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Abstract
This paper presents our design and experience with a

microkernel-inspired approach to host networking called Snap.
Snap is a userspace networking system that supports Google’s
rapidly evolving needs with flexible modules that implement a
range of network functions, including edge packet switching,
virtualization for our cloud platform, traffic shaping policy
enforcement, and a high-performance reliable messaging and
RDMA-like service. Snap has been running in production for
over three years, supporting the extensible communication
needs of several large and critical systems.

Snap enables fast development and deployment of new
networking features, leveraging the benefits of address space
isolation and the productivity of userspace software devel-
opment together with support for transparently upgrading
networking services without migrating applications off of a
machine. At the same time, Snap achieves compelling perfor-
mance through a modular architecture that promotes princi-
pled synchronization with minimal state sharing, and supports
real-time scheduling with dynamic scaling of CPU resources
through a novel kernel/userspace CPU scheduler co-design.
Our evaluation demonstrates over 3x Gbps/core improvement
compared to a kernel networking stack for RPC workloads,
software-based RDMA-like performance of up to 5M IOPS/-
core, and transparent upgrades that are largely imperceptible
to user applications. Snap is deployed to over half of our fleet
of machines and supports the needs of numerous teams.
CCS Concepts • Networks → Network design princi-
ples; Data center networks; • Software and its engineering;
• Computer systems organization → Maintainability and
maintenance;
*Work performed while at Google.
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1 Introduction
The host networking needs of large-scale Internet services

providers are vast and rapidly evolving. Continuous capac-
ity growth demands novel approaches to edge switching and
bandwidth management, the rise of cloud computing necessi-
tates rich virtualization features, and high-performance dis-
tributed systems continually seek more efficient and lower
latency communication.

Our experiences realizing these needs with conventional
kernel-based networking were hampered by lengthy develop-
ment and release cycles. Hence, several years ago we started
an effort to move networking functionality out of the kernel
and into userspace modules through a common framework.
This framework, Snap, has evolved into a rich architecture
supporting a diverse set of host networking needs with high
performance, and critically, high developer productivity and
release velocity.

Before Snap, we were limited in our ability to develop and
deploy new network functionality and performance optimiza-
tions in several ways. First, developing kernel code was slow
and drew on a smaller pool of software engineers. Second,
feature release through the kernel module reloads covered
only a subset of functionality and often required disconnect-
ing applications, while the more common case of requiring a
machine reboot necessitated draining the machine of running
applications. Mitigating this disruption required us to severely
pace our rate of kernel upgrades. In practice, a change to the
kernel-based stack takes 1-2 months to deploy whereas a new
Snap release gets deployed to our fleet on a weekly basis.
Finally, the broad generality of Linux made optimization diffi-
cult and defied vertical integration efforts, which were easily
broken by upstream changes.

The Snap architecture has similarities with a microkernel
approach where traditional operating system functionality
is hoisted into ordinary userspace processes. However, un-
like prior microkernel systems, Snap benefits from multicore
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Figure 1. Three different approaches to organizing networking functionality: (a) shows a traditional monolithic kernel where
applications make system calls, (b) shows a library OS approach without centralization and with application-level thread
scheduling of processing, and (c) shows the Snap microkernel-like approach leveraging multicore for fast IPC.

hardware for fast IPC and does not require the entire sys-
tem to adopt the approach wholesale, as it runs as a user-
space process alongside our standard Linux distribution and
kernel. Yet Snap retains the advantages of a centralized OS
for managing and scheduling resources, which makes our
work distinct from other recent work in userspace networking
that put functionality into uncoordinated application libraries
[1, 14, 30, 51]. Our approach also allows Snap to eschew the
complexity of full compatibility with existing interfaces like
POSIX and socket system calls, and to instead favor opportu-
nities for vertical integration with our applications. Through
Snap, dataplane interaction occurs over custom interfaces
that communicate via lock-free shared memory queues. Ad-
ditionally, for use cases that integrate with existing kernel
functionality, Snap supports an internally-developed driver
for efficiently moving packets between Snap and the kernel.

Unlocking higher levels of performance in networking is
critical as Moore’s Law slows and as faster storage devices
continue to emerge. Through Snap, we created a new commu-
nication stack called Pony Express that implements a custom
reliable transport and communications API. Pony Express
provides significant communication efficiency and latency
advantages to our applications, supporting use cases ranging
from web search to storage.

Snap’s architecture is a composition of recent ideas in user-
space networking, in-service upgrades, centralized resource
accounting, programmable packet processing, kernel-bypass
RDMA functionality, and optimized co-design of transport,
congestion control and routing. We present our experience
building and deploying Snap across Google, and as a uni-
fied and production-hardened realization of several modern
systems design principles:

• Snap enables a high rate of feature development with a
microkernel-inspired approach of developing in userspace
with transparent software upgrades. It retains the benefits
of centralized resource allocation and management capa-
bilities of monolithic kernels while also improving upon
accounting gaps with existing Linux-based systems.

• Any practical evolution of operating system architecture
requires interoperability with existing kernel network func-
tions and application thread schedulers. Snap implements

a custom kernel packet injection driver and a custom CPU
scheduler that enables interoperability without requiring
adoption of new application runtimes and while maintain-
ing high performance across use cases that simultaneously
require packet processing through both Snap and the Linux
kernel networking stack.

