Higher availability (DB
server as single point
of failure)?

Replay traffic spread
across storage nodes

Disadvantages

Replay traffic through a
single primary instance

« Storage needs a CPU
and is more expensive;

* Log replay is a potential
bottleneck

« Consumes more
resources overall

Log service can be a
bottleneck

Group Discussion Summary

Multi-master

— Must deal with conflicts across master nodes -> complex concurrency
control (potentially happen inside the storage)

— Increased network traffic
— Deals with hotspot better
— More available since some of the masters can falil
— Potentially lower latency (e.g., skewed accesses)

Data partitioning
— Distributed transactions have higher latency due to coordination
— Hard to balance hotspot
— More scalable

Today’s Paper

The Snowflake Elastic Data Warehouse

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, Philipp Unterbrunner

Snowflake Computing

ABSTRACT

We live in the golden age of distributed oomputmg Pub-
lic cloud platforms now offer virtually unli

Keywords

Data warehousing, database as a service, multi-cluster shared
data architecture

and storage resources on demand. At the same tlme. the
Software-as-a-Service (SaaS) model brings enterprise-class
systems to users who previously could not afford such sys-
tems due to their cost and complexity. Alas, traditional
data warehousing systems are struggling to fit into this new
environment. For one thing, they have been designed for
fixed resources and are thus unable to leverage the cloud’s
elasticity. For another thing, their dependence on complex
ETL pipelines and physical tuning is at odds with the flex-
ibility and freshness requirements of the cloud’s new types
of semi-structured data and rapidly evolving workloads.

We decided a fundamental redesign was in order. Our
mission was to build an enterprise-ready data warehousing
solution for the cloud. The result is the Snowflake Elastic
Data Warehouse, or “Snowflake” for short. Snowflake is a
multi-tenant, transactional, secure, highly scalable and elas-
tic system with full SQL support and built-in extensions for
semi-structured and schema-less data. The system is offered
as a pay-as-you-go service in the Amazon cloud. Users up-
load their data to the cloud and can immediately manage
and query it using familiar tools and interfaces. Implemen-
tation began in late 2012 and Snowflake has been generally
available since June 2015. Today, Snowflake is used in pro-
duction by a growing number of small and large organiza-
tions alike. The system runs several million queries per day
over multiple petabytes of data.

In this paper, we describe the design of Snowflake and
its novel multi-cluster, shared-data architecture. The paper
highlights some of the key features of Snowflake: extreme
elasticity and availability, semi-structured and schema-less
data, time travel, and end-to-end security. It concludes with
lessons learned and an outlook on ongoing work.

Categories and Subject Descriptors

Information systems [Data management systems|: Data-
base management system engines

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMOD/PODS’16 June 26 - July 01, 2016, San Francisco, CA, USA

® 2016 Copyright held by the ownerfauthor(s).

ACM ISBN 978-1-4503-3531-7/16/06.

porhttp://dx.doi.org/10.1145 /2882903.2903741

1. INTRODUCTION

The advent of the cloud marks a move away from software
delivery and execution on local servers, and toward shared
data centers and software-as-a-service solutions hosted by
platform providers such as Amazon, Google, or Microsoft.
The shared infrastructure of the cloud promises increased
economies of scale, extreme scalability and availability, and
a pay-as-you-go cost model that adapts to unpredictable us-
age demands. But these advantages can only be captured
if the software itself is able to scale elastically over the pool
of commodity resources that is the cloud. Traditional data
warehousing solutions pre-date the cloud. They were de-
signed to run on small, static clusters of well-behaved ma-
chines, making them a poor architectural fit.

But not only the platform has changed. Data has changed
as well. It used to be the case that most of the data in a
data warehouse came from sources within the organization:
transactional systems, enterprise resource planning (ERP)
applications, customer relationship management (CRM) ap-
plications, and the like. The structure, volume, and rate of
the data were all fairly predictable and well known. But
with the cloud, a significant and rapidly growing share of
data comes from less controllable or external sources: ap-
plication logs, web applications, mobile devices, social me-
dia, sensor data (Internet of Things). In addition to the
growing volume, this data ly arrives in sch
semi-structured formats . Traditional data warehousmg
solutions are struggling with this new data. These solu-
tions depend on deep ETL plpelmes and phvslcal tuning
that fund lly assume predi g, and
easily categorized data from largely mterna.l sources.

