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ABSTRACT
Database systems running on a cluster of machines, i.e.
rack-scale databases, are a common architecture for many
large databases and data appliances. As the data movement
across machines is often a significant bottleneck, these sys-
tems typically use a low-latency, high-throughput network
such as InfiniBand. To achieve the necessary performance,
parallel join algorithms must take advantage of the primi-
tives provided by the network to speed up data transfer.

In this paper we focus on implementing parallel in-memory
joins using Remote Direct Memory Access (RDMA), a com-
munication mechanism to transfer data directly into the
memory of a remote machine. The results of this paper
are, to our knowledge, the first detailed analysis of parallel
hash joins using RDMA. To capture their behavior indepen-
dently of the network characteristics, we develop an ana-
lytical model and test our implementation on two different
types of networks. The experimental results show that the
model is accurate and the resulting distributed join exhibits
good performance.

1. INTRODUCTION
The ability to efficiently process complex queries over large

datasets is a basic requirement in real-time analytics. Given
the increase of data volume, a platform of choice for data
processing are rack-scale clusters composed of several multi-
core machines connected by a high-throughput, low-latency
network such as InfiniBand [17]. The adoption of rack-scale
architectures has been further accelerated through the in-
troduction of several data appliances such as Oracle Exa-
data [26], IBM Netezza [18] and SAP HANA [29], which
follow a similar architecture.

In these systems, efficient inter-machine data movement
is critical, forcing join algorithms to be aware of machine
boundaries and to employ communication patterns suited
for the underlying network technology. A natural question
to ask is how join algorithms can be optimized to operate in
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such environments, how well they can scale with the number
of machines, and which bottlenecks arise when scaling out
in these architectures. However, little work is available on
adapting join algorithms to make efficient use of modern
high-speed networks.

Several low-latency networks provide Remote Direct Mem-
ory Access (RDMA) as a light-weight communication mech-
anism to transfer data. RDMA is essential for high perfor-
mance applications because the data is immediately written
or read by the network card, thus eliminating the need to
copy the data across intermediate buffers inside the operat-
ing system (kernel bypass). This, in turn, reduces the overall
CPU costs of large data transfers. However, these perfor-
mance advantages can only be leveraged through thoughtful
design of the distributed algorithm, in particular through
careful management of the RDMA-enabled buffers used for
sending and receiving data and through interleaving compu-
tation and network communication [11].

In this paper we analyze the behaviour of a radix hash join
using RDMA. Building upon recent work on main-memory
multi-core join algorithms [19, 2, 6, 4], we analyze how a
hash join needs to be adapted in order to run on a rack-
scale database cluster. In the description of the algorithm
we place special emphasis on the registration, de-registration
and management of RDMA-enabled buffers as these are crit-
ical components. To generalize our findings, we develop a
theoretical model allowing us to predict the performance of
the algorithms based on the system configuration and input
data size. Last but not least, we evaluate our prototype
implementation on two database clusters: a ten node clus-
ter composed of multi-core machines connected by a Quad
Data Rate (QDR) InfiniBand network and a four node clus-
ter connected by a Fourteen Data Rate (FDR) InfiniBand
network. The experimental results validate the accuracy of
the analytical model and provide insights on the importance
of interleaving computation and communication, the role of
the network protocol, the effects of skew, and of different
relation and tuple sizes.

To the best of our knowledge, this is the first detailed
description, analytical model, and experimental evaluation
of a state-of-the-art distributed join operator using RDMA.

The paper is structured as follows: Sections 2 and 3 present
related work and discuss the necessary background on the
radix hash join and InfiniBand networks. Section 4 describes
the RDMA-based hash join. Section 5 provides a detailed
analytical model. In Section 6 we evaluate the proposed al-
gorithm experimentally. We discuss our findings in Section 7
and present our conclusions in Section 8.
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2. RELATED WORK

2.1 Parallel and Distributed Joins
In the Gamma database machine [7, 8] tuples are routed

to processing nodes using hash-based split tables. Identical
split tables are applied to both input relations, thus sending
matching tuples to the same processing node. This method
reduces a join of two large relations to a set of separate joins
which can be executed in parallel.

Schneider et al. [30] compared hash and sort-merge joins
on the Gamma database machine. They conclude that with
a sufficient amount of main-memory, hash-based join algo-
rithms have superior performance to sort-merge joins.

Most modern hash join algorithms build upon the idea
of the Grace hash join [20], where both input relations are
first scanned and partitioned according to the join attribute
before a hash table is created for each partition of the inner
relation and probed with the tuples from the corresponding
partition of the outer relation.

The findings of Shatdal et al. [31] and Manegold et al. [23]
showed that a Grace hash join which partitions the data such
that the resulting hash tables fit into the processor cache can
deliver higher performance because it reduces the number
of cache misses while probing the hash tables. To avoid
excessive Translation Lookaside Buffer (TLB) misses during
the partitioning phase caused by random memory access to
a large number of partitions, Manegold et al. [23] proposed
a partitioning strategy based on radix-clustering. When the
amount of partitions exceeds the number of TLB entries or
cache lines, the partitioning is performed in multiple passes.

2.2 Join Algorithms on Modern Hardware
Kim et al. [19] have compared hash and sort-merge joins

to determine which type of algorithm is better suited to run
on modern multi-core machines. In addition to their ex-
periments, the authors also developed a model in order to
predict the performance of the algorithms on future hard-
ware. Although modern hardware currently favours hash
join algorithms, they estimated that future hardware with
wider single instruction over multiple data (SIMD) instruc-
tions would significantly speed up sort-merge joins.

Blanas et al. [6] reexamined several hash join variants,
namely the no partitioning join, the shared partitioning join,
the independent partitioning join and the radix join. The
authors argue that the no partitioning join, which skips the
partitioning stage, can still outperform other algorithms be-
cause modern machines are very good in hiding latencies
caused by cache and TLB misses. Their results indicate
that the additional cost of partitioning can be higher than
the benefit of having a reduced number of cache and TLB
misses, thus favouring the no partitioning join.

Albutiu et al. [2] looked at parallel sort-merge join algo-
rithms. The authors report that their implementation of the
massively parallel sort-merge (MPSM) join is significantly
faster than hash joins, even without SIMD instructions.