• Snap encapsulates packet processing functions into com-
posable units called “engines”, which enables both modu-
lar CPU scheduling as well as incremental and minimally-
disruptive state transfer during upgrades.

• Through Pony Express, Snap provides support for OSI
layer 4 and 5 functionality through an interface similar
to an RDMA-capable “smart” NIC. In concert with trans-
parent upgrade support, this enables transparently leverag-
ing offload capabilities in emerging hardware NICs as a
means to further improve server efficiency and throughput.

• Minimizing I/O overhead is critical to scaling modern
distributed services. We carefully tuned Snap and the Pony
Express transport for performance, supporting 3x better
transport processing efficiency than the baseline Linux
kernel and supporting RDMA-like functionality at speeds
of 5M ops/sec/core.

2 Snap as a Microkernel Service
Unlike monolithic operating systems, Snap implements

host networking functionality as an ordinary Linux userspace
process. However, compared to other userspace networking
approaches that assume a library OS model [14, 30, 31, 51,
59], Snap maintains the centralized coordination and manage-
ability benefits of a traditional OS. The host grants Snap ex-
clusive access to device resources by enabling specific Linux
capabilities for Snap (Snap does not run with root privileges)
and applications communicate with Snap through library calls
that transfer data either asynchronously over shared memory
queues (fast path) or synchronously over a Unix domain sock-
ets interface (slow path).

Figure 1 illustrates the differences among (a) the traditional
approach of placing all networking functionality in kernel-
space, (b) the library OS approach of accessing hardware
directly from application threads, and (c) the Snap approach
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Figure 2. Snap is divided into a control plane, centered around RPC serving, and a data plane, centered around engines. Engines
encapsulate packet processing pipelines that communicate through memory-mapped I/O. Engine groups dictate the method of
scheduling engines to cores. Except for host kernel interactions, all code executes in userspace.

of leveraging fast multicore IPC to implement network func-
tionality as a user-level service.

Approach (c) provides a number of benefits. First, it com-
bines the centralization benefits of (a) with the userspace
development benefits of (b). Second, it uniquely decouples
the release of new networking functionality from both kernel
and application binary release cycles. Third, unlike the library
OS implementations of approach (b) that achieve low latency
but typically rely on spin-polling application threads to do
so, approach (c) decouples application threading and CPU
provisioning from network services. This enables managing
networking latency and spin-polling capability as a system-
level resource, which is essential for production machines
that typically run dozens of independent applications.

Over the years, Snap has incrementally absorbed network-
ing functionality from the host kernel while other OS func-
tionality like memory management, thread scheduling, ex-
isting kernel networking, and non-networking I/O continues
to leverage the rich Linux ecosystem. This aspect is not like
a traditional microkernel. However, Snap still maintains the
microkernel benefits of address space isolation between the
networking component and other kernel components, devel-
oper and release velocity as bugs found during development
and testing do not bring down the machine, and centralization,
which enables rich scheduling and management policies that
are lost with traditional OS-bypass networking systems.

While early microkernel work saw significant performance
overheads attributed to inter-process communication (IPC)
and address space changes [15, 16, 20], such overheads are
less significant today. Compared to the uniprocessor systems
of the 80s and 90s, today’s servers contain dozens of cores,
which allows microkernel invocation to leverage inter-core
IPC while maintaining application cache locality. This ap-
proach can even improve overall performance when there is

little state to communicate across the IPC (common in zero-
copy networking) and in avoiding ring switch costs of system
calls. Moreover, recent security vulnerabilities such as Melt-
down [43] force kernel/user address space isolation, even in
monolithic kernels [25]. Techniques like tagged-TLB support
in modern processors, streamlined ring switching hardware
made necessary with the resurgence of virtualization, and
IPC optimization techniques such as those explored in the
L4 microkernel [29], in FlexSC [58], and in SkyBridge [44],
further allow a modern microkernel to essentially close the
performance gap between direct system calls and indirect
system calls through IPC.

2.1 Snap Architecture Overview
Figure 2(a) shows the architecture of Snap and its inter-

actions with external systems. It shows Snap separated into
“control plane” (left) and “data plane” (right) components,
with engines as the unit of encapsulation for data plane op-
erations. Examples of engines include packet processing for
network virtualization [19], pacing and rate limiting (“shap-
ing”) for bandwidth enforcement [39], and a stateful network
transport like Pony Express (presented in Section 3).

Figure 2(a) also illustrates the separate communication
paradigms employed across distinct component types: on the
left, communication between control plane components and
external systems is orchestrated through RPC; on the right,
communication to and from data plane components occurs
through memory-mapped I/O; and in the middle, control plane
and data plane components interact through a specialized uni-
directional RPC mechanism called an engine mailbox. Finally,
the figure shows engines organized into groups that share a
common scheduling discipline. Engines are shown handling
all guest VM I/O traffic, all Pony Express traffic, and a sub-
set of host kernel traffic that needs Snap-implemented traffic
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shaping policies applied. The following sections elaborate on
each of these aspects in turn.

