CORNUS: ATOMIC COMMIT FOR A
CLOUD DBMS WITH
STORAGE DISAGGREGATION

- Sumedha Joshirao

WHY CLOUD DATABASES?

Elasticity

High availability

Cost Competitiveness

TWO PHASE COMMIT
PROTOCOL

@eS @e @e

. Prepare request : :

Prepare Phase Begin -

[log] VOTE-YES : | [log] VOTE-YES

Commit Phase Begin A vote yes @ compute
back t [log] COMMIT sormae
R < dCK 10 user . : commit § =
p P I llog] COMMIT : l [log] COMMIT
* Coordinator log — o il
delay: Coordinator C
must durably log the
decision before reply (a) 2PC with no failure.

. /

TWO PHASE COMMIT
PROTOCOL

a

Be (- }S @e
. _Prepare request 2

Prepare Phase Begin -

[log] VOTE-YES : | [log] VOTE-YES

Commit Phase Begin I"F": . vote yes g compute

¢ : i § .
9 : E s i S storage
: timeout ! : Eﬂ :

—» .
; t " . t_] : Block until
imeout | i ——— : Coordinator

. :g_’;
< recovers!

(b) 2PC with coordinator failure (cooperative termination protocol).

ISSUES WITH 2PC PROTOCOL

Latency Issue:

e Average latency of one network round-trip and two logging
operations

Blocking

e Decision postponed till coordinator is restored

ISSUES WITH EXISTING SOLUTIONS THAT TRY
TO SOLVE THESE PROBLEMS

Targeted shared- Nl str.ong
) Need to assumptions
nothing :
: Customize storage about the
architecture
workload
Y, Y, Y,
May not be Mitigate blocking
practical for by adding an extra
disintegrated phase -> increase

storage latency

SOLUTION: CORNUS

Non-blocking

Low-latency 2PC variant

Only new storage layer function needed is LogOnce()

e Implemented using compare and swap

ILLUSTRATION OF CORNUS

ot
(]S (- IS Be

. - Prepare request : :

[log] VOTE-YES [Iog] VOTE-YES

Prepare Phase Begin = -

back to user
< _ = commit

Commit Phase Begin 5 g
[Iog] COMMIT [Iog] COMMIT

CORNUS APIs

 Remote Procedural Calls (RPC) — communication
between participants

A. Log(txn,type): appends log record of certain type to
the end of txn’s log

B. LogOnce(txn,type): guarantees that transaction’s
state is written at the most once

ALGORITHM

1 Function Participant:StartCornus(txn) 1 Function Coordinator:StartCornus(txn) 26 Function TerminationProtocol(txn)

, : - i 2 for p in txn.participants do 27 for every paticipant p other than self do

12 | wait for VOTE-REQ from coordinator P pariicipa ooy .
. JJocal log |_ send VOTE-REQ to p asynchronously 28 |_ RPC jsyne::LogOnce(ABORT)

13 on timeout RPCyy,. " ::Log(ABORT) return w | wait for responses

: _— s | wait for all responses from participants “ S

14 if participant V"t":;-‘. %’;-‘ for txn then . t_p(ABO{H d pa “P ABORT 30 on receiving ABORT decision «— ABORT

15 resp ¢« RPC,y,,f " LogOnce(VOTE-YES) ’ on recefang eesion = - 3 on receiving COMMIT decision «— COMMIT

16 if resp is ABORT then ¢ on receiving all responses decision « COMMIT 32 on receiving all responses decision « COMMIT
Another participant has 10@(,‘1 ABORT fo,- it 7 on timeout decision « Terminatloanlocol(txn) 13 on timeout retry from the beginning

17 reply ABORT fo coordinator 8 | reply decision to the txn caller w | return decision

18 else 9 | for pin txn.participants do

19 reply VOTE-YES to coordinator 10 |_ send decision to p asynchronously

20 wail for decision from coordinator B

21 on timeout decision « TerminationProtocol(txn)

2 RPC:},O;:I log =Log(decision)

2 | else

8 RPCoon. 1 og (ABORT)

25 reply ABORT to coordinator

FAILURE AND RECOVERY

e Coordinator Failure:

* Case 1: FAILURE BEFORE PROTOCOL
STARTS

* Case 2: FAILURE AFTER SENDING
SOME BUT NOT ALL VOTE REQUESTS

* Case 3: FAILURE AFTER SENDING ALL
VOTE REQUESTS BUT BEFORE
SENDING DECISION

* Case 4: FAILURE AFTER SENDING
DECISION TO SOME BUT NOT AL

* Case 5: FAILURE AFTER SENDING
DECISION TO ALL PARTICIPANTS

FAILURE AND RECOVERY

* Participant Failure:

* Case 1: FAILS BEFORE RECEIVING VOTE
REQUEST

* Case 2: FAILURE BEFORE LOGGING VOTE
BUT AFTER RECEIVING VOTE REQUEST

* Case 3: FAILURE AFTER LOGGING THE
VOTE, BEFORE REPLYING TO
COORDINATOR

* Case 4: FAILURE AFTER SENDING VOTE

EXAMPLE

(o

J— — —

(=) (=) (=)
= = —
R R ——

: Prepare request : :
[log] VOTE-YES § | [log] VOTE-YES

Prepare Phase Begin

Commit Phase Bagin : : & vote yes § B comouie
* fail s 3 . s 3 @' siorage
gl j : fimeout | ¢ %
Y fimeout .l_:__ - '__E-! -4
: 3 P M % ABORT
vote yes
[1og] COMMIT [log] COMMIT

(a) Coordinator fails before sending decision

(o) 2T
B B @

Prepare Phase Begin T3 —— Prepare request : :
P e Inog] VOTE-YES
Commit Phase Begin ‘ vote yes
ﬁﬁmewt I : i ‘[“;%??';“]
back 1D user — et .
Qe——— I iveyes i | nog) ABORT

. — abort
—3[log]ABORT
- 3 -l

(b) Participant fails before logging vote

Figure 4: Cornus under Failures — The behavior of Cornus under two failures scenarios.