Balkesen et al. [4] implemented efficient versions of two
hash join algorithms – the no partitioning join and the radix
join – in order to compare their implementations with the
ones from [6]. They show that a carefully tuned hardware-
conscious radix join algorithm outperforms a no partitioning
join. Furthermore, the authors argue that the number of
hardware-dependent parameters is low enough, such that
hardware-conscious join algorithms are as portable as their

hardware-oblivious counterparts. In [3], the authors further
show that the radix hash join is still superior to sort-merge
approaches for current SIMD/AVX sizes.

Lang et al. [21] show the importance of NUMA-awareness
for hash join algorithms on multi-cores. Their implementa-
tion of a NUMA-aware join claims an improvement over [4]
by a factor of more than two.

2.3 Distributed Join Algorithms
Goncalves et al. [16, 15] and Frey et al. [12, 13] have de-

veloped a join algorithm, called cyclo-join, suited for ring
network topology networks. In the setup phase of the cyclo-
join, both relations are fragmented and distributed over all
n machines. During the execution, data belonging to one re-
lation is kept stationary while the second relation are passed
on from one machine to the next. Similar to our approach,
the idea is that the data is too large to fit in one machine, but
can fit in the distributed memory of the machines connected
on the ring [11]. The cyclo-join uses RDMA as a transport
mechanism. The cyclo-join differs from our work in that
the cyclo-join is an experimental system that explores how
to use the network as a form of storage. The hot set data
is kept rotating in the ring and several mechanism are pro-
posed to identify which data should be put on the storage
ring [16]. In DaCyDB the authors use RDMA to connect
several instances of MonetDB in a ring architecture [15].

Polychroniou at al. [27] propose three variants of a dis-
tributed join algorithm which minimize the communication
costs. The authors tested their implementation of the pro-
posed join algorithms on a Gigabit Ethernet network. They
show that the 3-phase and 4-phase track join algorithms can
significantly reduce the overall network traffic.

Rödiger et al. [28] propose locality-sensitive data shuffling,
a set of techniques, including optimal assignment of par-
titions, network communication scheduling, adaptive radix
partitioning, and selective broadcast indented to reduce the
amount of communication of distributed operators.

Recent work around distributed joins [1, 25] in map-reduce
environments focuses on carefully mapping the join operator
to the relevant data in order to minimizing network traffic.

These contributions show that the network is the main
bottleneck for join processing.

3. BACKGROUND

3.1 Radix Hash Join
The radix hash join proposed by Manegold et al. [23] is a

hardware-conscious main-memory hash join. The algorithm
operates in two stages. First, both input relations R and S
are divided into disjoint partitions according to the join at-
tributes. The goal of the partitioning stage is to ensure that
the resulting partitions fit into the private cache of CPU
cores. Second, a hash table is built over each partition of
the inner relation and is probed using the data of the corre-
sponding partition of the outer relation. Having partitions
and hash tables which fit into the processor cache has a ma-
jor impact on performance compared to accessing large hash
tables, which results in a higher cache miss rate [31].

The partitioning algorithm of the radix hash join deter-
mines the position of a tuple based on the key’s b lower bits,
thus creating 2b partitions in total. The creation of the parti-
tions is performed in p passes (multi-pass partitioning), each
pass i ∈ {1 . . . p} operating on a different non-overlapping

1464



Figure 1: Example of an RDMA transfer from one
machine to another. Control and data path are sepa-
rated. The operating system is completely bypassed.

subset bi of the b bits such that the number of simultaneously
created partitions 2bi does not exceed the number of TLB
entries or cache lines. The multi-pass partitioning scheme
employed by the radix hash join avoids excessive TLB misses
and cache trashing, and therefore allows to generate a large
number of partitions without compromising performance.

The radix join can be parallelized by dividing both in-
put relations into non-overlapping parts and assigning the
individual parts to different worker threads. Each thread
partitions the data to which it was assigned and afterwards
adds the result to a task queue. Finally, each task is con-
sumed during the build-probe phase [4, 6].

3.2 RDMA and InfiniBand

3.2.1 Benefits and Challenges of RDMA
Remote Direct Memory Access (RDMA) is a mechanism

allowing direct access and placement of data in the main-
memory of a remote machine. RDMA is offered by Infini-
Band [17] and other recent hardware implementations, for
example, RDMA over Ethernet (iWARP and RoCE).

For a memory region to be accessible by the network card,
it needs to be registered. During the memory registration
process, the memory is pinned to avoid those pages being
swapped out while being accessed by the network card. A
registered part of memory is referred to as a memory region
(MR). As shown by Frey et al. [11], the memory region reg-
istration cost increase with the number of registered pages.
To reduce the overall registration cost and to avoid pinning
large parts of main-memory, efficient buffer management is
crucial for high performance. An algorithm should reuse ex-
isting RDMA-enabled buffers as often as possible and avoid
registering new memory regions on the fly.

Main-memory can directly be accessed by an InfiniBand
Host Channel Adapter (HCA) or an RDMA-enabled net-
work interface card (RNIC). This mechanism allows to by-
pass the network stack, avoids context switches and makes
large data transfers more efficient as it eliminates the need
to copy the data across intermediate buffers inside the op-
erating system. A message which has not been copied into
any temporary buffer during its transmission is called a zero-
copy message (see Figure 1).

RDMA separates control and data path. Requests to read
or write remote memory are added to a queue and exe-
cuted asynchronously by the network card. The data trans-
fer therefore does not involve any CPU operation, meaning
that the processor remains available for processing while a
network operation is taking place. In order to prevent pro-
cessor cores from becoming idle, an algorithm needs to be
able to interleave computation and communication.

Dragojevic et al. [9] have developed FaRM, a distributed
computing platform that makes use of RDMA. FaRM com-

bines the memory of multiple machines into one shared ad-
dress space. In their evaluation on a 40 Gbit/s RoCE net-
work, the authors show that accessing remote memory is
slower than local memory accesses, even when using RDMA.
This is an important observation as it highlights the impor-
tance of hiding the network latency by interleaving compu-
tation and communication when using RDMA.

