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ABSTRACT

With High-Bandwidth Memory (HBM), an additional opportunity
on hardware side for performance benefits is given. The large
amount of available bandwidth compared to regular DRAM allows
the execution of high numbers of threads in parallel masking penal-
ties of concurrent memory accesses. This is especially interesting
considering database join algorithms optimized for multicore CPUs,
even more when running on a manycore processor like a Xeon
Phi Knights Landing (KNL). The drawback of HBM, however, is its
small size and given penalties in random memory access patterns.

In this paper, we analyze the impact of HBM on join processing
exemplarily on the KNL manycore architecture. We run certain
main memory hash join and sort-merge join algorithms of rela-
tional DBMS as well as data stream joins, comparing execution
time in different HBM configurations. In addition, we consider data
skew and output materialization for our measurements. Our results
finally show performance gains up to 3x for joins when HBM is
used. However, there is still a lot of room for improvements to fully
utilize this kind of memory. Therefore, we give additional advices
regarding HBM at the end of this paper.
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1 INTRODUCTION

Specialization is a key for improvements in all parts of life. This
applies to database systems as well [21], in terms of software and
used hardware. There are specialized DB variants for processing
data streams, relational tables, graphs and many more, optimized
mainly for query performance.

On hardware level, a heterogeneous landscape of processors and
memory evolved over the last decades. Some new database systems
are developed to efficiently support certain hardware sets, like
SAP HANA [9] as an example for an in-memory database, thanks
to highly increased main memory size, or OmniDB [11, 25] and
CoGaDB [6], focused on using GPUs and Coprocessors to accelerate
query processing speed. But not only full database systems adapted
on new hardware trends. Many existing algorithms make their
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parameters conditional on the underlying hardware, e.g. regarding
cache and TLB sizes for partitioned hash joins [3, 5, 16].

High-Bandwidth Memory (HBM) is another entry in the memory
hierarchy [15]. However, HBM is rarely met in multicore CPU envi-
ronments today. GPUs on the other hand can scale very well with
HBM support because of their high lightweight thread count and
many concurrent memory accesses. Since the release of the Xeon
Phi Knights Landing (KNL) manycore CPU from Intel 2016, the
HBM got an increased research interest. The KNL, supporting up to
288 threads on a single chip, comes with 16GB of HBM, the so called
Multi-Channel DRAM (MCDRAM). Because of the huge amount of
supported full-fledged threads, the memory controllers to regular
main memory can be overwhelmed very quickly, depending on
the application. This leads to stalling memory requests and idling
threads, degrading performance in general. HBM tries to close this
gap by providing high memory bandwidth to applications. For the
MCDRAM, the bandwidth can exceed 400GB/s while regular DDR4
main memory reaches its limit at around 90GB/s. Furthermore, the
KNL as well as the MCDRAM provide different hardware configu-
ration possibilities. This allows additional tuning depending on the
given applications, like dividing the cores into NUMA regions or
running MCDRAM as a huge last level cache instead of addressing
it explicitely.

Regarding memory bandwidth and join processing, the ever-
lasting question arises shortly afterwards if a sort-merge join can
surpass a careful tuned hash join in terms of performance. Since
sort-merge joins benefit very well from wider SIMD registers and
higher memory bandwidth [2], expectations arised that it will pos-
sibly outperform hash joins at some point. With AVX512 on the
KNL as well as the MCDRAM described above, there is a lot of
potential. However, our scope of this paper is not about reviewing
this ongoing dispute in detail, but rather showing the impact of
increased bandwidth on these join algorithms.

All in all, we explicitly address the usage of High-Bandwidth
Memory on database join operators in this paper. We therefore use
the KNL manycore processor in different configurations, deriving
strategies and advices when using HBM for joining, based on our
results. The questions being answered by this paper can be written
as follows.

(1.) How to exploit HBM for certain data structures and which
considerations are necessary?

(2.) What is the impact of HBM on database joins compared to
regular memory usage?

(3.) Can a sort-merge join surpass hash joins in performance when
HBM is used?

(4.) Is there a difference in using HBM transparently like CPU
caches or explicitly for certain data structures?
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The next Section 2 gives an overview of related work done with
HBM as well as database join processing. Section 3 is about HBM
properties and a comparison to other memory variants. Then Sec-
tion 4 briefly describes the evaluated join algorithms in DBMS
and also in Data Stream Management Systems (DSMS). After that,
Section 5 shows our experiments with HBM by defining the used
hardware, workloads and test cases first, followed by interpreting
results. Section 6 derives strategies and recommendations regarding
HBM usage, concluded by Section 7 with a summary.

