Dremel: Interactive Analysis of
Web-Scale Datasets

Introduction

e Need: Large-scale data processing

e Challenge: Nested data formats

o Expensive to normalise

Features & Contributions

e SQL-like querying syntax
e In-situ data processing to avoid data loading and transformations
e Serverless and multi-tenant

e Columnar format for nested data

o Multi-level execution trees

Splitting records into columnar format

Repetition Level -
“At what repeated field in the field’s path
has the value repeated?”

Definition Level -

“How many fields in the path that could
be undefined (repeated/optional) are
actually present?”

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60
Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: ‘http://A°
Name
Url: “http://B"
Name
Language
Code: 'en-gb'
Country: 'gb'

message Document ({
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated int64 Forward; }
repeated group Name {
repeated group Language ({
required string Code;
optional string Country; }
optional string Url; }}

DocId: 20 1‘2
Links
Backward: 10
Backward: 30
Forward: 80
Name
Url: "http://C’

Figure 1*

*All figures are taken from the paper

Repetition & Definition

Name.Language.Code

At what repeated field in the field’s path has
the value repeated
- Both Name and Language can be repeated

How many fields in the path that could be
undefined (repeated/optional) are actually
present?
- Both Name and Language are undefined
fields (repeated, in this case)

DocId: 10 rl
Links
Forward: 20
Forward: 40
Forward: 60

Name
Language
Code: 'en-us'
Country: 'us'
Language
Code: 'en'
Url: ‘http://A°
Name
Url: “http://B"
Name
Language
Code: 'en-gb'
Country: 'gb'

message Document ({

required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated int64 Forward;
repeated group Name {
repeated group Language ({
required string Code;
optional string Country;
optional string Url;

DocId: 20 1‘2
Links
Backward: 10
Backward: 30
Forward: 80
Name
Url:

'http://C'

Figure 1

Repetition & Definition

message Document {
required int64 DocId;
optional group Links {

DocId: 10 rl
Links

Forward: 20 repeated int64 Backward; i Name.Language Code
Forward: 40 . . . -
repeated int64 Forward; }
Forward: 60 repeated group Name ({
Name repeated group Language { en-us 0 2
Language required string Code;
Code: 'en-us' : . en 2 2
optional string Country; }
Country: ‘'us optional string Url; }} NULL |1 1
Language
Code: 'en' en-gb 1.2
Url: 'http://A' DocId: 20 1‘2 NULL |0 1
Name Links
Url: ‘http://B’ Backward: 10
Name Backward: 30 Figure 2
Language Forward: 80
Code: 'en-gb' Name
Country: 'gb' Url: "hetp://C’

Figure 1

Record assembly

Finite State Machine
e Each state is a field reader for the field in the query
e State transitions are repetition levels of the field

e For a subset of fields, construct a simpler FSM

Query Execution

e Root server and
Leaf servers

e Partitions are
called Tablets

e Scheduling Slots

client
root server
intermediate
servers
leaf servers e
(with local @ @ @
storage)

query execution tree

Il

T

\\\
~
~,
~,
b % = = =
~
~
~
- .
~ = = =
~
S

storage layer (e.g., GFS)

Figure 4

|

Experimentation

execution time (sec) execution time (sec)

10000 250
200 N

1000 = e

= 100 \\
10 - — 50
1 - 1 0 ; l 1 . number of
MR-records MR-columns Dremel 1000 2000 3000 aoo0 leaf servers
Figure 5: Comparing execution time with Figure 6: Comparing execution time by

MapReduce varying the number of leaf servers

Experimentation

Q2: SELECT country, SUM(item.amount) FROM T2 GROUP BY country
Q3: SELECT domain, SUM(item.amount) FROM T2 WHERE domain CONTAINS ’.net’ GROUP BY domain

~execution time (sec)

60

50

40

30 “ 2 levels
20 +— w3 levels
10 +— 4 levels
o | e |

Q2 Q3

Figure 6: Execution times for Q2 and Q3

Summary

e SQL-like syntax
e In-situ data processing
e Serverless

e Columnar format for nested data

Discussion

e In-situ data processing unsuitable in case of external data

management tools

e Columnar format for nested data encodes redundant

information

e Record assembly for deeply nested data or large number of

columns is inefficient

In recent years,

e Unifying framework for SQL dialects
e Hybrid approach with managed and in-situ data
e Query execution as a Directed Acyclic Graph, with a shuffle

persistence layer

Reference: Melnik, Sergey, et al. Dremel: A decade of interactive SQL analysis at web scale VLDB, 2020

Thank you!