3.2.2 Programming Abstractions
RDMA provides one-sided and two-sided operations. When

using one-sided read and write operations (memory seman-
tics), data is directly written into or read from a speci-
fied RDMA-enabled buffer without any interaction from the
remote host. Two-sided calls on the other hand imple-
ment send/receive message-passing operations (channel se-
mantics). The receiver registers memory regions into which
incoming messages will be written and will receive a notifica-
tion when a write has occurred. No significant performance
difference between one-sided and two-sided operations has
been observed in previous work [10].

Multiple message-passing systems, like MPICH2 [22] have
been implemented over InfiniBand. Furthermore, Infini-
Band also provides upper-layer protocol support such as IP-
over-InfiniBand (IPoIB), which provides a transparent inter-
face to any IP-based application.

4. ALGORITHMIC DETAILS
In this section we present a distributed variant of the radix

hash join. In a distributed system with many multi-core
and multi-processor machines, the ability to generate a suf-
ficiently large number of partitions without being limited by
the TLB or cache capacity is important in order to be able to
assign partitions to every available core and preventing cores
from becoming idle. Because there is no data dependency
between the individual partitions, these can be processed
with a high degree of parallelism. The radix hash join with
its multi-pass partitioning strategy prevents excessive TLB
and cache misses while partitioning the data into a large
number of partitions, thus making it a good candidate to be
transformed into a distributed algorithm. Furthermore, the
authors of [4, 3] clearly show that a carefully tuned radix
hash join is superior to other join algorithms on multi-core
machines.

For the distributed variant of the radix hash join, we pro-
pose a couple of modifications to the partitioning, build and
probe phases of existing parallel hash join solutions.

4.1 Histogram Computation Phase
As a first step, all threads compute a histogram over the

input data. By assigning the threads to sections of the input
relations of equal size, we can ensure an even load distribu-
tion among the worker threads.

Next, all the threads within the same machine exchange
their histograms and combine them into one machine-level
histogram providing an overview of the data residing on
a particular machine. Computing the machine-level his-
tograms is identical to the histogram computation of the
join algorithm described in [4].

The machine-level histograms are then exchanged over the
network. They can either be sent to a predesignated coordi-
nator or distributed among all the nodes. The machine-level
histograms are in turn combined into a global histogram
providing a global overview of the partition sizes and the
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Figure 2: Two threads partitioning the input data
into a set of local and RDMA-enabled buffers.

necessary size of the buffers which need to be allocated to
store the data received over the network.

From the machine-level and global histograms the join
algorithm can compute a machine-partition assignment for
every node in the cluster. This assignment can be dynamic
or static. The algorithm computing the machine-partition
assignment is independent of the rest of the join algorithm.
For the experiments we implemented a static round-robin
assignment and, for skewed workloads, a dynamic algorithm
which first sorts the partitions based on their element count
and then assigns them evenly over all machines.

4.2 Partitioning Phase
The purpose of the partitioning phase of the radix hash

join is to ensure that the partitions and hash tables fit into
the processor cache. For the distributed radix join, we ad-
ditionally want to ensure maximum resource utilization, in
particular we need to be able to assign at least one partition
to each processor core. Therefore, the number of partitions
needs to be at least equal to the total number of CPU cores
in order to prevent cores from becoming idle.

In the multi-pass partitioning phase of the algorithm we
distinguish between two different types of partitioning passes:
(i) a network partitioning pass which interleaves the compu-
tation of the partitions with the network transfer and (ii) lo-
cal partitioning passes which partition the data locally in or-
der to ensure that the partitions fit into the processor cache.
The latter does not involve any network transfer.

4.2.1 Network Partitioning Pass
To efficiently use the asynchronous nature of RDMA, the

data needs be transmitted over the network in parallel with
the computation. When designing the algorithm, we need to
avoid having a separate network transmission phase during
which the processor cores are idle. To achieve these goals,
we introduce the concept of a network-partitioning pass in
which the data is partitioned and distributed in parallel.

Crucial for high performance processing is the manage-
ment of the partitioning buffers, in particular the ability
to reuse existing RDMA-enabled buffers. For each parti-
tion which will be processed locally, a thread receives a lo-

cal buffer for writing the output. Based on the histogram
computation, the required size of the local buffers can be
determined such that local buffers do not overflow. Remote
partitions need to be transmitted over the network. For pro-
cessing remote partitions, a thread receives multiple fixed-
sized RDMA-enabled buffers. Data belonging to a remote
partition is partitioned directly into these buffers. When a
remote buffer is full, it will be transmitted over the network
to the target machine. In order to be able to continue pro-
cessing while a network operation is taking place, at least
two RDMA-enabled buffers are assigned to each thread for
a given partition. The buffers assigned to one partition can
be used in turn and reused once the preceding network op-
eration completes. To hide the buffer registration costs, the
RDMA-enabled buffers are drawn from a pool containing
preallocated and preregistered buffers. All buffers, both lo-
cal buffers and RDMA-enabled buffers, are private to each
thread, such that no synchronization is required while par-
titioning the input relations (see Figure 2).

4.2.2 Receiving Incoming Data
Depending on the available amount of main memory on

the receiving machine, we can chose between one-sided and
two-sided operations. If the amount of main memory is large
enough to hold all the data, one-sided operations can be
used. In such a setup, the receiver needs to allocate one
large RDMA-enabled buffer for each partition and each re-
mote machine. The necessary size of these buffers is known
from the histogram phase. No interaction from the receiving
machine is required during the partitioning as the incoming
data is directly written into the destination buffers by the
network card. On the other hand, if only a small amount
of memory is at our disposal, we want to avoid that large
parts of main-memory are registered for RDMA transfer.
Otherwise pages cannot be swapped out, which would sig-
nificantly impact the performance of other applications and
concurrent queries. In such a case, we use two-sided RDMA
operations and only register a predefined number of small
RDMA-enabled buffers in order to receive incoming data.
In addition to these receive buffers, we allocate larger non-
RDMA buffers for each partition into which the data from
the receive buffers will be copied. The receive buffers can
be reused once the copy operation terminated successfully.

At the end of the network partitioning pass, the parti-
tions are assembled for further processing by combining the
buffers containing the local data with the buffers holding the
data received over the network.

4.2.3 Local Partitioning Passes
The goal of the partitioning phase is to speed up the build-

probe phase by creating cache-sized partitions. To ensure
that the partitions fit into the processor cache, subsequent
partitioning passes not involving network operations might
be required depending on the data size.