2 RELATED WORK

Joining two relations in a DBMS is one of the most common tasks in
database history. Recent trends try to fit existing algorithms to new
hardware opportunities or even create new operations to benefit
from hardware progression.

A big step regarding hardware are main memory databases,
where full relations are held in main memory, avoiding costly disk
accesses. Schuh et al. [19] compared recent main memory join al-
gorithms and implementations with each other. They state that
hardware-conscious joins deliver better performance in general
than hardware-oblivious approaches when partitioning strategies
are used. In addition, they argue that highly skewed data leads to
unequal load balancing in such a way that a simple no-partitioning
strategy can beat any partitioning approach in performance num-
bers.

Additional research focuses on exploiting multicore CPU en-
vironments which are absolutely indispensable today. Different
strategies are derived how to partition input data and intermediate
results as well as distributing work efficiently to multiple threads.
Hash joins are commonly found [3, 5, 14] while sort-merge joins
only surpass hash joins in terms of performance when input rela-
tions are very large (GB) [2].

There are even publications already addressing the Xeon Phi
(co-)processors in terms of joining in the past, mainly regarding
the high core count and AVX512 instruction set [7, 8, 12]. Since the
KNL is released as full-fledged processor, the memory bottleneck
between host and coprocessor of previous Xeon Phi versions is
finally removed. This bottleneck is still a common problem with
GPUs as well [11]. Besides this, additional related work with HBM
can be found mostly in the context of High-Performance Comput-
ing, like tensor factorization, matrix multiplication, or analytical
workloads [4, 17, 20].

When joining data streams directly on the fly, tuple per tuple,
other non-blocking algorithms are necessary, though. Teubner et al.
[22] developed the HandshakeJoin, optimized for multicore CPUs.
Like soccer players shaking hands at the beginning of the match,
tuples from two input sources are streamed through the available
cores, performing a join locally. Another popular stream join regard-
ing multicores is the ScaleJoin from Gulisano et al [10], providing
a new data structure for improved load balancing and efficient scal-
ing to high numbers of threads. Besides utilizing multicore CPUs,
there are approaches to efficiently support GPUs or coprocessors
as well. An example for this case is the HELLS-Join for heteroge-
neous hardware environments from Karnagel et al. [13]. It moves
some algorithmic parts to devices different from CPU, increasing
throughput and latency.
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3 MEMORY HIERARCHY

Regarding the heterogeneous memory landscape, the variants can
be classified into different levels in terms of access latency, capacity,
price, or persistence, together forming a memory hierarchy (see

Figure 1).
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Figure 1: Memory Hierarchy

HBM usually has comparable latency for reads and writes to
regular DDR4. Its strength lies in memory bandwidth, which de-
termines performance for memory-bounded applications. Even for
multithreaded executions of code with high numbers of threads,
like on GPUs, HBM can enhance processing times by reducing
memory stalls of threads, waiting for data.

However, the size of HBM is limited and ranges currently in 16
to 32GB for HBM2 technology. Examples for processors currently
using HBM2 are Nvidia Tesla, Nvidia Quadro and AMD Vega on
GPU side. For CPUs, to the best of our knowledge only the KNL
with its MCDRAM as a HBM variant is currently released, although
future CPUs with HBM support are announced. In addition, there
is still research going for increasing size and bandwidth, e.g. for
the announced HBM3.

As a consequence of the limited size, it is rarely possible to store
entire workloads in HBM. Therefore the question arises, which data
structures benefit the most from high bandwidth. The expectations
lead to highly concurrent, sequentially accessed structures that are
placed on HBM, eliminating the bandwidth bottleneck. To point an
example, for join processing and the no-partitioning join algorithm
[18], the shared hash table accessed by all available threads should
be a good candidate for HBM ideally.

In this paper, we used the HBM from the Xeon Phi Knights
Landing manycore CPU, the so-called MCDRAM. The next section
will describe it in more detail, regarding its configuration and our
hardware measurements.

3.1 Multi-Channel DRAM

For our experiments, we use a KNL 7210 with 64 cores, a main
memory (DDR4) size of 96GB and a MCDRAM size of 16GB. The
KNL is configured in SNC4 mode, that means, the core grid is
divided into four NUMA regions with 16 cores each. This allows
to use a NUMA scheduling policy as well as reducing worse case
latency of memory access, because each core in a NUMA region has
to access memory by using the closest memory controllers (DDR4
and MCDRAM).
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Property l DDR4 l MCDRAM ‘
Size 96GB 16GB
Latency 130-145ns | 160-180ns
Peak Bandwidth | 71GB/s 431GB/s

Table 1: KNL Memory Properties (SNC4 mode)

We ran the Memory Latency Checker! tool from Intel to gather
memory access latencies of DDR4 as well as MCDRAM. In addition,
the well-known STREAM? benchmark (Triad) was used for mea-
suring the bandwidth, compiled accordingly to Intels optimization
recommendations. Results show that accessing DDR4 is slightly
better in terms of latency, but the peak bandwidth is much more lim-
ited than the bandwidth of MCDRAM. Table 1 shortly summarizes
the measured numbers.