2.2 Principles of Engine Design
Engines are stateful, single-threaded tasks that are sched-

uled and run by a Snap engine scheduling runtime. Snap
exposes to engine developers a bare-metal programming envi-
ronment with libraries for OS-bypass networking, rate limit-
ing, ACL enforcement, protocol processing, tuned data struc-
tures, and more, as well as a library of Click-style [47] plug-
gable “elements” to construct packet processing pipelines.

Figure 2(b) shows the structure of a Snap engine and its
interaction with external systems through queues and mail-
boxes. An engine’s inputs and outputs can include userspace
and guest applications, kernel packet rings, NIC receive/trans-
mit queues, support threads, and other engines. In each of
these cases, lock-free communication occurs over memory-
mapped regions shared with the input or output. Occasionally,
an engine may also communicate with outputs via interrupt
delivery (e.g. by writing to an eventfd-like construct) to
notify of inbound work, and interrupts may also be received
on inputs under some engine scheduling policies (see Sec-
tion 2.4). However, these are the only forms of communica-
tion generally performed by engines. In particular, to maintain
real-time properties, Snap prohibits forms of communication
that rely on blocking synchronization.

From the perspective of the Snap framework, it is the role of
engine developers to determine how many engines are needed,
how they are instantiated—either statically or dynamically—
and how work is distributed among engines (utilizing NIC
steering functionality as needed). Sections 3.1 and 6.4 provide
some discussion of this topic, but it is otherwise not a focus
of this paper.

2.3 Modules and Control-to-Engine Communication
Snap modules are responsible for setting up control plane

RPC services, instantiating engines, loading them into engine
groups, and proxying all user setup interactions for those en-
gines. For example, in the case of Pony Express, the “Pony
module” shown in Figure 2(a) authenticates users and sets up
memory regions shared with user applications by exchanging
file descriptors over a local RPC system. It also services other
performance-insensitive functions such as engine creation/de-
struction, compatibility checks, and policy updates.

Some control actions in the service of the above, such as
setting up user command/completion queues, shared mem-
ory registration, rotating encryption keys, etc. require control
components to synchronize with engines. To support Snap’s
real-time, high performance requirements, control compo-
nents synchronize with engines lock-free through an engine
mailbox. This mailbox is a queue of depth 1 on which con-
trol components post short sections of work for synchronous
execution by an engine, on the thread of the engine, and in a
manner that is non-blocking with respect to the engine.

2.4 Engine Groups and CPU Scheduling
Snap seeks to balance the scheduling latency, performance

isolation, and CPU efficiency of engines. However, this bal-
ance is different for different types of engines: some engines
care most about low tail latency, while others seek maximum
fairness given a fixed CPU budget, while still others aim to
prioritize efficiency above all else.

Snap accommodates each of these cases with support for
bundling engines into groups with a specific scheduling mode,
which dictates a scheduling algorithm and CPU resource con-
straints. Figure 2(c) shows the composition of an engine group
and Figure 3 classifies three broad categories of scheduling
modes supported by Snap.
Dedicating cores: In this mode, engines are pinned to dedi-
cated hyperthreads on which no other work can run. Although
this mode does not allow CPU utilization to scale in propor-
tion to load, it can be suitable when the CPU allowance is a
fixed budget of the total machine, where it can then also mini-
mize latency via spin polling, optionally invoking a userspace
mwait [9] to conserve power. Due to static provisioning,
however, this system can strain under load or face high cost
from overprovisioning. When CPU constrained, the scheduler
attempts to fair-share CPU time between engines in order
to provide reasonable performance isolation and robustness
under high load conditions.
Spreading engines: This mode scales CPU consumption
in proportion to load, with a focus on minimizing scheduling
tail latency. The Snap implementation binds each engine to a
unique thread that schedules only when active and blocks on
interrupt notification when idle. Interrupts are then triggered
either from the NIC or from an application via a system call to
schedule an engine. Given a sufficient number of schedulable
cores, this mode can provide the best tail latency properties for
two reasons. First, it is not subject to scheduling delays caused
by multiplexing the work of potentially many engines onto a
small number of threads or cores. Second, by leveraging our
internally-developed real-time kernel scheduling class (more
detail in Section 2.4.1), engines bypass the default Linux
CFS kernel scheduler [5] and quickly schedule, with priority,
to an available core upon interrupt delivery. With interrupts,
however, there are system-level interference effects that must
be carefully managed; in Section 5.3 we elaborate on some
of the schedulability challenges that may arise when a thread
is scheduled to a core that is either in a low-power sleep state
or is in the midst of running non-preemptible kernel code.
Compacting engines: This mode collapses work onto as
few cores as possible, combining the scaling advantages
of interrupt-driven execution with the cache-efficiency ad-
vantages of dedicating cores. However, it relies on periodic
polling of engine queueing delays to detect load imbalance
instead of relying on instantaneous interrupt signaling as with
the “spreading engines” scheduling mode above. The speed
of rebalancing is thus constrained by the latency in polling
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Figure 3. Snap supports three different engine scheduling modes with different resource, latency, and efficiency properties. In
the visualization column, a rectangle is a physical core that contains two logical cores, with portions consumed by Snap shown
in dark gray, non-Snap shown in light blue, and idle time shown in white.

for these queueing delays, which, in our current design, is
non-preemptive and requires engine tasks to return control
to the scheduler within a fixed latency budget. The latency
delay from polling engines, in addition to both the delay for
statistical confidence in queueing estimation and the delay in
actually handing off an engine to another core, can be higher
than the latency of interrupt signaling.