4.3 Build & Probe Phases
In the build-probe phase a hash table is built over the data

of each partition of the inner relation. Data from the corre-
sponding partition of the outer relation is used to probe the
hash table. Because there is no data dependency between
two partitions, they can be processed in parallel.

The result containing the matching tuples can either be
output to a local buffer or written to RDMA-enabled buffers,
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Symbol Description

|R| |S| Size of the inner/outer relation [MB]

NM Number of machines

NC/M Number of cores per machine

psPart. Partitioning speed of a thread [MB/s]

netmax Network bandwidth per host [MB/s]

hbThread Hash table build speed of a thread [MB/s]

hpThread Hash table probe speed of a thread [MB/s]

Table 1: List of basic symbols.

depending on the location where the result will be further
processed. Similar to the partitioning phase, we transmit an
RDMA-enabled buffer over the network once it is full. To
be able to continue processing, each thread receives multi-
ple output buffer for transmitting data. The buffers can be
reused when the proceeding network operation completed.

When operating on a skewed data set, the computation
of the build-probe phase of a partition can be shared among
multiple threads. If the partition of the outer relation con-
tains more tuples than a predefined threshold, it is split into
distinct ranges. Multiple threads can then be used to probe
the hash table, each operating on its range of the outer rela-
tion. No synchronization between the threads is needed as
the accesses to the common hash table are read-only. Skew
on the inner relation can cause that the hash tables do not
fit into the processor cache. This can be compensated by
splitting the large hash table into a set of smaller hash ta-
bles. In this case the tuples of the outer relation need to
be used to probe multiple tables, however, this probing can
also be executed in parallel.

5. ANALYTICAL MODEL
In this section, we present a model describing the indi-

vidual phases of the distributed hash join algorithm. In
addition we want to find (i) an optimal number of proces-
sor cores per machine as well as (ii) an optimal number of
machines for a given input size.

Table 1 provides an overview of the symbols used in the
analytical model.

5.1 Partitioning Phase
The partitioning phase is composed of multiple partition-

ing passes which can be of two types: (i) network parti-
tioning passes involving the partitioning and transfer of the
data over the network and (ii) subsequent local partitioning
passes which ensure that the partitions fit into the processor
caches but do not involving any network operations.

In this model, we assume that every thread runs on the
same identical processor core and that each individual thread
can read a tuple from the input, determine its partition and
write the tuple to the corresponding buffer at a rate psPart..

5.1.1 Network Partitioning Pass
The partitioning speed psThread at which a thread can

partition its input data is composed of two parts: (i) the
speed at which tuples are written to the respective buffers
psPart. and (ii) the speed at which tuples belonging to remote
partitions can be transmitted over the network psNetwork.

The total network speed netMax is shared equally among
all partitioning threads on the same machine. When using
two-sided RDMA calls, one thread is responsible for process-
ing incoming partitions and has the full incoming bandwidth

at its disposal, while the remaining NC/M − 1 partitioning
threads share the outgoing network bandwidth.

psNetwork =
netMax

NC/M − 1
(1)

Assuming uniform distribution of the data over all NM

machines, we can estimate that (|R|+|S|)· 1
NM

tuples belong

to local partitions, the rest is send to remote machines.
At this point, the system can either be limited by the

partitioning speed of the threads (CPU-bound) or by the
available network bandwidth on each host (network-bound).
A system is network-bound if the tuples belonging to remote
partitions are output at a faster rate than the network is able
to transmit.

NM − 1

NM
· psPart. > psNetwork (2)

In systems which are CPU-bound, the overall processing
rate is fully determined by the partitioning speed of each
thread psPart.. The entire system is composed of NM ma-
chines, each of which contains NC/M processor cores. Equa-
tion 3 gives us the global partitioning speed of the network
partitioning pass ps1 for CPU-bound systems.

ps1 = NM ·
(
NC/M − 1

)
· psPart. (3)

On the other hand, if the system is network-bound, mean-
ing the partitioning speed exceeds the maximum network
processing speed, threads have to wait for network oper-
ations to complete before they are able to reuse RDMA-
enabled buffers. The observed partitioning speed of each
thread is a combination of psPart. and psNetwork.

psThread =
1

1
NM

psPart.
+

NM−1
NM

psNetwork

=
NM · psPart. · psNetwork

(NM − 1) · psPart. + psNetwork

(4)

From Equations 1 and 4 we can determine the overall
partitioning speed of network-bound systems.

ps1 = NM ·
(
NC/M − 1

)
· psThread

=
NM

2 · (NC/M − 1) · psPart. · netMax

(NC/M − 1) · (NM − 1) · psPart. + netMax

(5)

5.1.2 Local Partitioning Passes
Local partitioning passes do not involve any network trans-

fer and all threads in the system partition the data at their
maximum partitioning rate psPart.. Therefore, the global
processing speed of this phase (ps2) increases with the total
number of available CPU cores.

ps2 = NM ·NC/M · psPart.
(6)

5.1.3 Combining Partitioning Passes
The partitioning phase is composed of p passes, one of

them involving the transfer of the data over the network,
the other p − 1 passes operate on local data only. We can
derive an expression for the time required to partition both
input relations of size |R| and |S|.

tpartitioning = (|R|+ |S|) ·
(

1

ps1
+

(p− 1)

ps2

)
(7)
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5.2 Build & Probe Phases
In the build phase, each thread is creating a cache-sized

hash table over the inner relation of size |R| at an average
build speed hbThread. Building hash tables over the parti-
tions can be done in parallel as there is no data dependency
between partitions.

hb = NM ·NC/M · hbThread (8)

tbuild =
|R|
hb

(9)

During the probe phase, tuples from the outer relation of
size |S| are used to probe the hash tables at a rate hpThread.
Partitions can be processed in parallel during the probe
phase. The global speed at which hash tables can be probed
increases with the number of available cores.

hp = NM ·NC/M · hpThread (10)

tprobe =
|S|
hp

(11)

5.3 Optimal Number of Cores and Machines
Maximum utilization of the available resources is achieved

in the network partitioning phase if the processing speed at
which each thread can partition the data is equal to the max-
imum thread partitioning speed (maximum CPU utilization)
and the data belonging to remote partitions is transmit-
ted over the network at the maximum network transmission
speed per host (maximum network utilization).