Besides the numbers, the MCDRAM can be configured in three
ways, in Cache, Flat or Hybrid mode.

Cache Mode. In Cache mode, the MCDRAM is not visible to the
application, just like other CPU caches and registers. It is treated
as a last level cache (LLC), in this case L3, because the KNL cores
only use L1 and L2 caches. In this mode, no further code adaptation
steps are necessary for utilization.

However, running the MCDRAM as cache does not necessarily
improve overall performance of an application. If the same data
is predictably or sequentially accessed in memory over and over
again while the degree of parallelism is high, it can greatly benefit
from the high bandwidth. But if the data is read only once or the
application is mostly latency bound, the cache mode harms access
time by costly cache misses where the request has to be redirected
to main memory, all the way back.

Flat Mode. The opposite configuration, the Flat mode, uses the
MCDRAM as one or more separate NUMA memory nodes, depend-
ing on the clustering mode of KNL. Without further code modifica-
tion or memory assignment it is not used at all. Two common tools
to manually address the MCDRAM are Numactl® and Memkind*.

When starting an application, it is possible to assign certain
NUMA nodes where memory should be allocated by using Numactl.
When the MCDRAM NUMA nodes are explicitely selected without
using regular DDR4 nodes, all memory allocations have to fit into
16GB or the application will fail (out of memory). Memkind on
the other hand allows to address memory directly in the code by
providing high-bandwidth allocators as well as fallback policies if
there is not sufficient HBM available. The drawback of Memkind
is that the programmer has to carefully select data structures that
could benefit from higher bandwidth per hand, requiring a good
understanding of application code.

If compared to Cache mode, there are no further cache misses
than those on L1 and L2, but the programmer itself is responsible
for its utilization, creating some kind of optimization problems
where to use it.

1 https://software.intel.com/en-us/articles/intelr-memory-latency- checker
2 http://www.cs.virginia.edu/stream/

3 https://www.systutorials.com/docs/linux/man/8-numactl/
4http://memkind.github.io/memkind/
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Hybrid Mode. The third configuration, the Hybrid mode, is a
tradeoff between both, using a fragment of memory as LLC and
the rest as manually addressable memory. The ratio is changeable
and can be configured in BIOS settings. This configuration is useful
if 16GB LLC is not used at all or if there are multiple users, some
addressing the MCDRAM explicitely and others do not. For our
experiments, we just use Cache and Flat mode to compare DDR4
and HBM usage.

The next section shortly describes the join algorithms that we
use for our tests.

4 JOIN PROCESSING

For joining two or more data sources, the algorithms considerably
differ between DBMS and DSMS joins. In data streams, tuples arrive
sequentially and output tuples should be produced continually as
long as input data is available. This leads to non-blocking join
algorithms like the Symmetric Hash Join (SHJ) [23]. On the other
hand, joins in DBMS are usually optimized to efficiently process
huge relations at once. However, even in DSMS it depends on the
application if batching up tuples or writing and reading to relational
tables is allowed. In such cases, it is also possible to use DBMS joins
to a certain degree.

Popular hash join algorithms that we consider for our experi-
ments in addition to the SHJ are the No Partitioning Hash Join (NPJ)
[14], the Parallel Radix Join [3] and the Partitioned Hash Join (PHJ)
[5]. For sort-merge joins, we regard the M-Pass and M-Way imple-
mentations of Balkesen et al. [2] as well as the MPSM algorithm,
originally described by Albutiu et al. [1]. Since [2] stated that their
M-Way implementation is notably superior to other sort-merge
joins, we stick to that algorithm for reasons of space.

The following paragraphs shortly describe the general ideas,
differences and expectations when using HBM.

Symmetric Hash Join. The SHJ uses a hash table for each input
data stream. When a tuple arrives from the previous data source, it is
inserted into the corresponding hash table, probing afterwards with
all other hash tables for results. Regarding tuplewise processing,
results are produced continually as long as tuples arrive. This differs
from DBMS joins where the input is read first and calculating results
is started as soon as all input data is available. Without batching
input data and sharing the hash tables between multiple threads,
the SHJ is usually latency-bound, therefore it should not benefit
that much from increased bandwidth.