In terms of implementation, this scheduling mode executes
engines on a single thread while the CPU-bottlenecked queue-
ing delay of all engines—measured using an algorithm similar
to Shenango [48]—stays below some configured latency SLO.
Then, interleaved with engine execution, a rebalancing func-
tion periodically performs one of several actions. One action
is to respond to queue build-up by scaling out an engine to
another thread (awoken if necessary). Another action is to
detect excess capacity and migrate back an engine that has suf-
ficiently low load. Other actions include engine compaction
and engine swaps to effectively bin-pack work and maximize
efficiency within the constraints of the SLO. The algorithm
estimates the queueing load of engines by directly accessing
concurrently-updated shared variables in memory, with any
subsequent load balancing decision synchronizing directly
with affected threads through a message passing mechanism
similar to the engine mailbox, but non-blocking on both sides.
Although fundamentally driven by polling, this mode also
supports blocking on interrupt notification after some period
of idleness in order to scale down to less than a full core.

2.4.1 MicroQuanta Kernel Scheduling Class
To dynamically scale CPU resources, Snap works in con-

junction with a new lightweight kernel scheduling class called
MicroQuanta that provides a flexible way to share cores be-
tween latency-sensitive Snap engine tasks and other tasks,
limiting the CPU share of latency-sensitive tasks and main-
taining low scheduling latency at the same time. A Micro-
Quanta thread runs for a configurable runtime out of every
period time units, with the remaining CPU time available to
other CFS-scheduled tasks using a variation of a fair queuing

algorithm for high and low priority tasks (rather than more
traditional fixed time slots).

MicroQuanta is a robust way for Snap to get priority on
cores runnable by CFS tasks that avoids starvation of criti-
cal per-core kernel threads [7]. The sharing pattern is simi-
lar to SCHED_DEADLINE or SCHED_FIFO with real-time
group scheduling bandwidth control. However, MicroQuanta
schedules with much lower latency and scales to many more
cores. While other Linux real-time scheduling classes use
both per-CPU tick-based and global high-resolution timers
for bandwidth control, MicroQuanta uses only per-CPU high-
resolution timers. This allows scalable time slicing at mi-
crosecond granularity.

2.5 CPU and Memory Accounting
Strong CPU and memory accountability is important in

datacenter and cloud computing environments because of
the heavy and dynamic multiplexing of VMs and jobs onto
machines. For example, prior work [12, 36] demonstrates
the shortcoming of soft-interrupt accounting with the kernel
networking stack, as softirqs steal CPU time from whatever
application happens to be running on the core irrespective
of whether softirq processing is for data destined to that ap-
plication. Snap maintains strong accounting and isolation by
accurately attributing both CPU and memory consumed on
behalf of applications to those applications using internally-
developed Linux kernel interfaces to charge CPU and memory
to application containers. This allows Snap to scale Snap CPU
processing and per-user memory consumption (for per-user
data structures) without oversubscribing the system.

2.6 Security
Snap engines may handle sensitive application data, doing

work on behalf of potentially multiple applications with dif-
fering levels of trust simultaneously. As such, security and
isolation are critically important. Unlike a monolithic kernel,
Snap runs as a special non-root user with reduced privilege,
although care must still be taken to ensure that packets and
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payloads are not mis-delivered. Applications establishing in-
teractions with Snap authenticate its identity using standard
Linux mechanisms.

One benefit of the Snap userspace approach is that soft-
ware development can leverage a broad range of internal tools,
such as memory access sanitizers and fuzz testers, developed
to improve the security and robustness of general user-level
software. The CPU scheduling modes of Section 2.4 also
provide options to mitigate Spectre-class vulnerabilities [37]
by cleanly separating cores running engines for certain appli-
cations from those running engines for different applications.

3 Pony Express: A Snap Transport
Over the course of several years, the architecture under-

pinning Snap has been used in production for multiple net-
working applications, including network virtualization for
cloud VMs [19], packet-processing for Internet peering [62],
scalable load balancing [22], and Pony Express, a reliable
transport and communications stack that is our focus for the
remainder of this paper. Our datacenter applications seek ever
more CPU-efficient and lower-latency communication, which
Pony Express delivers. It implements reliability, congestion
control, optional ordering, flow control, and execution of
remote data access operations.

Rather than reimplement TCP/IP or refactor an existing
transport, we started Pony Express from scratch to innovate
on more efficient interfaces, architecture, and protocol. The
application interface to Pony Express is based on asynchro-
nous operation-level commands and completions, as opposed
to a packet-level or byte-streaming sockets interface. Pony
Express implements both (two-sided) messaging operations
as well as one-sided operations of which RDMA is one ex-
ample. A one-sided operation does not involve any remote
application thread interaction and thereby avoids invoking the
application thread scheduler for remote data access.

