OceanBase: A 707 Million tpmC Distributed Relational Database System

Shuaijiejie Li
Infrastructure

Layer Level
- Three Layers

Zone Level
- Zones in a Cluster
- Transaction Replication
- Cross-Region Disaster Tolerance

Node Level
- Shared-Nothing Architecture
- Table Partitioning
- Replicas and Paxos Group
- SQL Execution
- Transaction Processing
- Cluster Management
Infrastructure

Multi-Tenancy

• System Tenant
 • Container of the system table
 • Container for users with cluster management functions
 • Provides resources for maintenance and management

• Ordinary Tenant (similar to MySQL instances)
 • Can create its own users
 • All objects can be created
 • Independent information
 • Independent system variables

• Resource Isolation
 • Memory is completely isolated
 • CPUs are isolated through user-mode scheduling
 • Data structures are separated
 • Transaction-related data structures are separated
Components at the SQL layer

1. The parser performs lexical and syntactic parsing.
2. The resolver performs semantic parsing.
3. The transformer rewrites the SQL statements in equivalent but different formats based on internal rules or cost models, and then sends the equivalent statements to the optimizer.
4. The optimizer generates the best execution plan for the SQL query.
5. The code generator converts the execution plan into executable code but does not optimize the plan.
6. The executor initiates the SQL execution.
Storage Layer

LSM Tree-Based Architecture

- **SSTable**
 - Store static baseline data
 - Read-only
- **MemTable**
 - Store dynamic incremental data
 - Stored in memory
 - Consists of B-tree and hashtable
 - When reaches a certain size, minor compaction will be performed
Storage Layer

Storage Structure

- Microblock (read unit): 4KB ~ 512KB
- Macroblock (write unit): 2MB
 - basic unit of allocation and garbage collection of the storage system

Major Compaction

- If there is certain data modification (insert, update, delete) within a macroblock, the macroblock will be rewritten.
- Otherwise, the macroblock will be reused in the new baseline data without any IO cost.
- OceanBase staggers the normal service and the merge time through a round-robin compaction mechanism, thus isolating the normal user requests from the interference of the compaction operation.
Storage Layer

Replica Type

- Full replica
 - Baseline + Mutation increment + Redo log
- Data replica
 - Baseline + Redo log
 - Copies the minor compactions
 - Can be updated to a full replica
 - Can reduce both the CPU and memory cost
- Log replica
 - Redo log only
 - A member of the corresponding Paxos group
 - Can significantly reduce the storage and memory cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Log</th>
<th>MemTable</th>
<th>SSTable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full replica</td>
<td>Yes, vote</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data replica</td>
<td>Yes, vote</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Log replica</td>
<td>Yes, vote</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Partition and Paxos Group

- A table partition is the basic unit for the data distribution, load balance, and Paxos synchronization.

- One Paxos group for each partition.

Figure 4: Paxos group.
Transaction Process Layer

Timestamp Service

- Paxos leader of the timestamp Paxos group is often in the same region as Paxos leaders of the table partitions.

- Each OceanBase node retrieves the timestamp from the timestamp Paxos leader periodically.

Figure 4: Paxos group.
Paxos-based 2PC

Each participant in the two-phase commit contains multiple copies, and the copies are readily available through the Paxos protocol.

When a participant node fails, the Paxos protocol can quickly elect another replica to replace the original participant to continue providing services, and restore the state of the original participant.
Traditional 2PC vs OceanBase 2PC

Diagram showing the process of committing transactions in a database system, comparing traditional 2PC (Two-Phase Commit) with OceanBase 2PC. The diagram illustrates the flow of commit requests and prepare acknowledgments between the coordinator and participating processes (P0 and P1).
TPC-C Benchmark Test

Benchmark Configuration

- **400** remote terminal emulator (RTE) servers to emulate the total **559,440,000** users
- **400** web servers
- The OceanBase cluster in this benchmark test consists of **1,557** servers in a shared-nothing architecture

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp-up Duration</td>
<td>3,300 seconds</td>
</tr>
<tr>
<td>Ramp-down Duration</td>
<td>150 seconds</td>
</tr>
<tr>
<td>Measurement Interval</td>
<td>28,800 seconds</td>
</tr>
<tr>
<td>Database Scale</td>
<td>55,944,000 warehouses</td>
</tr>
<tr>
<td>Total terminals</td>
<td>559,440,000</td>
</tr>
<tr>
<td>Terminals/Driver</td>
<td>55,944</td>
</tr>
<tr>
<td>Number of RTEs nodes/instances</td>
<td>10,000</td>
</tr>
</tbody>
</table>
TPC-C Benchmark Test

Transaction per minute, Class C (tpmC)

- tpmC rises linearly as the number of data nodes increases.
- OceanBase is highly scalable.
- OceanBase has an online transaction processing performance of 707 million tpmC in 2020
- The cumulative tpmC variations during these tests are quite small

![Graph showing tpmC variations](image)

Figure 8: tpmC.
TPC-C Benchmark Test

Response Time (RT)

Figure 10: New-Order Response Time (RT).

Figure 11: Payment Response Time (RT).

Figure 12: Order-Status Response Time (RT).

Figure 13: Delivery Response Time (RT).

Figure 14: Stock-Level Response Time (RT).
Questions?