No Partitioning Hash Join. The NPJ algorithm builds a single
hash table for probing by processing the smaller relation with mul-
tiple threads in parallel, each thread being responsible for its own
batch of input data. Because they access the same data structure
when inserting, latches on buckets are necessary to prevent race
conditions. However, it is expected that collisions are very uncom-
mon due to the fact that millions of buckets are used. When the
build phase is finished and the probing phase starts, threads process
the bigger relation in parallel again, probing with the shared hash
table and producing output tuples accordingly. Because of the good
scaling without much contention regarding high thread counts, the
expectations arise that the higher bandwidth should be directly
visible in performance numbers.
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Partitioned Hash Join. The PH]J first divides the smaller relation
into multiple partitions in parallel. In the next step, partitions are
assigned to threads, building a hash table for each partition. Af-
ter that, the bigger relation is partitioned, probing the resulting
partitions against all the previously created hash tables. When the
partition size is small enough to fit into CPU caches while the par-
tition number does not exceed the TLB size, a notable speedup
can be achieved. On the other hand, the PHJ suffers from unequal
load balancing on partitions (in cases of data skew) as well as latch
contention on partitions in high thread numbers. However, HBM
should improve performance like in the case of NPJ before, possibly
masking the latch contention to a certain degree.

Parallel Radix Join. This join requires that both relations are
stored in a contiguous memory region first. Threads scan over the
region they are responsible for, building a histogram that holds the
number of tuples per partition. The prefix sum calculated over the
histogram points directly to the beginning of the different partitions
afterwards. In a second scan, threads finally partition the input data
according to the prefix sum, processing the partitions afterwards to
build the hash tables in the same way the PH]J does. The partitioning
of the second relation as well as probing the hash tables can be
done similar. We expect that the HBM should benefit from cache
configuration of the MCDRAM because of scanning the input twice.

We tested both Parallel Radix Join implementations for reasons
of comparison, originally provided by Blanas et al. [5] as well as an
optimized variant of Balkesen et al. [3], which greatly reduces the
necessary instructions in terms of function calls.

M-Way Sort-Merge Join. The M-Way join of Balkesen et al. [2]
consists out of four steps - partitioning the input, sorting locally,
merging and finally joining.

The partitioning is necessary for avoiding synchronization ef-
forts in later phases between threads, allowing them to work on
their own partitions undisturbed. Sorting is done afterwards on each
partition, efficiently supported by AVX instructions. The merging
step uses multi-way merging for balancing bandwidth requirements
and computational overhead, leading to a globally sorted relation.
The same three steps are done for the second relation. At last, a
multithreaded join using single-pass merge is performed.

Regarding HBM, expectations arised that a sort-merge join would
ideally scale very well with increased bandwidth, especially for
the merging step. The implementation of [2] even used multi-way
merging to reduce pressure on memory controllers at the cost of
increased computations and task switches. High bandwidth should
allow out-of-cache merging to become more efficient, reducing this
additional computation effort up to a certain degree.

5 EXPERIMENTAL ANALYSIS

In this section we address our questions arised from the introduc-
tion, especially showing the impact of HBM on join processing. In
addition, we distinguish between transparent and explicite use of
MCDRAM in Cache and Flat mode, described in Section 3.1.

First, we show the used hardware and software for our measure-
ments, followed by a description of our workloads and test cases,
finally concluded by results and discussion.
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5.1 Setup

For the hardware, we use a Xeon Phi KNL 7210 with 64 cores and
up to four threads each. It has 96GB DDR4 memory with additional
16GB as MCDRAM. The processor is organized in tiles, each tile
contains 2 cores with a shared L2 cache of 1MB. Each core itself
has its own L1 cache of 32kB. The CPU runs in SNC-4 clustering
mode, that means, the core tiles are separated into four NUMA
quadrants, allowing NUMA-aware code to run on dedicated nodes.
The MCDRAM is configured in Flat and Cache mode correspond-
ingly. Furthermore, the KNL fully supports AVX-512 instructions
and runs with a peak clock frequency of 1.5GHz (Turbo). Threads
are evenly distributed over the cores by using KMP_AFFINITY
scattered setting of the OpenMP library.

On software side for the data stream results, we used our own
open-source stream processing engine PipeFabric®. All code is com-
piled with AVX-512 enabled and Intel compiler version 17.0.6. The
relational hash join implementations® are mostly from the paper of
Blanas et al. [5], where the configurations are adapted to the KNL
settings, compiled with the Intel compiler and also with AVX-512
enabled. In addition, we used the optimized parallel radix join and
the M-Way sort-merge join’ of Balkesen et al. [2, 3]. Since their
code has a lot of intrinsic functions for AVX/AVX2, we did not
further optimize for AVX512 which is beyond the scope of this
paper. Further configurations like cache or TLB parameters are
adapted accordingly, though. This allows us to pin down our results
by directly comparing intermediate measurements.