NM − 1

NM
· psPart. =

netMax

NC/M − 1

⇔
(
NC/M − 1

)
=

NM

NM − 1
· netMax

psPart.

(12)

From the above we can determine that the optimal num-
ber of processor cores is such that it can exactly saturate
the available network bandwidth. The optimal number of
cores should therefore be equal to the ratio of the network
bandwidth and the partitioning rate of a thread.

In the network partitioning pass, data is partitioned into
NP1 partitions. Within a machine each of the NC/M − 1
partitioning threads has NP1 partitioning buffers. These
buffers can either be local buffers or RDMA-enabled buffers.
RDMA-enabled buffers are of a fixed predetermined size
SRDMA-Buffer. If the smaller inner relation R is spread across
too many machines, these RDMA-enabled buffers will no
longer be fully filled before being transmitted over the net-
work, thus resulting in an inefficient usage of the network.

|R|
NM ·NP1 ·

(
NC/M − 1

)
· SRDMA-Buffer

≥ 1

⇔ NM ≤
|R|

NP1 ·
(
NC/M − 1

)
· SRDMA-Buffer

(13)

Equation 13 determines an upper-bound of the number of
machines given a specific workload (size of the inner rela-
tion) and system configuration (size of the RDMA-buffers).
Scaling above this number will lead to loss of bandwidth in
the network partitioning pass.

In addition, we need to ensure that every core is assigned
to at least one partition for further processing. Therefore
the total number of processor cores should not exceed NP1.

NC/M ·NM ≤ NP1 (14)

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
We evaluated our implementation of the distributed join

on a cluster of ten machines connected by an QDR Infini-
band network as well as a four-machine cluster featuring an
FDR InfiniBand network.

The goal of this evaluation is to understand how to use
RDMA in the context of distributed rack-scale databases,
rather than to compare the performance of a distributed
join to that of a single-machine algorithm. Because of a
lower overhead in terms of coordination and communication,
a single-machine algorithm is expected to always be faster.
In this paper, we use the algorithm of [4] as it makes the
results comparable to a public baseline.

Like [21], we noticed that the algorithm in [4] did not
run beyond certain amounts of data. We have extended the
algorithm such that it can process large data sizes. In order
to have a more realistic baseline, we have also modified the
algorithm in [4] to make it more NUMA-aware. In particular
we created multiple task queues, one for each NUMA region.
If a buffer is located in region i, it is added to the i-th
queue. A thread first checks the task queue belonging to the
local NUMA-region and only when there is no local work to
be done, will it check other queues. Furthermore, we have
implemented both the first and second partition passes with
SIMD/AVX vector instructions. With these modifications,
the single-machine algorithm of [4] reaches a throughput of
700 million join argument tuples-per-second, similar to that
of [21] (see Figure 5a).

In addition, we implemented a network component using
TCP/IP and evaluated our algorithm using IPoIB, which
gives a bandwidth slightly larger to a 10Gbit Ethernet net-
work. To better compare both versions, we evaluated the
RDMA implementation which uses channel semantics.

Our C++ implementation of a distributed join is partially
based on the source code made available by [4]1 and [6]2.

Details on the hardware can be found in Table 2.

6.1.1 Workloads
In order to compare our results to the results of [4] and

[6], we have selected a workload composed of narrow tuples,
each consisting of a join key and a record id (e.g., <key,
rid>). The tuples are 16 byte wide. In the data loading
phase the input data is distributed evenly across all available
machines. The Rids are range-partitioned at load time and
each machine is assigned a particular range of Rids.

Similar to [4] and [6], we focus on highly distinct value
joins. For each tuple in the inner relation, there is at least
one matching tuple in the outer relation. The ratio of the
inner and outer relation sizes which are used throughout the
experiments are either 1:1, 1:2, 1:4, 1:8 or 1:16. To analyze
the impact of data skew, we generated two skewed datasets,
with different values of the Zipf distribution: a low skew

1http://www.systems.ethz.ch/projects/paralleljoins
2http://pages.cs.wisc.edu/~jignesh/
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FDR Cluster QDR Cluster Multi-Core Server

CPUs
Intel Xeon Intel Xeon Intel Xeon
E5-4650 v2 E5-2609 E5-4650 v2
2.40 GHz 2.40 GHz 2.40 GHz

Cores/Threads 40/80 8/8 40/80

Memory 512 GB 128 GB 512 GB

Cache Sizes
64 KB 64 KB 64 KB
256 KB 256 KB 256 KB
25 MB 10 MB 25 MB

InfiniBand
Mellanox Mellanox -

FDR HCA QDR HCA

Table 2: Hardware used in our evaluation.

dataset with a value of 1.05 and high skew with a skew
factor of 1.20. To gain insights on the behaviour of the join
not only for column stores but for row stores as well, we also
use a workload with a variable payload. These tuples can
either be 16, 32 or 64 bytes wide.

6.2 Size of RDMA Buffers
As explained in Section 4, the primary communication

abstraction is the sending and receiving of RDMA-enabled
buffers. Therefore, a natural question to ask is how much
buffer space should be allocated and which impact the buffer
size has on the network throughput.

InfiniBand networks can either be bound by the maximum
package rate which can be processed by the HCA or by the
available network bandwidth. Figure 3 shows the observed
bandwidth on both the QDR and FDR network between two
machines for message sizes ranging from 2B to 512KB. One
can observe that both systems can reach and maintain full
bandwidth for buffers larger than 8KB.

Unless otherwise stated, the size of the RDMA-enabled
buffers is fixed to 64KB for the rest of the experiments.

6.3 Joins on Rack-Scale Systems
One of the first questions to ask is how the hash join

algorithm behaves on the different hardware configurations
described in Table 2. In order to be able to compare the dis-
tributed join with the implementation from [4], we selected
a high-end multi-processor server containing four sockets us-
ing eight out of the ten CPU cores on each socket and com-
pared it against four nodes from the FDR and QDR cluster.
On each of the cluster machines we used eight cores. Thus,
the total number of processor cores for each of the hardware
configurations is 32 physical cores.