In response to these shortcomings, parts of the data ware-
housing community have turned to “Big Data” platforms
such as Hadoop or Spark [8] [11]. While these are indis-
pensable tools for data center-scale processing tasks, and the
open source community continues to make big improvements
such as the Stinger Initiative [48], they still lack much of the
efficiency and feature set of established data warehousing
technology. But most importantly, they require significant
engineering effort to roll out and use |16

‘e believe that there is a large class of use cases and
workloads which can benefit from the economics, elasticity,
and service aspects of the cloud, but which are not well
served by either traditional data h hnol. or

SIGMOD 2016

Shared-nothing vs. Storage-disaggregation

CPU CPU CPU CPU CPU CPU
Mem Mem Mem
Mem Mem Mem Network

O 101010
- FEEE-
HDD HDD HDD HDD

Shared-nothing Storage disaggregation
* Fixed and limited hardware Virtually infinite computation & storage,
resources Pay-as-you-go price model

Shared Nothing — Advantages

Fact Table
Partition 1 Partition 2 Partition 3 Partition 4
CPU CPU CPU CPU Partition 1
Mem Mem Mem Mem | Partition 2
= - = = = -
o _ _ Partition 4
Scalability: horizontal scaling

« Scales well for star-schema queries

Dimension Table

Shared Nothing — Disadvantages

CPU

CPU

CPU

CPU

Mem Mem Mem Mem
> > > >

Heterogeneous workload
Static resource provisioning cannot adjust to
heterogeneous workloads
Must pay for entire cluster even when no queries exist

Workload A Workload B

CPU

Mem

Disk

More CPU intensive Less CPU intensive

Shared Nothing — Disadvantages

CPU CPU CPU CPU CPU

Mem Mem Mem Mem Mem
3 3 3 3 3
Heterogeneous workload

Membership changes
Add a node: data redistribution

Shared Nothing — Disadvantages

CPU CPU CPU CPU

Mem Mem Mem Mem
3 3 3 3
Heterogeneous workload

Membership changes
* Add a node: data redistribution
* Delete a node: similar to the fault tolerance problem

Shared Nothing — Disadvantages

CPU CPU CPU CPU

Mem Mem Mem Mem
3 3 3 3
Heterogeneous workload

Membership changes

Online upgrade
Similar to membership change but affect all nodes

Multi-Cluster Shared-Data Architecture

Control layer

Compute layer

a)
Authentication and Access Control
Cloud Infrastructure _ Transaction .
Services Manager 0ipHmIZER Manager Security
8 8 8 8 8 Metadata Storage
\),
(Virtual) [Virtual) (Virtual) (Virtual)
Warehouse Warehouse Warehouse Warehouse
Cache Cache Cache Cache
- G - G - \G)
Data
i EEEEE5] sewes

12

Architecture — Storage

Data format: PAX

L Header
6482 2547 3249 8349

1228

—> John Anne Susan

Jeremiah Tim

—» 45 21 65 42 36

Data horizontally partitioned into immutable files (~16MB)
— An update = remove and add an entire file
— Queries download file headers and columns they are interested in

Intermediate data spilling to S3

Architecture — Virtual Warehouse

T-Shirt sizes: XS to 4XL EEEE
Elasticity and Isolation
— Created, destroyed, or resized at any point (may shutdown all VWs)

— User may create multiple VWs for multiple queries
— Determine the VW size based on performance and cost requirements

14

Architecture — Virtual Warehouse

Local caching
— S3 data can be cached in local memory or disk

CPU

CPU

CPU

> >
= o0

15

Architecture — Virtual Warehouse

Local caching

— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU

CPU

CPU

> >
= o0

16

Architecture — Virtual Warehouse

Local caching ———
— S3 data can be cached in local memory or disk HEEE

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU

D (N (A (-
) () (=) =) e

17

Architecture — Virtual Warehouse

Local caching ———
— S3 data can be cached in local memory or disk HEEE

Consistent hashing CPU CPU CPU CPU

* When the hash table (n keys and

m slots) is resized, only n/m keys = >

need to be remapped
> 3 3 3
o]

18

Architecture — Virtual Warehouse

Local caching ——
— S3 data can be cached in local memory or disk HEEE

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU

D (N (A (-
) () (=) =) e

19

Architecture — Virtual Warehouse

Local caching —
— S3 data can be cached in local memory or disk HEEE

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU

* When a VW is resized, no data

shuffle required; rely on LRU to @ E E E 5
replace cache content

20

Architecture — Virtual Warehouse

Local caching

— S3 data can be cached in local memory or disk HEEE

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

* When a VW is resized, no data
shuffle required; rely on LRU to
replace cache content

File stealing to tolerate skew

CPU CPU CPU CPU

D (N (A (-
) () (=) =) e

21

Architecture — Virtual Warehouse

Execution engine
— Columnar: SIMD, compression

— Vectorized: process a group of elements at a time
— Push-based

22

Architecture — Cloud Services

Multi-tenant layer shared across multiple users

Query optimization

Concurrency control

— Isolation: snapshot isolation (Sl)
— S3 data is immutable, update entire files with MVCC
— Versioned snapshots used for time traveling

Pruning
— Snowflake has no index (same as some other data warehousing systems)
— Min-max based pruning: store min and max values for a data block

23

High Availability and Fault Tolerance

Snowflake Web Ul, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer

e ek -—--------- Stateless services
Cloud

Services

i\ MendataStorage [)] (] () O O O O i
O™ W WO

(e S E 8 E 88 8

I
Data Center | : Data Center | : Data Center

High Availability and Fault Tolerance

Snowflake Web UI, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer

Services

Memdastonge (] (O O O O O O |ji Replicated metadata
| W@ I (w) (W) (@Gw)! (FoundationDB)