5.2 Workload and Test Cases

For the streaming section, we first measured the potential of HBM
compared to regular DDR4 memory. We allocated tuples (consisting
out of an integer, double and string value) from our data source
directly in HBM with Memkind API and with standard C++ allocator
for DDR4. After that, these tuples are streamed through a trivial
selection operation with 50% selectivity. The next test case joins
two data stream sources by using the SHJ algorithm, producing
an average of 10 output tuples per input tuple. All results are fully
materialized in the corresponding memory.

The workloads for relational joins followed the data generation
of [5] with 16M tuples on build and 256M tuples on probe side. Each
tuple is a <key, payload> pair, where the key and the payload both
consist out of 8 byte. This leads to a total workload size of 256 MB for
R and 4GB for S. We generated the provided uniformly distributed
data first. The skewed dataset follows a Zipf distribution with s=1.05
(low skew) and s=1.25 (high skew), generated with numpy package
of Python. A separate test case is used for materialization efforts
on the relational join algorithms of [5], otherwise output tuples are
not materialized in memory. The joins, already shortly described in
the previous Section 4, are run on KNL with Numactl library fully
allocated on MCDRAM or regularly run on DDR4 memory with
and without MCDRAM as a cache. In all cases, the input relations
are generated and stored in main memory before the measurements
are started, meaning that all threads have to initially read tuples
from DDR4 or HBM for further processing.

5https://gi‘fhub.com/dbis-ilm/pipefabric
6http://web.cse.ohio-state.edu/~blanas.2/
"both found on https://www.systems.ethz.ch/projects/paralleljoins
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5.3 Data Streaming

To point out the possible difference regarding performance of HBM
and DDR4, we run a query with selection operator on a single input
data stream. Because a stream can be simply endless, we calculate
the average processing rate in necessary CPU cycles per tuple until
the rate does not change anymore. The query is executed in parallel
independently by an increasing number of threads. Figure 2 shows
the results.
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Figure 2: Tuple Allocation with Selection Query

Even with 256 threads executing the query with tuples allocated
in HBM, the necessary cycles per tuple stays in low numbers of
around 500 CPU cycles for each thread. When the MCDRAM is run
as LLC or is not used at all and after running 64 threads in parallel,
they begin to stall, waiting for the memory controllers to finish
their requests. This problem gets just worse when more threads
are added, increasing the average cycles per processed tuple up to
more than 10 times. Since tuples are streamed from memory and
are processed just once, the MCDRAM in Cache mode does not
benefit from the higher bandwidth because the tuples are never
reused again.

In the next step, we analyze the SHJ performance by joining two
data streams. The join query is executed by an increasing number
of threads independent from each other simultaneously, simulating
Inter-Query parallelism. The tuples as well as the hash tables are
fully allocated on MCDRAM. Because of general window semantics
in data stream processing, discarding older tuples after time, 16GB
of MCDRAM are enough for this task. Our measurements are shown
in Figure 3.

For our implementation of the SHJ, the algorithm cannot benefit
from higher bandwidth at all. There are randomized data accesses
for the hash table as well as tuplewise processing, suppressing any
notable advantage of HBM. Only for 64 threads running a join, the
allocations in MCDRAM decrease the average cycles necessary for
an output tuple by around 15%. This is the case where each thread
runs on a single core with minimal cache thrashing on L2 and no
cache thrashing on L1 by other threads.
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Figure 3: Symmetric Hash Join

5.4 Relational Hash Joins

As pointed out before, these joins can be applied in DSMS as well if
blocking like batching or read/writes to tables are allowed. First, we
run the NPJ with uniform dataset on the KNL processor by using
the DDR4 memory and HBM by Numactl allocation. Results are
shown in Figure 4.
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Figure 4: No Partitioning Join

The necessary cycles per output tuple decreases significantly
by adding more and more threads. After 16 threads participate in
processing the same join, the allocation in HBM allows them to ac-
tually benefit from the higher bandwidth. With less than 16 threads,
the high bandwidth is not utilized at all and the slightly higher
latency of MCDRAM access just worsens the overall performance.
Between 16 and 64 threads, the neccessary cycles per tuple drop
very fast, which can be explained simply by the KNL architecture,
having 64 cores. We first schedule a thread to a single core, where it
has no side effects from other threads, minimizing cache thrashing
and context switching. Beyond the KNL properties, the NP]J scales
very well in general even with hyperthreading enabled [5].
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When we compare the cycles at 192 threads, the join needs
around 3.5 times more cycles on DDR4 than on HBM, greatly speed-
ing up execution time. Running MCDRAM in Cache mode is not
useful at all for the NPJ, suffering the same penalties in randomized
access like the SHJ does.