Inside the high-end server the CPUs are connected via
QuickPath (QPI). Each processor is attached to two neigh-
bours. Using the STREAM benchmark [24], we measured
the bandwidth with which one core can write to a remote
NUMA region. The total bandwidth offered by QPI is not
fully available to a single core. On different hardware config-
urations, we measured different values for the per-core write
bandwidth, even within the same processor family. In this
paper, we show the results for the configuration which of-
fered us the highest inter-socket bandwidth, which peaked
at 8.4 GB/s. The distributed system is composed of individ-
ual machines connected to each other via a single InfiniBand
switch. The measured bandwidth on the QDR network is
around 3.4 GB/s. The FDR network offers a higher band-
width with a peak performance close to 6.0 GB/s. The ar-
chitecture of both systems is illustrated in Figure 4.

In the first experiment we used three different workloads
consisting of 1024 million, 2048 million and 4096 million tu-
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Figure 3: Point-to-point bandwidth for different
message sizes on the QDR and FDR networks.

ples per relation. The results are shown in Figure 5a. The
centralized algorithm outperforms the distributed version
for all data sizes. This is expected because the algorithm
has a lower coordination overhead and the bandwidth be-
tween cores is significantly higher than the inter-machine
bandwidth. For large data sizes, the distribution overhead is
amortized. The execution time 2048 million and 4096 million
tuples per relation shows an increase less than 30%.

In Figure 5b we compare the TCP/IP version and two
RDMA-based implementations. The first RDMA-based vari-
ant does not interleave computation and communication.
After issuing an RDMA request, a thread waits for the net-
work transfer to finish before it continues processing. Hence,
partitioning and network communication are never inter-
leaved. The second RDMA-based version is the algorithm
described in Section 4. It tries to hide the network latency
by interleaving computation and communication.

We can observe that the differences in execution time is
caused only by differences in the network partitioning pass.
The TCP/IP versions takes long to complete this phase.
The reasons for this performance difference are three-fold:
(i) although FDR InfiniBand provides 6.0 GB/s of network
bandwidth, we cannot reach this throughput using IPoIB.
We measured the IPoIB bandwidth to be only 1.8 GB/s,
slightly higher than the bandwidth provided by 10Gb Ether-
net; (ii) when using TCP/IP, a context switch into the kernel
is required which causes additional overhead; and (iii) the
message needs to be copied across intermediate buffers dur-
ing the network transfer.

We can also see a small difference between the execution
time of the interleaved and non-interleaved RDMA imple-
mentations. Although both can benefit from the increased
bandwidth, the version which interleaves computation and
communication hides parts of the network latency leading to
a reduced execution time of the network partitioning pass.

From the second experiment we can conclude that we can-
not rely on the upper-layer protocol support of the network
in order to achieve the full performance. Instead we have to
use the RDMA primitives. Furthermore, interleaving com-
putation and communication also brings down the execution
time of the network partitioning pass by an additional 35%.
We expect that this benefit is more pronounced as more data
needs to be transmitted over the network.
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Figure 4: Comparison of the single-machine and distributed setup: The multi-processor machine has 4 CPUs
connected by a QPI link. The distributed setup is composed of 4 distinct machines. The machines are
connected by a QDR and FDR InfiniBand network.
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(b) Execution time of a join of 2×2048 million tuples for three
variants of the distributed radix hash join. All experiments run
on 4 machines with 32 CPU cores in total (FDR cluster). The
TCP/IP-based version runs over IPoIB.

Figure 5: Baseline experiments. The distributed radix hash join is compared against a single-machine algo-
rithm running on a high-end server and a TCP/IP-based implementation.

6.4 Horizontal Scale-Out Behaviour

6.4.1 Large-to-Large Table Joins
To study the impact of the input relation sizes on the

performance of the distributed join, we varied the input re-
lation sizes and the number of machines. In large-to-large
table joins, both input relations are of the same size and
each element of the inner relation is matched with exactly
one element of the outer relation. In this experiment, we
use relations ranging from 1024 million to 4096 million tu-
ples per relation, and we increase the number of machines
from two to ten machines. The experiment was conducted
on the QDR cluster.

Due to the available memory, the largest workload con-
taining 2× 4096 million tuples (≈ 128 GB) cannot be exe-
cuted on two machines.

Figure 6a presents the average execution time for each
of the three workloads using different numbers of machines.

We can observe that the execution time doubles when dou-
bling the amount of input data. The relative difference in
execution time between the first two workloads is on aver-
age a factor of 1.98. The difference between the second and
third workload is a factor of 1.92.

The experiment shows that the execution time for a large-
to-large join increases linearly with the size of both input
relations: doubling the relation sizes results in a doubling of
the total execution time of the join algorithm.

The execution time for all three workloads goes down as
we increase the number of machines. However, we can also
observe a sub-linear speed-up when comparing the config-
uration with two and ten nodes. The optimal speed-up in
such a setup should lead to a five times improvement in the
execution time, which cannot be observed in this experi-
ment. The reason for this sub-linear scale-out behavior on
the QDR cluster will be studied in greater detail in Section
6.4.3 and Section 6.6.
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Figure 6: Execution time for large-to-large and small-to-large table joins.

6.4.2 Small-to-Large Table Joins
To explore the impact of the relative sizes of the inner

and outer relations, we measured the performance of the
distributed join using an outer relation of fixed size, com-
posed of 2048 million tuples, and a variable number of tuples
for the inner relation ranging from 2048 million tuples (1-
to-1 workload) to 256 million tuples (1-to-8 workload). All
measurements were taken on the QDR cluster.

From Figure 6b we can see that the execution time of the
join decreases when reducing the size of the inner relation.
The execution time of the radix hash join is dominated by
the time to partition the data. These partitioning costs de-
crease linearly with the size of both input relations. There-
fore, when keeping the size of the outer relation fixed at
2048 million tuples and decreasing the number of tuples in
the inner relation, we can see a reduction in the execution
time by almost half when comparing the 1-to-1 workload to
the 1-to-8 workload.

6.4.3 Execution Time Break Down
In the previous experiments we see a sub-linear reduction

in the execution when increasing the number of machines.
To understand the cause of this behaviour, we take a closer
look at the 2048 million ./ 2048 million tuple join on the
QDR cluster.

