
CORNUS: ATOMIC COMMIT FOR A
CLOUD DBMS WITH
STORAGE DISAGGREGATION

- Sumedha Joshirao

WHY CLOUD DATABASES?

Elasticity

High availability

Cost Competitiveness

TWO PHASE COMMIT
PROTOCOL

• Coordinator log
delay: Coordinator
must durably log the
decision before reply

TWO PHASE COMMIT
PROTOCOL

ISSUES WITH 2PC PROTOCOL

Latency Issue:

• Average latency of one network round-trip and two logging
operations

Blocking
• Decision postponed till coordinator is restored

ISSUES WITH EXISTING SOLUTIONS THAT TRY
TO SOLVE THESE PROBLEMS

Targeted shared-
nothing

architecture

Need to
Customize storage

Make strong
assumptions

about the
workload

May not be
practical for

disintegrated
storage

Mitigate blocking
by adding an extra
phase -> increase

latency

SOLUTION: CORNUS

Non-blocking

Low-latency 2PC variant

Only new storage layer function needed is LogOnce()
• Implemented using compare and swap

ILLUSTRATION OF CORNUS

CORNUS APIs

• Remote Procedural Calls (RPC) – communication
between participants

A. Log(txn,type): appends log record of certain type to
the end of txn’s log

B. LogOnce(txn,type): guarantees that transaction’s
state is written at the most once

ALGORITHM

FAILURE AND RECOVERY

• Coordinator Failure:
• Case 1: FAILURE BEFORE PROTOCOL

STARTS
• Case 2: FAILURE AFTER SENDING

SOME BUT NOT ALL VOTE REQUESTS
• Case 3: FAILURE AFTER SENDING ALL

VOTE REQUESTS BUT BEFORE
SENDING DECISION
• Case 4: FAILURE AFTER SENDING

DECISION TO SOME BUT NOT AL
• Case 5: FAILURE AFTER SENDING

DECISION TO ALL PARTICIPANTS

FAILURE AND RECOVERY

• Participant Failure:
• Case 1: FAILS BEFORE RECEIVING VOTE

REQUEST
• Case 2: FAILURE BEFORE LOGGING VOTE

BUT AFTER RECEIVING VOTE REQUEST
• Case 3: FAILURE AFTER LOGGING THE

VOTE, BEFORE REPLYING TO
COORDINATOR
• Case 4: FAILURE AFTER SENDING VOTE

EXAMPLE

EXPERIMENTAL ANALYSIS

• SETUP
• Cloud Storage Services: Microsoft Azure Blob Storage, Microsoft Azure Cache for

Redis
• Workloads:

• Yahoo! Cloud Serving Benchmark
• 10 GB data partitions -> 1 KB Tuples
• Each transaction -> 16 tuples with 50 % reads and 50% writes

• Parameter Setup
• Maximum 8 compute nodes
• Eight worker threads per node execute transaction logic
• Eight worker threads per node serve remote requests

SCALABILITY

• As nodes increase latency of both
2PC and Cornus increases linearly
• Speedup of Cornus over 2PC on

average latency slightly decreases as
the number of nodes increase
• Current version of Azure Blob

cannot benefit from Cornus for
applications that want separate
access control between data and
transaction states

PERCENTAGE OF R-ONLY
TRANSACTIONS
• Improvements of Cornus

increases with decrease in
percentage of R-only
transactions -> 1.7 times
improvement
• Improves latency for RW

transactions
• Spends more time in prepare

phase

CONTENTION

• Provides less improvement
under high contention as
abort time dominates the
total transaction elapsed
time

TIME TO TERMINATE TRANSACTIONS
ON FAILURE

• Always terminates transaction
in 4ms upto 8ms on Redis and
upto 20 ms on Azure Blob
• Tail latency of Azure Blob

increases more than Redis as
number of nodes increases

CONCLUSION

• Cornus solves the long latency and
blocking problem in 2PC
• Evaluations show a speedup of 1.9x

in latency

Questions?

THANK YOU!!!