As a contrast to the Linux TCP stack, which attempts to
keep transport processing affinity local to application CPUs [8,
21], Pony Express runs transport processing in a thread sepa-
rate from the application CPU through Snap, which affinitizes
its engine threads to the NUMA node of the PCI-attached NIC.
Through Snap, Pony Express predominantly shares CPU with
other engines and other transport processing work rather than
application work. This enables better batching, code local-
ity, reduced context switching, and opportunities for latency
reduction through spin polling. The overarching design prin-
ciple is that, given zero-copy capability, NIC NUMA node
locality and locality within the transport layer are together
more important than locality with the application thread.
3.1 Architecture and Implementation

The architecture of Pony Express is illustrated in Figure 4.
Client applications contact Pony Express over a Unix domain
socket at a well-known address through the Pony Express
client library API. As previously described in Section 2.3,

Figure 4. The architecture of a Pony Express engine on the
left and associated control logic on the right.

this socket bootstraps shared memory regions between appli-
cations and Pony Express, using the ancillary data features of
domain sockets to pass tmpfs-backed file descriptors between
processes. One such shared memory region implements the
command and completion queues for asynchronous opera-
tions. When an application wishes to invoke an operation,
it writes a command into the command queue. Application
threads can then either spin-poll the completion queue, or can
request to receive a thread notification when a completion
is written. Other shared memory regions map to application
regions for zero-copy request/response payloads.

Pony Express implements custom memory allocators to
optimize the dynamic creation and management of state,
which includes streams, operations, flows, packet memory,
and application buffer pools. These structures are appropri-
ately charged back to application memory containers using
the mechanisms discussed in Section 2.5.
Transport design: Pony Express separates its transport
logic into two layers: an upper layer implements the state
machines for application-level operations and a lower layer
implements reliability and congestion control. The lower layer
implements reliable flows between a pair of engines across the
network and a flow mapper maps application-level connec-
tions to flows. This lower layer is only responsible for reliably
delivering individual packets whereas the upper layer handles
reordering, reassembly, and semantics associated with spe-
cific operations. The congestion control algorithm we deploy
with Pony Express is a variant of Timely [45] and runs on ded-
icated fabric QoS classes. The ability to rapidly deploy new
versions of Pony Express significantly aided development and
tuning of congestion control.

With Pony Express, we periodically extend and change
our internal wire protocol while maintaining compatibility
with prior versions during the time horizon where multiple
release versions may exist in our fleet. Although our weekly
release cycle makes this time horizon small, we nonetheless
still require interoperability and backwards compatibility as
we transition users. We currently use an out-of-band mecha-
nism (a TCP socket) to advertise the wire protocol versions
available when connecting to a remote engine, and select the
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least common denominator. Once the fleet has turned over,
we subsequently remove the code for unused versions.
Engine operation: A Pony Express engine services incom-
ing packets, interacts with applications, runs state machines
to advance messaging and one-sided operations, and gener-
ates outgoing packets. When polling NIC receive queues, the
maximum number of packets processed is configurable to
vary the latency vs. bandwidth trade-off—our current default
is 16 packets per batch. Polling application command queues
similarly uses a configurable batch size. Based on incoming
packets and commands from applications, as well as the avail-
ability of NIC transmit descriptor slots, the engine produces
new packets for transmission. This just-in-time generation of
packets based on slot availability ensures we generate pack-
ets only when the NIC can transmit them (there is no need
for per-packet queueing in the engine). Throughout, work
scheduling provides tight bounds on engine execution time,
implements fairness, and opportunistically exploits batching
for efficiency.

Applications using Pony Express can either request their
own exclusive engines, or can use a set of pre-loaded shared
engines. As discussed in Section 2, engines are the unit
of scheduling and load balancing within Snap, and thus,
with application-exclusive engines, an application receives
stronger performance isolation by not sharing the fate of CPU
and scheduling decisions with other applications, but at poten-
tially higher CPU and memory cost. Applications use shared
engines when strong isolation is less important. This has eco-
nomic advantages and also reduces the challenges associated
with scaling to a high number of engines, which is an area of
ongoing work.
3.2 One-Sided Operations

One-sided operations do not involve any application code
on the destination, instead executing to completion entirely
within the Pony Express engine. Avoiding the invocation of
the application thread scheduler (i.e., Linux CFS) to dispatch,
notify, and schedule a thread substantially improves CPU effi-
ciency and tail latency. An RDMA Read is a classic example
of a one-sided operation, and this section covers how Pony
Express enables similar benefits.

Unlike RPC systems, which enable applications to write
handlers that implement arbitrary user logic, one-sided opera-
tions in Pony Express must be pre-defined and pre-installed
as part of the Pony Express release. We do not allow arbitrary
application-defined operations and instead follow a feature re-
quest and review process. Since the one-sided logic executes
in the address space of Snap, applications must explicitly
share remotely-accessible memory even though their threads
do not execute the logic. While it is certainly possible to avoid
the invocation of the application thread scheduler for every
operation by using spin-polling application threads in con-
junction with two-sided messaging, there are downsides to a

spin-polling thread for every application (discussed further in
Section 6.1).