In the next test case, we used the PHJ with uniform dataset as
well. Compared to the NPJ, both input data is first partitioned into a
fixed number of partitions by all threads, joined afterwards. Results
are plotted in Figure 5.
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Figure 5: Parallel Hash Join

Interestingly, the performance gets worse after hitting a local
minimum in cycles when adding more threads to the same work.
This can be explained by examining the implementation and algo-
rithm. In the partitioning phase, all threads can access all partitions,
that means, the partitions have to be protected by latches. As fine-
granular measurements show, after hitting around 80 threads, the
time necessary to partition the input data begins to increase again,
finally taking up to three times longer with 256 threads. Under high
contention, locks and latches can close to nullify any throughput
as already shown by Yu et al. [24]. With multiple queries and work-
loads running in parallel, it is not possible for a single query to
utilize all 256 threads. Therefore, the degree of contention should
stay in low numbers in practice.

While the high bandwidth of HBM can counter this progression
to some extent in general, it still suffers from high contention at a
high thread count. Like the NPJ, the PHJ can greatly benefit from
HBM, up to 3x less cycles than DDR4 allocations. However, in ab-
solute numbers the NPJ needs less cycles to finish after utilizing 16
threads at least.

Next, we analyzed the parallel radix join on KNL, again using the
uniform dataset. By processing the input in multiple passes, cache
and TLB misses are minimized. The results for the implementation
of [5] are shown in Figure 6.

The measurements point out that performance only marginally
improves after 32 to 64 threads are applied. With less threads it
can beat the NPJ in performance, but after hyperthreading kicks
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Figure 6: Radix Join

in, the NPJ needs slightly less cycles per tuple in average to fin-
ish. However, with MCDRAM as cache, a performance gain can
be achieved. Because of the radix join reading the data multiple
times for calculating the histogram and partitioning afterwards, it
benefits from the data already copied into the cache. Allocating
everything directly in MCDRAM is still a further improvement,
because there are no cache misses in MCDRAM and no redirection
to DDR4 again. Overall, the radix join cannot benefit that much
from higher bandwidth like NPJ and PHJ do, but there is still a
performance gain up to 1.9x over DDR4 possible.

Finally, we used the optimized parallel radix join implementation
of [3]. They reworked the code of [5] in such a way that around
40% of the original function calls in the partitioning phase could be
avoided, greatly speeding up the necessary execution time even in
the join phase. Results of our measurements can be found in Figure
7, split into cycles per tuple and overall throughput.

The join uses 18 radix bits and is further adjusted to the KNL ar-
chitecture in terms of cache and TLB parameters. Interestingly, the
Flat mode of the KNL could not been verified in our measurements
for this implementation, because any allocations per Numactl lead
to extremely high cycles necessary per tuple. Nevertheless, the MC-
DRAM in Cache mode improves performance by a great amount,
up to 3.9 times for 256 threads.

5.5 Relational Sort-Merge Joins

We use the M-Way sort-merge join of Balkesen et al. [2] as an
example for our tests, since they stated that the join is superior
to the other sort-merge algorithms of their paper in most of the
cases. They provide some additional parameters to configure, like
the partitioning fanout and the buffer size of M-Way merging. Since
the maximum threads supported by our KNL is 256 and the L2 data
TLB has a maximum of 256 pages, the partitioning fanout is equal
to the amount of threads we use. Varying the buffer size for the
merging FIFO queues delivers different results when using HBM or
DDR4 (see Figure 8).



Joins in a Heterogeneous Memory Hierarchy: Exploiting High-Bandwidth Memory

DaMoN’18, June 11, 2018, Houston, TX, USA

600

4+— MCDRAM Unused
=—a MCDRAM Cache

[

=3

o
T

IN
o
o

N
=3
)

Throughput [M. tuples/sec]
w
o
o

100
50

4 8 16 32 64 128 256
#Threads

Figure 7: Performance of the Parallel Radix Join of [3]
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Figure 8: Variation of Sort-Merge Buffer Size

Please note that the x-axis is evenly distributed. If the size of the
merge buffer (realized by FIFO queues) is too small, the amount
of task switches between the merge tasks inside of a thread limits
massively the overall performance. On the other hand, if the size
gets too big, we get out of memory eventually and the demands
on memory bandwidth increases more and more. For DDR4, there
is a sweet spot by around 32MB buffer size, where computational
efforts and bandwidth requirements get in balance. However, for
HBM in Cache or Flat mode there is no best size in performance
like with DDR4, but there is no notable improvement anymore
after reaching 128MB size. This means that the full bandwidth of
HBM is not utilized at all, else when hitting a certain threshold the
limit on bandwidth would increase the necessary cycles per tuple
(like DDR4 does). After the FIFO queue gets big enough there are
no more task switches, which leads to no further improvement of
performance when the size is continually increased.

