

Socrates: The New SQL Server in the Cloud

Spencer Schoenberg

Goals

- Highly available
- Elastic
 - Shared-disk
- High performance
 - Low log latency
- Large-scale databases
 - Eliminate O(database size) operations
- Backwards compatibility

Existing Solutions (HADR, shared-disk)

- Azure SQL DB
- Google Spanner
- Amazon Aurora
- Oracle

Figure 1: HADR Arch. (Replicated State Machines)

Architecture

- Compute Tier
 - Compute Nodes
- Logging Tier
 XLOG Service
- Storage Tier
 - Page Servers
- Persistence Tier
 - XStore

Figure 2: Socrates Architecture

Compute Tier

- Stateless
- Single primary
 - Read + Write
- Multiple secondaries
 - Read
 - Can promote from failover
- Unaware of network separation
 - All IO is transparently virtualized
 - Unaware of other replicas

Compute Tier - Primary

- Pushdown
 - Backups
 - Log durability
- Resilient Buffer Pool Extension (RBPEX)
 - Cache spills into local SSD
 - Resilient
 - Only need to apply log updates after reboot
- getPage(pageId, LSN)
 - Page Server returns page at least as new as Log Sequence Number
 - Keep track of newest LSN per page when writing
 - Read back if evicted from cache

Compute Tier - Secondaries

- Log blocks are not persisted
- Only store hot data pages
- New log records (from XLOG) applied to cached pages

XLOG (Logging Tier)

- Primary to Landing Zone (LZ)
 - Synchronous
 - 3 replicas
 - Small storage
- Primary to XLOG
 - Asynchronous
- Pending Area to LogBroker
 - Only after in LZ can logs progress to replicas and archive
- Destaging
 - Written to XStore
 - Written to XLOG local cache
 - Removal from LZ
- Replicas + Pager Servers from LogBroker
 - Pulled from LogBroker following memory hierarchy

Figure 3: XLOG Service

Page Servers (Storage Tier)

- Stateless
- New log records (from XLOG) applied to a partition of the database
- All data stored in RBPEX cache
- Dense cache organization
 - Stride-preserving cache layout
 - Avoids read amplification
- Can asynchronously seed a new Page Server

XStore (Persistence Tier)

- Durability
 - Replicated to 6 nodes across 3 AZs
- Snapshots
 - Full copy sent per week
 - Daily delta
 - Log backup per 5 minutes
- Supports Backup and Recovery
 - Point-in-time restore (requires snapshot and small-ish delta log)

Performance - Throughput

- 5% less CPU utilization vs HADR
 - On CDB default mix
 - More time in los
- In Update-heavy CDB
 - Log becomes bottleneck
 - Still higher as backups to XStore are handled downstream

	CPU %	Write TPS	Read TPS	Total TPS
HADR	99.1	347	1055	1402
Socrates	96.4	330	1005	1335

Table 2: CDB Throughput: HADR vs. Socrates (1TB)

	SF	Log MB/s	CPU %
HADR	30000	56.9	46.2
Socrates	30000	89.8	73.2

Table 5: CDB Log Throughput: HADR vs. Socrates

Performance - Caching

- HADR 100% hit-rate, but limits database size
- Still large cache hit rate despite
 - Cache only 15%, 1% database size

Data	Scale	Memory	RBPEX	Local cache
Size	Factor	Size	Size	hit %
1TB	20000	56GB	168GB	52

 Table 3: Socrates Cache Hit Rate (CDB)

Data Size	Customers	Memory Size	RBPEX Size	Local cache hit %
30TB	3.1M	88GB	320GB	32

Table 4: Socrates Cache Hit Rate (TPC-E)

Questions?