The software flexibility of Pony Express enables richer op-
erations that go beyond basic remote memory read and write
operations. As noted in prior work [33, 38], the efficiency
advantages of RDMA can disappear with remote data struc-
tures that require multiple network round-trips to traverse.
As an example, we support a custom indirect read operation,
which consults an application-filled indirection table to de-
termine the actual memory target to access. Compared to a
basic remote read, an indirect read effectively doubles the
achievable operation rate and halves the latency when the
data structure requires a single pointer indirection. Another
custom operation is a scan and read, which scans a small
application-shared memory region to match an argument and
fetches data from a pointer associated with the match. Both
of these operations are used in production systems.
3.3 Messaging and Flow Control

Pony Express provides send/recv messaging operations for
RPC and non-RPC use cases. As with HTTP2 and QUIC [40],
we provide a mechanism to create message streams to avoid
head-of-line blocking of independent messages. Rather than
a per-connection receive window of bytes (as found in TCP
sockets), flow control is based on a mix of receiver-driven
buffer posting as well as a shared buffer pool managed using
credits, for smaller messages.

Flow control for one-sided operations is more subtle, as
there are no application-visible mechanisms to stop initiators
from hitting a machine with a never-ending stream of read
requests, for example. That is, unlike byte streaming sock-
ets and two-sided messaging, an application cannot pause
a sender by refusing to read from a socket or post memory
to receive a message. While one-sided clients can amelio-
rate server overload by limiting outstanding operations on a
connection or with other client-side backoff strategies, we
ultimately address this problem with the Snap CPU schedul-
ing and accounting mechanisms discussed in Section 2. In
particular, users of one-sided operations instantiate a Pony
Express engine that receives a fair allocation of CPU time.
If clients overrun this engine with one-sided operations, in-
evitably request packets get dropped and congestion control
backs off. Thus, while our one-sided users typically avoid
these scenarios, one-sided operations fall back to relying on
congestion control and CPU scheduling mechanisms rather
than higher-level flow control mechanisms for fair sharing.
3.4 Hardware Offloads

The pursuit of offloads and other accelerators is strategi-
cally important as Moore’s Law slows. Pony Express exploits
stateless offloads, including the Intel I/OAT DMA device [2]
to offload memory copy operations. We developed a kernel
module to make this capability available to Snap and found
the asynchronous interactions around DMA to be a natural fit
for Snap, with its continuously-executing packet processing
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Figure 5. Transparent upgrade sequence diagram.

pipelines, compared to Linux’s synchronous socket system
calls. Section 5.1 quantifies the overall CPU efficiency im-
provement from copy offload for Pony Express. Pony Express
also exploits other stateless NIC offloads; one example is
an end-to-end invariant CRC32 calculation over each packet.
Section 6.5 discusses the use of stateful offloads and how we
see them interacting with Pony Express.

4 Transparent Upgrades
Snap substantially enhances our ability to innovate in host

networking. A critical enabler is our ability to release new
versions of Snap without disrupting running applications. This
section describes our approach.

An initial goal was to afford developers maximum flexibil-
ity in making substantial changes between releases (keeping
API and wire format compatibility issues in mind). This pre-
cluded schemes that kept binary state in memory while chang-
ing out code. Instead, during upgrades, the running version
of Snap serializes all state to an intermediate format stored
in memory shared with a new version. As with virtual ma-
chine migration techniques [18], the upgrade is two-phased to
minimize the blackout period when the network stack is un-
available. The initial brownout phase performs a preparatory
background transfer that has minimal performance impact.

A second goal was to minimize disruption to applications,
both in terms of writing code to handle upgrade and loss of
connectivity. We target a blackout period of 200msecs or less,
and in order to meet this target, Snap performs upgrades incre-
mentally, migrating engines one at a time, each in its entirety.
As the number of engines running in production increased,
this approach became necessary to protect a single engine
from experiencing prolonged blackout due to the transfer of
other engines. Beyond this, with a gradual upgrade process
across a cluster, we have found that our existing applications
do not notice hundred millisecond blips in communication
that occur once per week. Packet loss may occur during this
blackout period, but end-to-end transport protocols tolerate
this as if it were congestion-caused packet loss. Importantly,
authenticated application connections remain established (on
both ends) and state such as bidirectional message streams
remain intact.

Figure 5 illustrates the upgrade flow. First, a Snap “master”
daemon launches a second instance of Snap. The running
Snap instance connects to it and then, for each engine one at a

time, suspends control plane Unix domain socket connections
and transfers them in the background along with shared mem-
ory file descriptor handles. This is accomplished using the
ancillary fd-passing feature of Unix domain sockets. While
control plane connections are transferred, the new Snap re-
establishes shared memory mappings, creates queues, packet
allocators, and various other data structures associated with
the new instance of the engine while the old engine is still op-
erating. Upon completion, the old engine begins the blackout
period by ceasing packet processing, detaching NIC receive
filters, and serializing remaining state into a tmpfs shared
memory volume. The new engine then attaches identical NIC
filters and deserialize state. Once all engines are transferred
this way, the old Snap is terminated.

