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WHY CLOUD DATABASES?

Elasticity

High availability

Cost Competitiveness
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(b) 2PC with coordinator failure (cooperative termination protocol).



ISSUES WITH 2PC PROTOCOL

Latency Issue:

e Average latency of one network round-trip and two logging
operations

Blocking

e Decision postponed till coordinator is restored




ISSUES WITH EXISTING SOLUTIONS THAT TRY
TO SOLVE THESE PROBLEMS

Targeted shared- Nl str.ong
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nothing :
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May not be Mitigate blocking
practical for by adding an extra
disintegrated phase -> increase
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SOLUTION: CORNUS

Non-blocking

Low-latency 2PC variant

Only new storage layer function needed is LogOnce()

e Implemented using compare and swap
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CORNUS APIs

 Remote Procedural Calls (RPC) — communication
between participants

A. Log(txn,type): appends log record of certain type to
the end of txn’s log

B. LogOnce(txn,type): guarantees that transaction’s
state is written at the most once



ALGORITHM

1 Function Participant:StartCornus(txn) 1 Function Coordinator:StartCornus(txn) 26 Function TerminationProtocol(txn)

, : - i 2 for p in txn.participants do 27 for every paticipant p other than self do

12 | wait for VOTE-REQ from coordinator P pariicipa ooy .
. JJocal log |_ send VOTE-REQ to p asynchronously 28 |_ RPC jsyne::LogOnce(ABORT)

13 on timeout RPCyy,. " ::Log(ABORT) return w | wait for responses

: _— s | wait for all responses from participants “ S

14 if participant V"t":;-‘. %’;-‘ for txn then . t_p( ABO{H d pa “P ABORT 30 on receiving ABORT decision «— ABORT

15 resp ¢« RPC,y,,f " LogOnce(VOTE-YES) ’ on recefang eesion = - 3 on receiving COMMIT decision «— COMMIT

16 if resp is ABORT then ¢ on receiving all responses decision « COMMIT 32 on receiving all responses decision « COMMIT
# Another participant has 10@(,‘1 ABORT fo,- it 7 on timeout decision « Terminatloanlocol(txn) 13 on timeout retry from the beginning

17 reply ABORT fo coordinator 8 | reply decision to the txn caller w | return decision

18 else 9 | for pin txn.participants do

19 reply VOTE-YES to coordinator 10 |_ send decision to p asynchronously

20 wail for decision from coordinator B

21 on timeout decision « TerminationProtocol(txn)

2 RPC:},O;:I log =Log(decision)

2 | else

8 RPCoon. 1 og (ABORT)

25 reply ABORT to coordinator




FAILURE AND RECOVERY

e Coordinator Failure:

* Case 1: FAILURE BEFORE PROTOCOL
STARTS

* Case 2: FAILURE AFTER SENDING
SOME BUT NOT ALL VOTE REQUESTS

* Case 3: FAILURE AFTER SENDING ALL
VOTE REQUESTS BUT BEFORE
SENDING DECISION

* Case 4: FAILURE AFTER SENDING
DECISION TO SOME BUT NOT AL

* Case 5: FAILURE AFTER SENDING
DECISION TO ALL PARTICIPANTS




FAILURE AND RECOVERY

* Participant Failure:

* Case 1: FAILS BEFORE RECEIVING VOTE
REQUEST

* Case 2: FAILURE BEFORE LOGGING VOTE
BUT AFTER RECEIVING VOTE REQUEST

* Case 3: FAILURE AFTER LOGGING THE
VOTE, BEFORE REPLYING TO
COORDINATOR

* Case 4: FAILURE AFTER SENDING VOTE
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(b) Participant fails before logging vote

Figure 4: Cornus under Failures — The behavior of Cornus under two failures scenarios.



EXPERIMENTAL ANALYSIS

* SETUP

* Cloud Storage Services: Microsoft Azure Blob Storage, Microsoft Azure Cache for
Redis

* Workloads:

* Yahoo! Cloud Serving Benchmark

* 10 GB data partitions -> 1 KB Tuples

* Each transaction -> 16 tuples with 50 % reads and 50% writes
* Parameter Setup

* Maximum 8 compute nodes

* Eight worker threads per node execute transaction logic

* Eight worker threads per node serve remote requests



SCALABILITY

* As nodes increase latency of both
2PC and Cornus increases linearly

* Speedup of Cornus over 2PC on
average latency slightly decreases as
the number of nodes increase

e Current version of Azure Blob
cannot benefit from Cornus for
applications that want separate
access control between data and
transaction states
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Figure 7: Varying workload contention



TIME TO TERMINATE TRANSACTIONS
ON FAILURE

* Always terminates transaction : 0% atency I A
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number of nodes increases



* Cornus solves the long latency and
blocking problem in 2PC

CONCLUSION * Evaluations show a speedup of 1.9x
in latency




Questions?




THANK YOU!!!




