
Xiangyao Yu
10/2/2023

CS 839: Topics in Database Management Systems
Lecture 8: Transaction Processing-2

1



Updates
Mon 10/9. Project meetings (No lecture)

– Meeting (optional) with the instructor to discuss the course project
– Location: CS4361. Signup sheet

Wed 10/11. No Lecture 
– Attend Wisconsin DB Affiliates Workshop
– 10/12 Thu (optional) @Union South Northwoods (3rd floor). Whole-day 

workshop
– 10/13 Fri 9:00-10:30 (required) @CS 1240. Sponsor talks from Microsoft, 

Google, and Snowflake. 
– Attend and submit a review for the talks

More papers uploaded to course website 
2

https://docs.google.com/spreadsheets/d/1CTCkPdrX5fU8C_7j73zxJ54ZJGg7jgGJfDUG1fS_We0/edit?usp=sharing
https://database.cs.wisc.edu/dba23.html


Group Discussion from Lecture #7
Socrates and Aurora use a storage disaggregation architecture but 
supports only a single write node. Spanner supports multiple write 
nodes, but largely follows a shared-nothing architecture. Is it possible 
to support multiple write nodes in a storage disaggregation 
architecture? How would you design such a system? What are the 
advantage and disadvantages of your design compared to Spanner? 

Besides logging, storage, and computation, what other functions are 
good candidates for disaggregation in a transactional database? 

3



Group Discussion from Lecture #7
Multi-master design

– Client request go to any read/write node
– A lock in the landing zone for multiple writers. Need to read from the landing 

zone. 
– Need a service like Chubby to coordinate transactions with conflicts 
– Data inconsistency with multiple writers 
– Single server processing all write requests. 

Partitioned/sharded design 
– Partition the database across compute nodes
– Use 2PC to manage distributed transactions 
– Disadvantages: complexity, latency overhead, operational challenges 

2PC and Paxos solve very different problems
4



Group Discussion from Lecture #7
Other candidates for disaggregation in a transactional database

– Transaction coordination, centralized locking service 
– Concurrency control 
– Indexing 
– Data caching and coherence management 
– Data filtering and pruning
– Hardware acceleration 
– Failure recovery 

Control plane 
– Query optimization 
– Load balancer 
– Monitoring tools, auto-configuration and scheduled upgrades. 
– Security, authentication authorization 

5



Transaction Processing-2 – Q/A 
Advantages of having a NoSQL database? (most DBs adopt SQL)
Atomic writes in Cornus?
Cornus vs. Paxos Commit? 
Cornus still blocks when storage fails; how to handle such failures? 
How well could Percolator integrate with existing data systems?

6



Discussion Questions
The architecture of Cornus provides one answer to the question we 
discussed in last lecture—it supports multiple writers in a 
disaggregation architecture, by sharding data across compute nodes. 
Do you see any limitation of this architecture? Can you think of any 
optimization to mitigate such limitations? 

Can you think of one specific design aspect to improve in the 
architecture of FoundationDB? 

7