5 Evaluation
This section evaluates the performance and dynamic scala-

bility of Snap, focusing on the Pony Express communication
stack. We measure the isolation and fairness properties of
Snap running Pony Express (“Snap/Pony”) and also demon-
strate our incremental state transfer for transparent upgrades.
All of our results below report CPU usage with hyperthread-
ing enabled such that a single reported “core” or “CPU” refers
to a single hardware thread context. In Sections 5.1-5.3, we
compare against the Linux kernel TCP/IP stack, not only be-
cause it is the baseline at our organization but also because
kernel TCP/IP implementations remain, to our knowledge, the
only widely-deployed and production-hardened alternative
for datacenter environments. In Section 5.4, we also provide
qualitative comparisons against a hardware RDMA technol-
ogy available within our organization.
5.1 Baseline Throughput and Latency

To establish the baseline performance of Snap/Pony, we
start with performance measurements between a pair of ma-
chines connected to the same top-of-rack switch. The ma-
chines are equipped with Intel Skylake processors and 100Gbps
NICs. We compare against kernel TCP sockets using the
Neper [3] utility (similar to Netperf but with support for
flowing data over multiple simultaneous streams), while for
Snap/Pony we use a custom (non-sockets) benchmark con-
figured similarly. All benchmarks employ a single applica-
tion thread for sending and receiving—we look at scaling
performance with multiple processes and threads in the fol-
lowing section. The Pony Express engine always spins and
for measuring end-to-end latency we vary whether or not the
application thread spins.

Table 1 shows that the baseline, single-stream throughput
of TCP is 22Gbps on our kernel configuration using Neper.
Also shown is the measured average core utilization across
both application and kernel, which is about 1.2 cores. By
contrast, Snap/Pony delivers 38Gbps using 1.0 Snap cores
and 0.05 application cores. Recently we have also started to
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Figure 6. Benchmark data. Graph (a) shows mean latency between two machines connected to the same top-of-rack switch.
Graphs (b), (c), and (d) show per-machine CPU time, prober tail latency, and the latency impact of background machine
antagonists, respectively, for an all-to-all RPC benchmark as offered load is increased. Graphs (b) and (c) compare scheduling
modes while (d) compares MicroQuanta versus optimized Linux CFS. All graphs compare against Linux TCP and in all graphs
Gbps is bidirectional, since each job both requests and responds to RPCs.

experiment with a larger MTU size on our switches and fab-
rics. We show that a 5000B MTU1 increases the single-core
throughput of Snap/Pony to over 67Gbps, and enabling I/OAT
receive copy offload (to complement zero-copy transmit) fur-
ther increases throughput to over 80Gbps using a single core.
Finally, Table 1 shows that, while TCP performance degrades
substantially as the number of simultaneously active streams
increases, Snap/Pony demonstrates robust connection scaling
by avoiding heavy context switching and maintaining good
locality on this benchmark.

Figure 6(a) illustrates the average round-trip latency be-
tween two applications sending and receiving a small message
(two-sided). In this configuration, TCP_RR in Neper shows
TCP provides a baseline latency of 23µsecs. A similar appli-
cation using Snap/Pony delivers latency of 18µsecs. Configur-
ing the application to spin-poll on the Pony Express comple-
tion queue reduces latency to less than 10µsecs whereas using
the busy-polling socket feature in Linux reduces TCP_RR
latency to 18µsecs. We also show the Snap/Pony latency
achieved with a one-sided access, which further reduces la-
tency to 8.8µsecs.
1We chose 5000B in order to comfortably fit a 4096B application payload
with additional headers and metadata.

# streams CPU/sec Gbps

Linux TCP 1 stream 1.17 22.0
200 streams 1.15 12.4

Snap/Pony 1 stream 1.05 38.5
200 streams 1.05 39.1

Snap/Pony 1 stream 1.05 67.5
w/ 5kB MTU 200 streams 1.05 65.7
Snap/Pony 1 stream 1.05 82.2

w/ 5kB+I/OAT 200 streams 1.05 80.5

Table 1. Throughput measured for TCP (using Neper), and
Snap/Pony (using an internal tool). All tools use a single
application thread to drive the load.

5.2 Scaling and Performance Isolation
This section evaluates Snap/Pony performance when scal-

ing beyond a single core. The experiment uses a rack of 42
machines all connected to the same switch. Each machine is
equipped with a 50Gbps NIC and Intel Broadwell processors
in a dual-socket configuration. We schedule 10 background
jobs on each machine where each job communicates over
RPC at a chosen rate with a Poisson distribution. Each RPC
chooses one of the 420 total jobs at random as the target and
requests a 1MB (cache resident) response with no additional
computation. The offered load is varied by increasing the
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Figure 7. Latency degradation from system-level effects. Graph (a) shows the latency impact of low-power C-states for an RPC
benchmark running at low QPS and on an otherwise idle machine, while graph (b) shows the latency impact of a harsh antagonist
that spawns threads to continually perform mmap() and munmap() system calls.

request rate of each job. The measured CPU time includes
all application, system, and interrupt time. The MTU size
for Snap/Pony is 5000B. For TCP, it is 4096B, which is the
analogous “large MTU” setting for TCP at our organization;
regrettably, the values are different, but close enough that we
believe the data is still representative. In addition to the 10
jobs generating background load with 1MB RPCs, we also
schedule a single latency prober job on each machine that sim-
ilarly chooses a random destination but measures the latency
of only a tiny RPC. We report the 99th percentile latency
of these measurements. In the case of Snap/Pony, each job
requests its own exclusive engine, and we evaluate the two
scheduling modes from Section 2.4, “spreading engines” and
“compacting engines”.