EXPERIMENTAL ANALYSIS

* SETUP

* Cloud Storage Services: Microsoft Azure Blob Storage, Microsoft Azure Cache for
Redis

* Workloads:

* Yahoo! Cloud Serving Benchmark

* 10 GB data partitions -> 1 KB Tuples

* Each transaction -> 16 tuples with 50 % reads and 50% writes
* Parameter Setup

* Maximum 8 compute nodes

* Eight worker threads per node execute transaction logic

* Eight worker threads per node serve remote requests

SCALABILITY

* As nodes increase latency of both
2PC and Cornus increases linearly

* Speedup of Cornus over 2PC on
average latency slightly decreases as
the number of nodes increase

e Current version of Azure Blob
cannot benefit from Cornus for
applications that want separate
access control between data and
transaction states

—
wn

)

(ms

w

Cornus avg o 2PC avq

o

Distributed Txn Latency
—
o

(a) Latency (Redis) (b) Latency Breakdown (Redis)
=
& Cornus avg —+—2PC avg - = Cernus |lert) 3 2PC (rght)
f@i 150 Carnus §9% -e--2PC 99'7\2.. z] execution
- il T a0 prepare
X T 100 SR
= E 5 E
Q > —
5 50 - o & 20
a 1 9x Y L S Ll BB
I — T -
iz 0 2 o
o 2 4 B !
Number of Nodes Number of Nodes
(c) Latency (Azure Blob) (d) Latency Breakdown (Azure Blob)
=
E 200 Cornus avg ——2PC avg =] Ceornus [left) B33 2PC (right]
Su Carnus 89% -«-2PC99% | 2 ,of o 0 hion
—CJ 150 T prepare
% . R~ Bl commit
= E 100 €7 | mm abo
2= i @ =20
- . >
3 50 ozl €
= ".“L = 00x vc.B‘ — — o o
[-
2 0 5 0
- 2 1 b E 2 4

Cornus 99% --2PC 99%
i — —

-
17 1 14 14
ey ———— ———
2 a 6 8

Number of Nodes

Number of Nodes

(e) Latency

(Azure Blob - Separate ACLs)

c 8 =] Cornus |left) =] 2PC (right)
2 [execution B commit
T 61 EZAprepare [abort
n_.
O wn
= E 9]
o
B 21
3
L
2 4 -] 8

Number of Nodes

Number of Nodes

(f) Latency Breakdown
(Azure Blob - Separate ACLs)

PERCENTAGE OF R-ONLY
TRANSACTIONS R) i — Si‘;i.t.;’."

8 6
;E e gga- — lllm abort
* Improvements of Cornus L e T, [%%
increases with decrease in L
percentage Of R_Only Percentage of Read-Only Txns T Typ
transa Ct|0ns -> 1.7 t|mes R (a) Latency (Redis) (b) Latency breakdown (Redis)
improvement f el Tommm oo (0 Cmetn £
T _ 60 § p p re
* Improves latency for RW 2Bl . _ .,
transactions = e |

0 20 40 60 80 100 all read-v ttsalr ad-only txns

* Spends more time in prepare Percentage of Read-Only Txns
p h ase (c) Latency (Azure Blob) (d) Latency breakdown (Azure Blob)

=1 Cornus (eft) =1 2PC [rgnt)

-
o oo1o0f <
c Cornus avyg 2
2 Carnus 99% al oz = execution
LT - 7;(_‘";:5;) y T prepare
e 2 10° *-2PC 99% ¢ = _ 401 == commit
3 14 E 0 [N abort
© . 120 = E
%’7’; 10° 'l:ht ====2 l.§l> 1 s : 201
2 - — - <
2 £ @
“ g0 5 0
8 00 D02 04 06 O0DE 10 00 05 07 09 099
Z pfian Theta Zipfian Theta

¢ P rOVi d e S | e SS i m p rove m e nt (a) Latency (YCSB, Redis) (b) Latency breakdown (YCSB, Redis)

= Cornus (eft) =3 2PC right]

under high contention as I =y
. . Eoasoo] Sk oo | B | EScommt
abort time dominates the Y I b
S E
total transaction elapsed R L v— | I
. Z 0 e . 3 Number of Warehouse(s)
tl me pmesrer e (d) Latency breakdown (TPC-C, Re-

(c) Latency (TPC-C, Redis) dis)

Figure 7: Varying workload contention

TIME TO TERMINATE TRANSACTIONS
ON FAILURE

* Always terminates transaction : 0% atency I A
in 4ms upto 8ms on Redisand 53° R
upto 20 ms on Azure Blob 572 5= o
* Tail latency of Azure Blob 5 oob—————% —
increases more than Redis as Humaer ot oses Hmoer e oo
(a) Latency (Redis) (b) Latency (Azure Blob)

number of nodes increases

* Cornus solves the long latency and
blocking problem in 2PC

CONCLUSION * Evaluations show a speedup of 1.9x
in latency

Questions?

THANK YOU!!!