Figure 7a visualizes the execution time of the different
phases of the join and illustrates the effects of scale-out
in more detail. The partitioning phase is composed of two
passes, each creating 210 partitions. The resulting 220 par-
titions are ∼ 32KB in size and fit into the processor caches.

During the first partitioning pass the data is distributed
over the network. This phase is completed once all the data
has been send out and acknowledged by the receiving hosts.
When increasing the number of machines from two to ten
machines we expect – in an ideal scenario – a speed-up fac-
tor of 5. However, when examining the execution time of
the individual phases (Figure 7a), one can observe a near-
linear speed-up for the second partitioning pass (speed-up by
4.73) and for the build/probe phase (speed-up by 5.00). The
speed-up of the first partitioning pass on the other hand is

limited because the network transmission speed of 3.4 GB/s
is significantly lower than the partitioning speed of a multi-
core machine. As a consequence, the network presents a
major performance bottleneck and limits the speed-up.

With an increasing number of machines, a larger percent-
age of the input data needs to be transmitted over the net-
work, which puts additional pressure on the network compo-
nent and does not allow us to fully leverage the performance
gains of the increased parallelism. Furthermore, adding ma-
chines to the network is likely to increase overall network
congestion during the network partitioning pass if commu-
nication is not scheduled carefully. The overall speed-up
when scaling from two to ten machines is 2.91.

6.4.4 Scale-Out with Increasing Workload
In order to deal with ever increasing workload sizes, a

common approach is to add more resources to an existing
system to maintain a constant execution time despite the
increase in data volumes.

In the experiment, we vary the workload size from 2×1024
million (≈ 60 GB) to 2×5120 million (≈ 300 GB) tuples.
For each increase in the data size by 512 million tuples per
relation, we add another machine to the system.

Figure 7b shows the execution time of each phase. One
can observe that the algorithm maintains a constant perfor-
mance for the second partitioning pass as well as the build-
probe phase. On the other hand, we see a significant increase
in the execution time of the network partitioning pass as we
add more machines.

When increasing the input sizes along with the number
of machines, the amount of data which needs to be pro-
cessed per machine remains identical. Thus all local par-
titioning passes and the build-probe phase show constant
performance. However, increasing the number of machines,
leads to a higher percentage of the data that needs to be ex-
changed over the network. Because the QDR network band-
width is significantly lower than the combined partitioning
speed of all threads, the network will become a significant
performance bottleneck, thus leading to a notable increase
in the execution time of the network partitioning phase.
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(a) Execution time of each phase of the distributed hash join for
a workload of 2048 million ./ 2048 million tuples on a variable
number of machines. The experiment was conducted on the QDR
cluster.
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(b) Execution time of each phase of the distributed hash join for
an increasing number of tuples and machines. The relation size
increases by 2×512 million tuples for each machine that is added.
The experiment was conducted on the QDR cluster.

Figure 7: Scale-out behaviour for constant and increasing relation sizes.
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Figure 8: Effect of data skew for two skew factors
and hardware configurations on the QDR cluster.

6.5 Impact of Data Skew
In this section, we study the effects of data skew. Similar

to the authors of [6] we populate the foreign key column of
the outer relation with two data sets. The first one with
a low data skew which follows a Zipf distribution law with
a skew factor of 1.05 and a highly skewed data set with a
factor of 1.2. The relation sizes are 128 million tuples for the
inner relation and 2048 million tuples for the outer relation.

In order to ensure that two skewed partitions are not as-
signed to the same machine, we use a dynamic partition-
machine assignment. In this dynamic assignment the parti-
tions are first sorted in decreasing order according to their el-
ement count before being distributed in a round-robin man-
ner, thus preventing that the largest partitions are assigned
to the same machine. In the build-probe phase, partitions
are split according to the description in Section 4.3 when
they contain more than twice the average number of tuples.

In Figure 8 we see an increase in the execution time for
both workloads and configurations. We notice an increase
in execution time for the network partitioning pass and lo-
cal processing part, i.e. local partitioning and build-probe
phase. The network phase is dominated by the time it takes
to send all the data to the machine responsible for processing
the largest partition. Similarly, the execution time of the lo-
cal processing part is also dominated by that same machine.
This effect is more pronounced for higher skew factors.

This result highlights the need to share tasks between ma-
chines. Although heavily skewed partitions can be split and
distributed among threads in order to allow for a higher de-
gree of parallel processing, the current implementation only
allows work sharing among threads within the same machine
and not across multiple machines, thus not fully exploiting
the parallelism of the entire system. Nevertheless, we are
confident that this issue can be addressed by extending the
algorithm to allow work sharing between machines.

6.6 Comparing Joins on QDR and FDR
The experiments on the QDR cluster showed limited scal-

ability of the network partitioning pass because of the limit
network bandwidth. To address this issue we deployed the
algorithm on a second cluster composed of four machines
connected by an FDR InfiniBand network, offering close to
twice the available network bandwidth.

For a 2048 million ./ 2048 million tuple join conducted on
two, three and four machines on the FDR cluster, we can
observe identical execution times for the phases not involv-
ing any network operation, i.e. the local partitioning pass as
well as the build-probe phase. The increase in performance
compared to the QDR cluster is due to the shorter network
partitioning pass which benefits from the extra bandwidth.

The available network bandwidth of 6.0 GB/s cannot be
over-saturated by the seven partitioning threads when run-
ning on two and three machines. In this configuration, the
system is fully CPU-bound. The partitioning threads reach
the maximum network bandwidth on four nodes, in which
case 3⁄4 of the data will be exchanged over the network.
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(a) Measured and estimated execution times on the FDR cluster
for up to 4 machines.
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(b) Measured and estimated execution times on the QDR cluster
for 4, 6, 8 and 10 machines.

Figure 9: Model verification for a 2048M ./ 2048M join on the FDR and QDR cluster.
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(a) Execution time of the network partitioning phase with 4 and
8 threads per machine on the QDR cluster.
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(b) Execution time of the network partitioning phase with 4 and
8 threads per machine on the FDR cluster.

Figure 10: Execution time of the network partitioning pass for a 2048 million ./ 2048 million join on both
clusters for 4 and 8 threads.