Moreover, the Cache mode delivers slightly better numbers than
in Flat mode. That is the case when some part of the implementation
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is latency bound and suffers from HBM access penalties when
everything is fully allocated in MCDRAM without touching DDR4
anymore. To sum it up, the buffer size is set to 32MB for DDR4
allocations and 128MB for HBM usage as cache or in Flat mode.
The results of the executed sort-merge join is shown in Figure 9.
Again, we show the results in terms of cycles per tuple and
throughput. It achieves a good scaling until hyperthreading kicks
in (after 128 threads). With the MCDRAM running as cache or
being explicitely addressed improves performance up to 2.5 times
on 32 threads. Both modes of the MCDRAM are relatively equal
regarding results, even if the Cache mode is better on high thread
counts because of the same reasons like from merge buffer results. A
deeper look into the numbers of the different stages shows that the
time spent for sorting is greatly reduced by running a huge amount
of threads. However, the time necessary for merging is doubled
between 128 and 256 threads, leading to worse results afterwards.

A short summary of findings is given in Table 2.

l Algorithm ‘ Findings

SHJ - Latency bound without batching/tables
- HBM allocations should be avoided in general
NPJ - Good scaling of threads
- HBM as cache should be avoided
PHJ - Suffers from latch contention (many threads)
- HBM as cache should be avoided
Radix - Small benefit of HBM overall

- Reading input twice improved by Cache mode

Opt. Radix | - Great performance of HBM, even as cache

- More than one thread/core should be avoided

- Great performance of HBM overall

- Use HBM as cache with hyperthreading
Table 2: Findings

M-Way
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Figure 9: Performance of the Sort-Merge Join (M-Way) of [2]

5.6 Skewed Datasets

As already described, we use two skewed datasets with a Zipf
distribution of s=1.05 and s=1.25. The NPJ actually benefits from
skew because all threads build one big hash table in parallel without
being influenced by uneven load partitioning, also mentioned by
Blanas et al. [5]. Therefore we show the skewed datasets for the
PHJ, where it leads to uneven partition sizes and unequal loads,
using DDR4 only or HBM only. Measured results can be found in
Figure 10.
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Figure 10: PHJ with skewed data

The bars of DDR4 and MCDRAM are above of each other to
easily compare HBM advantage (showing cycles with and without
using it). Higher skew increases overall cycles necessary to finish
the join by an intense amount, as expected. HBM only helps at the
beginning, when partitions are processed simultaneously by many
threads. But after more and more threads finish their work, runtime
is determined by the few large partitions left where threads are
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still processing tuples. At that point, only fractions of available
bandwidth are used and the HBM advantage is fully lost.

5.7 Output Materialization

When output tuples are materialized in main memory and not
discarded, additional costs occur. Blanas et al. [5] pointed out that
materialization does not significantly impact the join performance
at all. We tested the three relational join algorithms from [5] with
and without materializing output tuples in memory, results are
shown in Table 3.

The individual overhead in cycles is notably higher when only a
single or few threads (less than 8) are used. This is somehow obvious
because if cores are idling, it takes more CPU cycles for the running
cores to write the same amount of output tuples into memory. If
the output is materialized in HBM, it takes slightly more time than
in DDR4. This can be explained through the lower execution times
per tuple (around 10 CPU cycles). Adding an overhead of 5 to 10
cycles variies more in percentage than adding that overhead to 30
CPU cycles.

The important finding of this section is the fact that materializing
output tuples on HBM or DDR4 is not very different in terms of
CPU cycles as well as not determining the execution time that much.
Because of almost equal read write latencies of both memory types,
higher bandwidth does not improve output materialization at all.
Therefore it depends on following operators if they can benefit from
their input tuples being allocated in HBM or in regular DRAM.

MCDRAM
Join Algorithm | Flat ‘ Cache ‘ Unused
NPJ 32% | 21% 20%
PH]J 14% | 13% 14%
Radix 39% | 35% 31%

Table 3: Overall materialization overhead
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6 LESSONS LEARNED

(1.) Directly addressing HBM improves performance better
than using it transparently like a cache. The obvious reason is
that costly cache misses can be avoided. In addition, when data is
read only once without reusing, caching effects cannot compensate
the initial misses. But even with multiple scans in the radix join,
performance is wasted compared to directly allocating data in HBM.
Only in the situation of sort-merge joins where data is heavily
reused and with hyperthreading enabled the cache can outperform
allocations that are directly done in HBM.

