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ABSTRACT
The popularity of large-scale real-time analytics applications
(real-time inventory/pricing, recommendations from mobile
apps, fraud detection, risk analysis, IoT, etc.) keeps ris-
ing. These applications require distributed data manage-
ment systems that can handle fast concurrent transactions
(OLTP) and analytics on the recent data. Some of them
even need running analytical queries (OLAP) as part of
transactions. Efficient processing of individual transactional
and analytical requests, however, leads to different optimiza-
tions and architectural decisions while building a data man-
agement system.

For the kind of data processing that requires both ana-
lytics and transactions, Gartner recently coined the term
Hybrid Transactional/Analytical Processing (HTAP). Many
HTAP solutions are emerging both from the industry as well
as academia that target these new applications. While some
of these are single system solutions, others are a looser cou-
pling of OLTP databases or NoSQL systems with analytical
big data platforms, like Spark. The goal of this tutorial is
to 1-) quickly review the historical progression of OLTP and
OLAP systems, 2-) discuss the driving factors for HTAP,
and finally 3-) provide a deep technical analysis of existing
and emerging HTAP solutions, detailing their key architec-
tural differences and trade-offs.

1. INTRODUCTION
In this tutorial, we plan to survey existing and emerging

HTAP (Hybrid Transactions and Analytics Processing) so-
lutions. HTAP is a term created by Gartner to describe
systems that can support both OLTP (On-line transaction
processing) as well as OLAP (on-line analytics processing)
within a single transaction. However, the term HTAP is
currently used more broadly, even for solutions that sup-
port insertions (not necessarily ACID transactions) as well
as OLAP queries. Some of these systems have the ability to
run analytical queries over the very recent data, while others
need some delay before the queries see the latest data.
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To understand HTAP, we first need to look into OLTP
and OLAP systems and how they progressed over the years.
Relational databases have been used for both transaction
processing as well as analytics. However, OLTP and OLAP
systems have very different characteristics. OLTP systems
are identified by their individual record insert/delete/up-
date statements, as well as point queries that benefit from
indexes. One cannot think about OLTP systems without
indexing support. OLAP systems, on the other hand, are
updated in batches and usually require scans of the tables.
Batch insertion into OLAP systems are an artifact of ETL
(extract transform load) systems that consolidate and trans-
form transactional data from OLTP systems into an OLAP
environment for analysis.

After the seminal paper of Stonebraker [34] arguing for
multiple specialized systems, the database field has seen an
influx of specialized column-oriented OLAP systems, such as
BLU[30] , Vertica[23] , ParAccel, GreenPlumDB, Vectorvise,

as well as many in-memory OLTP systems, including VoltDB[35] ,

Hekaton [13] , MemSQL [24] among others. The main driver
for this re-surgency in database engines is the advances in
modern hardware. This second generation of OLAP and
OLTP systems take better advantage of multi-core, various
levels of memory caches, and large memories.

At the same time, the last decade seen an explosion of
many big data technologies, driven by new generation appli-
cations. NoSQL or key-value stores, such as Voldemort [32] ,

Cassandra[8] , RocksDB [31] , offer fast inserts and lookups,
and very high scale out, but lack in their query capabilities,
and offer only loose transactional guarantees (see Mohan’s
tutorial [25]). There have been also many SQL-on-Hadoop

[10] offerings, including Hive [36] , Big SQL[15] , Impala[20] ,

and Spark SQL[3] , that provide analytics capabilities over
large data sets, focusing on OLAP queries only, and lacking
transaction support. Although all these systems support
queries over text and CSV files, their focus have been on
columnar storage formats, like ORCFile [27] , and Parquet

[1] .
Recent years have seen the need for more real-time ana-

lytics. In addition, mobile and Internet of Things have given
rise to a new generation of applications that are character-
ized by heavy ingest rates, i.e. they produce large amounts
of data in a short time, as well as their need for more real-
time analysis. Enterprises are pushing for more real-time
analysis of their data to drive competitive advantage, and
as such they need the ability to run analytics on their oper-
ational data as soon as possible.
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With these developments, there is now a lot of interest,
and research focus on providing HTAP solutions over big
data sets. In this tutorial, we plan to provide a quick histor-
ical perspective into the progression of different technologies
and discuss the current set of HTAP solutions. We will ex-
amine the different architectural aspects of the current so-
lutions, identifying their strengths and weaknesses. We will
categorize existing systems along many technological dimen-
sions, and provide deep dives into a few representative sys-
tems. Finally, we will discuss existing research challenges to
realize true HTAP, where a single transaction can contain
both insert/update/delete statements, as well as complex
OLAP queries.

2. HTAP SOLUTIONS: DESIGN OPTIONS
HTAP solutions today follow a variety of design practices.

This part of the tutorial goes over them to highlight their
main trade-offs while giving examples from industrial offer-
ings and academic solutions.

One of the major design decisions HTAP systems have
to make is whether or not to use the same engine for both
OLTP and OLAP requests.

