
PushdownDB: 
Accelerating a DBMS 
using S3 Computation



Idea with PushdownDB
• Storage Disaggregation – Independent scaling, Reliability

• Causes network to be a bottleneck

• Idea: Push down some computation to reduce data that has to be 
transferred



PushdownDB
• Authors create a new DBMS: PushdownDB

• Has query operator implementation both with and without 
computation pushdown

• Effectively compare differences in performance and cost



S3 Select
• PushdownDB uses S3 for storage

• New feature to Amazon S3 in 2017

• Selections, Projections and Aggregation (over all selected rows)

From AWS Blog



Complex Query Operators
• S3 Select allows us to push selection and projection into S3. Just 

this could be a good thing.

• What about other more complex query operators?

• Joins

• Group By

• Top K

• Selection through indexes

• This paper uses S3 Select operations as building blocks to improve 
performance and cost of these complex operators



Hash Joins
• Baseline Load first table as building relation, load second table as 

probing relation. Join on Compute Node.

• Filtered Same as baseline, but push down projection and selection 
to storage service

• Can we do something more fundamental with the join operator? 
Filtering based on join key?



Bloom Join
• Load first table as building relation and build the hash table

• Create a bloom filter of join keys in building relation

• Probabilistic. Can have false positives, no false negatives

• Load second table, and use S3 Select selection with the bloom filter

• Because no false negatives, all rows we care about will be returned

• If high selectivity in probing relation, can reduce network traffic



Join Results

From the paper



Summary
• Push some computation to reduce number of rows to return

• Significantly reduce network traffic



Comments and Discussion
• What should we push down to get benefits of storage 

disaggregation while still limiting network transfer

• If we push a lot of computation, could the independent scaling 
property be ruined? If push too much, get a traditional shared 
nothing system. 

• Only pushes computation in a way to respect data partitioning. 
Don’t require any data shuffling. Also limit computation at storage 
nodes

• Computation that requires all partitions is done in compute nodes. 
Get filtered tables and horizontal partitions from the storage layer 
and assemble at compute layer



Thanks for listening!



Top-K
• Want to select lowest K rows in some attribute

• Approach based on probing. 2 phases

• Probe S>K rows. 

• Get all rows with value less than the K:th element in the result 
after the probe