(2.) Even if initially CPU bound, high amounts of threads
can easily lead to memory bottlenecks. When algorithms are
executed with multiple threads, processing data simultaneously and
splitting work between them, memory requests at the same time are
rising obviously. When CPUs with high thread counts available like
the Xeon Phi series from Intel are used, this can limit the effective
degree of parallelism. In such cases HBM can improve performance
where it does not when the thread count for the same problem
is low. Overall latency on the other hand does only decrease if
memory bandwidth is saturated and threads start to idle, waiting
the memory controllers to finish their requests.

(3.) Do not place everything in HBM. Compared to regular main
memory, the capacity of HBM is much smaller. Workloads easily
exceed 16GB in size, especially when intermediate results are stored
for further processing. However, if the data ranges in size of a few
MB, the L2 cache will effectively provide access already, leading to
no notable improvements in performance. For stream processing
with window semantics huge amounts of data can more easily
be handled than in DBMS, because the amount of valid tuples
considered for queries can be varied.

(4.) Random memory access patterns do not saturate band-
width in general, being therefore not ideal for HBM. Sequen-
tial access patterns allow prefetchers and out-of-order cores to
generate much more memory requests at a time. Random accesses
on the other hand depend mainly on memory latency, where the
MCDRAM is just a little worse than DDR4. This means that when
joining two relations partially or fully stored in HBM the band-
width can effectively being used, while probing hash tables in HBM
only benefits when the thread count is very high. The same holds
for data streaming purposes. Tuples allocated in HBM keep multi-
threaded latency low, while tuplewise accessed hash tables do not
gain improvements at all.

(5.) High bandwidth improves highly parallel hash joins and
sort-merge joins more or less equally. Sort-merge joins can
benefit very well from high bandwidth in their sorting and merging
phase. However, the parallel radix join also benefits nicely from
HBM in such a way that it still delivers better performance than
the sort-merge join for our workload. Of course this depends on
the individual implementation and optimizations, but for reasons
of comparison, we used implementations from the same source for
our tests.

(6.) Uneven load balancing by skew as well as latches on par-
titions are not noticeably influenced by HBM. While the high
bandwidth can somehow mask the problem by allowing concurrent
threads to finish their work faster, the general problem still is not
solved. This leads to the advice that the NP]J is preferable in many-
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core environments simply because it does not suffer data skew at
all, which is very common in real systems. This is somehow con-
trary to the findings of [7], however, they only tested with uniform
datasets and without explicitly addressing the MCDRAM beyond
cache mode. Nevertheless, if load balancing is handled correctly, it
depends on the algorithm if it benefits from HBM, as we showed in
our experiments.

7 CONCLUSION

HBM is another layer inside of the already heterogeneous memory
hierarchy, which provides higher bandwidth with close to equal la-
tency compared to regular main memory. The limited size, however,
allows to store only fractions of data inside of it. With high thread
counts in GPU and manycore CPUs, main memory controllers can
fastly being overburdened with massive simultaneous memory re-
quests even on regular database operations. The high bandwidth of
HBM allows to overcome this bottleneck easily, but requires careful
tuning which data structures can benefit the most.

With the recent CPU trend going to more and more cores on
a single chip, HBM technology is likely to be focused in the next
future, like the announced Stratix 10 MX FPGA with HBM support
from Intel or the ACAP from Xilinx.

In this paper we investigated the influence of HBM on different
database join algorithms and implementations. We distinguished
between tuplewise stream processing and joining two relational
tables. Mainly because of comparison reasons, we used different
open source join implementations to analyze their behaviour under
highly parallel execution and HBM support. The Xeon Phi KNL
allows us to measure results without dealing with network delay
between sockets and scaling up to 256 threads on a single chip.
Besides that, with its cluster configuration we are able to run NUMA-
aware code in different regions of the CPU.

The question if sort-merge joins could finally outperform hash
joins when HBM is used can be answered with no, but in terms
of performance, is not far away. However, since the parallel hash
joins also include partitioning steps, they also benefit very well
from higher bandwidth. Additionally, we regarded workloads with
different skew levels as well as output tuple materialization. Results
show that HBM has its use under skewed data, but is also far away
from a full utilization, since unequal load leads to few long-running
threads that cannot saturate bandwidth.

Finally, we summarized our lessons learned to top this paper off.
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