2.1 Single System for OLTP and OLAP
The traditional relational databases (e.g., DB2, Oracle,

Microsoft SQL Server) have the ability to support OLTP and
OLAP in one engine using single type of data organization
(mainly row-stores). However, they are not very efficient for
either of these workloads.

Therefore, following the one size doesn’t fit all rule [34] ,
the past decade has seen the rise of specialized engines for
OLTP and OLAP exploiting the advances in modern hard-
ware (larger main-memory, multicores, etc.). Various ven-
dors and academic groups have built in-memory optimized
row-stores (e.g., VoltDB [35] , Hekaton [13] , MemSQL [24] ,

Silo [37] , ...) and column-stores (e.g., MonetDB [7] , Ver-

tica [23] , BLU [30] , SAP HANA [14] , ...) specialized for
transactional and analytical processing, respectively. These
systems departed from traditional code-bases of relational
databases, and built leaner engines from scratch to also avoid
the large instruction footprint of the traditional engines.

However, many of the systems optimized for one type of
processing, later started adding support for the other type in
order to support HTAP. These systems mainly differ based
on the data organization they use for their transactional and
analytical requests.

2.1.1 Using Separate Data Organization for OLTP
and OLAP

SAP HANA [14] or Oracle’s TimesTen [22] have engines
that are mainly optimized for in-memory columnar process-
ing, which is more beneficial for OLAP workloads. These
systems also support ACID transactions. However, they use
a different data organization for data ingestion (row-wise)
and analytics (columnar).

Conversely, MemSQL [24] has an engine that was pri-
marily designed for scalable in-memory OLTP, but today it
supports fast analytical queries as well. It ingests the data
in row format as well as keeping the in-memory portion of
the data in row format. When data is written to disk, it is
converted to columnar format for faster analytics. Similarly,
IBM dashDB [11] is the evolution of a traditional row store
into an HTAP system with hybrid row-wise and columnar

data organizations for OLTP and OLAP workloads, respec-
tively.

On the other hand, from the beginning, HyPer [19] was
designed to support both fast transactions and analytics us-
ing one engine. Even though, initially it used row-wise pro-
cessing of data for both OLTP and OLAP, today it also
provides the option for choosing a columnar format to be
able to run the analytical requests more efficiently.

Finally, the recent academic project Pelaton [28] aims to
build an autonomous in-memory HTAP system. It provides
adaptive data organization [4] , which changes the data for-
mat at run-time based on the type of requests.

All these systems require converting the data between row
and columnar formats for transactions and analytics. Due
to these conversions, the latest committed data might not
be available to the analytical queries right away for these
types of systems.

2.1.2 Same Data Organization for both OLTP and
OLAP

H2TAP [2] is an academic project that aims to build an
HTAP system focusing mainly on the hardware utilization
of a single node when running on heterogeneous hardware.
It falls under this category since the system is designed as a
row-store.

Among the SQL-on-Hadoop systems, there has also been
HTAP solutions that extend existing OLAP systems with
the ability to update data. Hive, since version 0.13, has in-
troduced the transaction support (insert, update, and delete)
at the row level [18] for ORCFile, their columnar data for-
mat. However, the primary use cases are for updating di-
mension tables and streaming data ingest. The integration
of Impala [20] with the storage manager Kudu [21] , also
allows the SQL-on-Hadoop engine to handle updates and
deletes. The same Kudu storage is also used for running
analytical queries.

Since these systems do not require conversion from one
data organization to another in order to perform transac-
tional and analytical requests, the OLAP queries can read
the latest committed data. However, they might face the
same shortcomings the traditional relational engines faced.
They do not have a data organization that is optimal for
both types of processing. Therefore, they may rely on batch-
ing of requests for fast transactions due to the overheads of
processing data over a non-row-wise format, or perform sub-
optimally for analytics due to non-columnar format.

2.2 Separate OLTP and OLAP Systems
The systems under this category can be further distin-

guished in the way they handle the underlying storage, i.e.,
whether they use the same storage for OLTP and OLAP.

2.2.1 Decoupling the Storage for OLTP and OLAP
Many applications loosely couple an OLTP and an OLAP

systems together for HTAP. It is up to the applications to
maintain the hybrid architecture. The operational data in
the OLTP system are aged to the OLAP system using stan-
dard ETL process. In fact, this is very common in the big
data world, where applications use a fast key-value store like
Cassandra for transactional workloads, and the operational
data are groomed into Parquet or ORC files on HDFS for
a SQL-on-Hadoop system for queries. As a result, there is



a lag between what data the OLAP system can query and
what data the OLTP system sees.

2.2.2 Using the Same Storage for OLTP and OLAP
There are alternative HTAP offerings from some of the

database vendors that combine their traditional products
with the Spark ecosystem to enable large-scale HTAP. SAP
HANA Vora [16] is such an example. In HANA Vora,
the transactional processing is carried out through HANA,
whereas analytical requests are handled by Spark SQL with
subqueries pushed down to the database.

Several recently developed data management engines take
a similar path as well. For example, SnappyData [26] uses
the transactional engine GemFire for OLTP and takes ad-
vantage of the Spark ecosystem for OLAP.

