PolarDB-X: An Elastic Distributed Relational Database For Cloud-native Applications

YunTzu Chen(ychen2334)
Challenges:

• 1. Performance
• 2. Scalability
• 3. One Size Doesnot Fit All
Solution: PolarDB-X

- **Cross-DC Transactions.**
 - uses HLC-SI (Hybrid Logical Clocks) to achieve data consistency.

- **Elasticity**
 - separation of computation and storage architecture

- **HTAP** *(Hybrid transactional/analytical processing)*
 - optimizer can identify whether a query belongs to TP or AP workload
System Overview

- **Architecture**
 - GMS (Global Meta Service)
 - Load Balancer
 - Computation Node
 - Database Node (PolarDB)
 - Storage Node (PolarFS)

Fig. 2. System architecture of *PolarDB-X*
Transactions

- **HLC-SI** (Hybrid Logical Clocks with Snapshot Isolation)
 - preserved : 2 ; pt : 46 ; lc : 16g
 - the logic clock part is not incremented in `ClockUpdate` and `ClockNow`
 - minimize the calls to `ClockUpdate`
 - still preserves the properties of snapshot isolation

Fig. 4. HLC-SI and two-phase commit
Elasticity

- **Multi-Tenancy**
 - Allows use of multiple RW nodes for scalable writes

- **Design of PolarDB-MT**
 - Share a global data dictionary and the master RW node manages the data dictionary

- **Scale PolarDB-X cluster**

Fig. 5. PolarDB Multi-Tenant Architecture
HTAP
HYBRID TRANSACTIONAL/ANALYTICAL PROCESSING

• HTAP Optimizer
 • Request classification and routing
 • equipped with query classification
 • Advantages
 • OLTP workloads will not be delayed from log replication
 • OLAP workloads can obtain good scalability

• Resource isolation
 • CPU resource
 • TP Group <----- TP Core Pool
 • AP Group (strictly controlled by cgroups) <----- AP Core Pool, and Slow Query AP Core Pool

Fig. 6. *PolarDB-X* HTAP framework
Evaluation

• Transactions
 • average transaction latency:
 • TSO-SI > HLC-SI
 • peak write throughput:
 • TSO-SI < HLC-SI

(a) Sysbench Write-Only Transactions
(b) Sysbench Read-Only Transactions

Fig. 7. Comparison of TSO-SI and HLC-SI with Sysbench when deployed across DC
Evaluation

• Elasticity
 • (a) three scaling operations are completed in 4.2, 4.5 and 4.6 seconds
 • (b) it takes 489, 527 and 660 seconds to scale the cluster using data transfer

(a) Scale Using Fast Tenant Migration Mechanism Of PolarDB-MT

(b) Scale By Copying Data Between Source And Target

Fig. 8. Comparison of Scaling PolarDB-X using different approaches
Evaluation

• HTAP - Resource Isolation and Scalable RO

1. the resource isolation switch of CN is turned off, TPC-H is sent to the RW node
2. the resource isolation switch of CN is turned on, TPC-H is sent to the RW node
3. last four configurations, use one to four dedicated RO nodes respectively, TPC-H is sent to the RO node

Fig. 9. TPC-C and TPC-H Performance when running mixed workloads with different resource isolation and available resources configurations