(e S 58888 8)

|
Data Center | : Data Center | : Data Center

High Availability and Fault Tolerance

Snowflake Web UI, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer

Cloud
Services

Metadata Storage @ @ @ @ @

0 O

O

©

(vw) (vw) i (vw) (vw) (ij

y

EF@@@@@’

(s 5 2 588 5)

|
Data Center : Data Center | :

Data Center

One node failure in VW

— Re-execute with failed node
immediately replaced

— Re-execute with reduced
number of nodes

Whole AZ failure

— Re-execute by re-
provisioning a new VW

Hot-standby nodes

26

High Availability and Fault Tolerance

Snowflake Web UI, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer
| ___________ | — — — — — — — 7 71 | — — — — — 7 7 7 71
(" Cloud A
Services
Metadata Storage @ @ @ @ @ j @
J

I
:

S3 is highly available and
durable

W) @) @) i(vw) W

27

Online Upgrade

Deploy new versions of
services and VWs

Load Balancer
i Cloud Servi
.7 oud Services S
e ~S
Version 1 w (Version 2

Metadata Storage

SIsISISIS

/
/

S P
~ g,f

&

d

\
\

Previous version

V[;rcual Warehouse }/;’ >

T~
> T

T WVirtual Warehou%g\2

N
}J
~N

terminates after active

Version 1 W (Version 2

Version 1 W (Version 2

gueries finish

Cache

|

Cache

]

S/ &

S &

-~
~ o

P

-
o O

7

[

Data
Storage

T~as N y24 z--"" j

28

Web User Interface (Serverless

b flak S & sl > Q, ~ ? sucl
2‘°< SNOwTIaKe ~ SYSADMIN
r Databases Shares Warehouses Worksheets History Partner Connect Help
< Hello-World ' 20 mins in SF + v > | ow
Find database objects ¢ « m All Queries Saved a few seconds ago Context v ==
v rarso_iame oinang
7 last_name STRING ,
& DEMO_DB &8 email STRING ,
& SF_TUTS 9 streetaddress STRING ,
. 18 city STRING ,
& INFORMATION_SCHEMA 11 start_date DATE ;
No Tables in this Schema 12); / B
» Views 13 [!
«2+ PUBLIC 14 CREATE OR REPLACE WAREHOUSE sf_tuts_wh WITH _
o 15 WAREHOUSE _SIZE="'X-SMALL® - .
v Tables 16 AUTO_SUSPEND = 188 s 1
&3 EMP_BASIC 17 AUTO_RESUME = TRUE i
18 INITIALLY_SUSPENDED=TRUE;
No Views in this Schema 19
.3 SNOWFLAKE_SAMPLE_DATA 20
S uUTIL_DB Results Data Preview +« Open History
« QueryID SQL 201ms 1 rows
& Copy Columns v >
Row status

1 Warehouse SF_TUTS_WH successfully created.

. 4

Extract-Transform-Load (ETL)

4)
<
-i- — Qﬁ = DATA
E Q WAREHOUSE

Export \ Transform) Load

or BD

Transform (e.g., converting to column format) adds latency to the
system

31

ETLvs. ELT

B T T
Source 1 Source 1
(MPP database)
OSSR O <S> pee e ===
= —fo—[=] | &= —| ol
N ——— e .
Staging Final
/ / tables tables
Source 3 1 Source 3 W b
Extract l:> Transform [> Load Extract & Load [> Transform

E->T->L E->L->T

Picture from https://aws.amazon.com/blogs/big-data/etl-and-elt-design-patterns-for-lake-
house-architecture-using-amazon-redshift-part-1/ 39

https://aws.amazon.com/blogs/big-data/etl-and-elt-design-patterns-for-lake-house-architecture-using-amazon-redshift-part-1/

Optimization for Semi-Structured Data

Automatic type inference

Hybrid columnar format

— Frequently paths are detected, projected out, and stored in separate
columns in table file (typed and compressed)

— Collect metadata on these columns for optimization (e.g., pruning)

Execution Time (s)

10

S N A O
—T T T T T T T

SF100

Relational
Schema-less m—— _

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

Execution Time (s)

200

150

E
I

W
(=)
T

(=)

SF1000

Relational
Schema-less T—m

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Query

33

Snowflake — Q/A

No indexing used? min-max filtering

Node failure causes the entire query to fail? More graceful failures
like in Spark?

Push-based execution?

Transaction support in Snowflake?

How to deal with large intermediate data?

Performance of Snowflake vs. a shared-nothing deployment?

34

Discussion Question

For a multi-cloud analytical database where the data is stored across
AWS, Azure, and GCP, is Snowflake architecture a good fit? What
architecture would you choose in this scenario?

Snowflake is promoting the idea of data marketplace, where Snowflake
users can share/trade their data and queries (think of App Store). What
new applications can this enable in your opinion?

Please submit your discussion to hotcrp as a new submission by the
end of Thursday (9/14)
— Title starts with “[Discussion L3]”

— Set authors properly
35

Before Next Lecture

Review one of “disaggregation for analytical processing” papers

36