Key-value stores, such as HBase [17] and Cassandra [8] ,
are chosen by many modern applications as the online oper-
ational data store for fast updates. In order to bring in the
missing OLAP capabilities, key-value stores are often used
together with SQL-on-Hadoop engines. In one approach,
both systems see exactly the same data that are stored in
the key-value store. This requires SQL-on-Hadoop systems
to directly query against data in key-value stores. Many
extensions to existing SQL-on-Hadoop systems have been
developed to enable such integration. Utilizing the Data
Source API in Spark SQL similar to the systems above, the
Spark HBase connector [38] and the Spark Cassandra con-

nector [12] allow Spark SQL to directly query HBase and
Cassandra data, respectively. The main problem with this
approach is their slow performance. Running queries that
scan large amounts of data, which is typical in an analytical
query, is very slow via these connectors.

In another approach, many SQL-on-Hadoop systems, such
as HIVE [36] , Impala [20] , IBM Big SQL [15] , and Actian

VectorH [9] , use HBase as an updatable storage engine to
store tables that need frequent updates. Users can send
both operational and analytical requests to the same inter-
face in SQL-on-Hadoop systems. Underneath, requests to
the HBase tables are executed through HBase’s processing
engine.

Systems like Splice Machine [33] and Phoenix [29] provide
a SQL layer on top of HBase. They also allow updates and
transactions for data stored in HBase tables. As a result,
they rely on HBase for the updates. Splice Machine even
supports ACID transactions.

Both the SQL-on-Hadoop systems that access HBase ta-
bles directly, as well as Splice Machine and Phoenix run
analytical queries slowly, as the scans over HBase tables are
inefficient. HBase has been designed for fast insertion, and
single-record lookups. Hence, none of these systems provide
fast OLAP capabilities.

Wildfire [5] is a recent project from IBM Research that
builds an HTAP engine where both analytical and transac-
tional requests go over the same columnar data organization,
which is Parquet [1] . By using a single data organization
for both data ingestion as well as analytics, Wildfire enables
the analysis on latest committed data right away. Wildfire
also utilizes the Spark ecosystem to enable large-scale dis-
tributed analytics. The requests to Wildfire enters through
Spark SQL and are pushed down to the Wildfire engine as
much as possible.

Since the OLTP and OLAP components share the same
underlying storage for the systems in this category, the lat-

est committed transactions are immediately query-able for
analytics.

3. ROAD TO TRUE HTAP
Before concluding our tutorial, we plan to highlight the

challenges that HTAP system builders, as well as HTAP
users still face today.

Even though there are many systems out there labeled as
HTAP solutions (as Section 2 describes), none of them sup-
port true HTAP. Existing solutions indeed provide a decent
platform for supporting both transactional and analytical
requests when they are sent to the system separately. How-
ever, none of the existing solutions really support efficient
processing of transactional and analytical request within the
same transaction. To fully support HTAP, systems should
allow analytics on recent data not only after the transaction
that is ingesting or updating that data has committed, but
also as part of the same request.

In addition, most HTAP solutions today use multiple com-
ponents to provide all the desired capabilities. These differ-
ent components are usually maintained by different groups
of people. Therefore, keeping these components compati-
ble and providing the end-users with the illusion of a single
system is a challenging task.

Finally, indexing the data that is distributed, and ac-
cessed at a large-scale to enable efficient point lookups is
not straight-forward. Moreover, most of these systems are
deployed on public or private clouds, which use object stores
as well as shared file systems like HDFS. Fine-grain indexing
is needed to enable efficient point-lookups, and richer OLTP.
Fast OLTP engines keep the index in memory, but in case of
large scale data, and HTAP, those indexes cannot stay only
in memory. One can cache the portion of the index for the
most frequently accessed data and reduce the access cost to
index entries. However, large-scale distributed OLAP sys-
tems use shared file systems and data organizations that are
mainly optimized for scans, which does not provide fast ac-
cess to individual records or columns. Faster point access to
these shared files systems, and object stores is still an open
problem.

4. TUTORIAL
Length: 1.5 hours
Target Audience:
1-) Researchers and developers who would like to learn

the challenges HTAP poses while building systems, as well
as the recent industry trends and offerings in the HTAP
market,

2-) and PhD students who are seeking a high-impact re-
search topic in this area.

Related Previous Tutorials:
This tutorial has not been presented in any other venue.

Although, there has been recent tutorials on similar topics
(e.g., [6]), this tutorial aims to focus on unique aspects of
HTAP, and cover a broader set of offerings from the industry
and academia while providing a list of design trade-offs.

Outline
• Introduction

• Tutorial goal, audience, and schedule

• Overview of traditional & specialized OLTP & OLAP
systems



• Driving factors for the rise of HTAP

• Deep-dive into HTAP solutions examining several dimen-
sions including the following:

• Query processing and ingestion engines

• Storage options

• Data organization

• Transactional semantics

• Recency of data being read by OLAP

• Indexing support

• Research challenges on the road to true HTAP

• Summary & Conclusions
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