The speed-up factor from two to four nodes of the network
partitioning pass alone is 1.7 on the FDR cluster compared
to only 1.3 on the QDR cluster.

From this experiment we can conclude that the network
partitioning phase can scale to a large number of machines,
provided that a sufficient amount of inter-machine band-
width is available.

6.7 Impact of Wide Tuples
In previous experiments we focused on narrow tuples com-

posed of 8-byte keys with and 8-byte record id in order to
evaluate the performance of the join for column-store sys-
tems. To get additional insides into the behavior of the join
for row-stores, we use tuples with variable payload size.

To keep the overall data size constant, we use relations
composed of 2048 million 16-byte tuples, 1024 million 32-
byte tuples and 512 million 64-byte tuples. We observed

that the execution time of the join, as well as the execution
time of each phase, is identical for all three workloads.

This results highlights that data movement is the primary
performance factor of distributed join processing. The ex-
ecution time is determined by the data size, independent
whether the workload is composed of a large number of small
tuples or a small number of large tuples.

6.8 Model Verification
In this section we validate the accuracy of the analytical

model described in Section 5 by comparing its predictions
to the experimental results gathered on both clusters.

The measured network throughput is 6.0 GB/s on the
FDR network, respectively 3.4 GB/s on the QDR network.
In addition, we observed a small performance degradation
when increasing the number of machines on the QDR clus-
ter. This decrease is due to the fact that adding machines
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increases the overall network congestion. On each machine
we use eight cores. Each thread is able to reach a local
partitioning speed of 955 MB/s.

psFDR(NM ) =
6000

8− 1
[MB/s]

psQDR(NM ) =
3400− (NM − 1) ∗ 110

8− 1
[MB/s]

psPart. = 955 [MB/s]

(15)

Using Equation 2 we know that the join is CPU bound on
the FDR network for two and three machines and is close to
being network-bound on four machines. Thus, for two and
three machines we can assume that all threads partition the
data at their full capacity psPart. (CPU-bound). In all the
other cases the join is network-bound. Using Equation 4
we can compute the partitioning speed of a thread for the
network partitioning pass. The second local partitioning
pass is always executed at the local partitioning rate psPart..

Figure 9a shows the predicted and measured performance
of a 2×2048 million tuple join on the FDR cluster, while
Figure 9b compares the model to the results gathered on
the QDR machines. One can clearly see that the predictions
closely match the experimental results, varying on average
by only 0.17 seconds.

6.8.1 Finding an Optimal Number of Threads
The analytical model allows us to find the optimal number

of threads for a given hardware specification. Given Equa-
tion 12, we know that in order to achieve maximum utiliza-
tion of the network and processing resources, the number of
partitioning threads should be such that it can saturate the
network without being fully network-bound.

Given the network speed and partitioning rate from Equa-
tion 15, we can determine the required number of processor
cores for each of the two networks, which is four cores per
machine on the QDR and seven cores per machine on the
FDR cluster. To verify this result, we conducted two runs
of experiments: the first run was performed with four and
the second run with eight threads.

In Figure 10a we compare the execution times of the net-
work partitioning pass on the QDR cluster. When increasing
the number of machines, the percentage of data which needs
to be exchanged over the network increases. We can observe
that from five machines onwards, three partitioning threads
are sufficient to fully saturate the QDR network. Adding
additional cores (i.e. eight threads) will not speed up the
execution as threads need to wait for network operations to
complete before being able to reuse the RDMA-buffers.

Figure 10b shows the same experiment on the FDR clus-
ter. Given that four threads are not able to fully saturate
the available network bandwidth, increasing the number of
cores will speed up the network partitioning pass.

7. DISCUSSION
In this paper we have developed a distributed version of

the parallel radix hash join using RDMA. However, the ideas
described in this work, i.e. RDMA buffer pooling, reuse of
RDMA buffers, and interleaving computation and commu-
nication are general techniques which can be used to create
distributed versions of many database operators like sort-
merge joins or aggregation.

In this work we treated the join operation as part of an
operator pipeline in which the result of the join is material-
ized at a later point in the query execution. We are aware
that distributed result materialization involves moving large
amounts of data over the network and will therefore be an
expensive operation. We leave studying the combination of
join computation and result materialization to future work.

Our experimental evaluation focuses on running one join
operator at a time. Scheduling concurrent database opera-
tors in a distributed setup remains an open research area.
However, we are confident that recent work on query plan
deployment for multi-core systems [14] can also be applied
to rack-scale databases.

The experiments clearly show that distributed joins are at
a similar level of performance than parallel join algorithms.
In fact, our results indicate that modern multi-core hardware
should be treated more and more as a distributed system as
it has been suggested for operating systems [5].

Although it is not the goal of this paper to compare dis-
tributed to centralized algorithms, our findings suggest that
the answer to the question whether join performance can
be improved by scaling up or scaling out is dependent on
the bandwidth provided by the NUMA interconnect and
the network. For instance, faster CPU interconnects and a
higher number of cores per processor favor vertical scale-up,
whereas a higher inter-machine bandwidth would favor hor-
izontal scale-out. In the experimental evaluation we could
show that our implementation of a distributed join exhibits
good performance, despite the network being a major bottle-
neck. Current technical road-maps project that InfiniBand
will be able to offer a bandwidth of 25 GB/s (HDR) by
2017 [17], which suggests that the network bottleneck will
be reduced, which would increase the performance of the
proposed algorithm.

8. CONCLUSIONS
In this paper we presented a distributed hash join algo-

rithm which makes use of RDMA as a light-weight com-
munication mechanism. We described how RDMA-enabled
buffers can be used to partition and distribute the data effi-
ciently. We were able to show that that the scalability of the
distributed join algorithm is highly dependent on the right
combination of processing power and network bandwidth.
Although the algorithm in its current form is susceptible to
data skew, we believe that this can be addressed by intro-
ducing inter-machine workload sharing.

In addition to the prototype implementation, we presented
an analytical model of the algorithm and were able to show
that it can be used to predict the performance of the al-
gorithm with very high accuracy. We performed an exper-
imental evaluation of the algorithm on multiple hardware
platforms using two different low-latency networks.

To the best of our knowledge this is the first paper to com-
bine a detailed analysis, analytical model, and experimental
evaluation of a distributed join using RDMA.
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