Figure 6(b) shows the overall per-machine CPU usage and
Figure 6(c) shows the 99th percentile prober latency as the to-
tal background load increases to 80Gbps per machine (which
includes traffic in both directions on the 50Gbps NICs). We
first observe that both Snap engine schedulers succeed in
scaling CPU consumption in proportion to load. Next, Snap
generally shows sub-linear increase in CPU consumption,
a consequence of batching efficiencies. Finally, the relative
CPU time differences between Snap and TCP increases as
dynamic scaling mechanisms are stressed. At an offered load
of 8Gbps, CPU time across both TCP and Snap is comparable,
but at an offered load of 80Gbps, Snap is over 3x more effi-
cient than TCP. We attribute the performance improvement
due to a combination of copy reduction, avoiding fine-grained
synchronization, the 5000B vs. 4096B MTU difference, and
in hotter instruction and data caches in the case of the Snap
compacting scheduler. Notably, for these larger 1MB RPCs,
the cost of kernel TCP socket system calls amortizes well and
avoiding them does not show performance gain. The Gbp-
s/core of Snap/Pony is less than with the peak single-core
throughput of 82Gbps illustrated in Table 1 because work is
spread to multiple engines, reducing batching and introducing
previously absent scheduler overheads.

While the Snap compacting scheduler offers the best CPU
efficiency, the spreading scheduler has the best tail latency as
illustrated in Figure 6(c). The lower CPU efficiency under the
spreading scheduler comes from time spent in interrupt and
system contexts, whereas the majority of scheduler time in
the compacting scheduler is in the user context and is overall
lower. This experiment does not show performance loss expe-
rienced by bystander applications due to context switching.
This effect is higher for the spreading scheduler and for TCP
softirq processing, which both rely on application interrupts,
than for the compacting scheduler, which consolidates work
onto the fewest cores and minimizes application interference.

Figure 6(d) shows the impact of loading the machine with
background antagonist compute processes, running Snap en-
gines using the spreading scheduler, and comparing the Micro-
Quanta kernel scheduling class to Linux CFS with a niceness
of -20 (its most aggressive setting). The background antago-
nists run with reduced priority relative to the load-generating
network application jobs and continually wake threads to per-
form MD5 computations. They place enormous pressure on
both the hardware (e.g., DRAM, cache) and software sched-
uling systems, and thus substantially increase the overall tail
latency compared to the Figure 6(c) runs without the antago-
nists, particularly for the non-MicroQuanta cases.
5.3 System-Level Interrupt Latency Impacts

While Figures 6(c) and (d) shows favorable latency results
under the spreading scheduler, this scheduler relies on inter-
rupts to wake on idleness, which is prone to a number of
additional system-level latency contributors in practice. First,
an interrupt generated by the NIC may target a core in a deep
power-saving C-state. Second, our production machines run
complex antagonists that can affect the schedulability of even
a MicroQuanta thread. We illustrate these effects in Figures
7(a) and 7(b), in which we run the same 42-machine all-to-all
RPC benchmark as previously, but running only the prober
job, running it only at 1000 QPS (one RPC per millisecond),
and with the prober application thread spin-polling to isolate
application thread wakeup from transport wakeup.
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Figure 8. Production dashboard illustrating the rate of IOPS
served by the hottest machine over each minute interval. Some
intervals show a single Snap/Pony engine and core serving
upwards of 5M IOPS.

First, Figure 7(a) shows that, running a low QPS benchmark
on an otherwise unloaded machine, both kernel TCP and the
Snap spreading scheduler see remarkably worse latency than
the prior two-machine (closed loop) ping-pong latency result
in 6(a) due to C-state interrupt wakeup latency. The Snap
compacting scheduler avoids this wakeup cost because its
most compacted, least-loaded state spin-polls on a single core
by default (expanding to more cores as needed).

Second, Figure 7(b) shows the impact of running a harsh
antagonist that spawns threads to repeatedly mmap() and
munmap() 50MB buffers. While perhaps an uncommon and
unrealistic scenario, this demonstrates a pathology found in
many Linux kernels in which certain code regions cannot be
preempted by any userspace process. Compacting engines
provides the best latency because, in this benchmark, engine
work compacts down to a single spin-polling core that does
not time-share with the antagonist. We further discuss ongo-
ing challenges around CPU scaling in Section 6.3.
5.4 RDMA and One-sided Operations

We see significant application-level performance improve-
ments from leveraging the one-sided operations available in
Snap/Pony. Conventional RPC stacks written on standard
TCP sockets, like gRPC, see less than 100,000 achievable
IOPS/core [4]. Figure 8 shows a production dashboard snap-
shot of a service using Snap/Pony for one-sided data access.
The service supports a large-scale distributed data analyt-
ics system. This workload demands up to 5 million remote
memory accesses per second served with a single Snap/Pony
dedicated core. Many of the operations use a custom batched
indirect read operation, in which Snap/Pony consults a table
to perform a batch of eight indirections locally rather than
requiring those indirections to occur over the network.

Relative to a hardware RDMA implementation that relied
on fabric flow control, switching to Snap/Pony doubled the
production performance of the data analytics service. This
was primarily due to relaxation of rate limits previously put
in place to prevent excessive fabric back-pressure when indi-
vidual RDMA NICs became overloaded during hot-spotting.

Figure 9. Transparent upgrade blackout duration data from a
large and representative production cluster.

Hardware RDMA implementations typically implement small
caches of connection and RDMA permission state, and access
patterns that spill out of the cache result in significant perfor-
mance cliffs. A “thrashing” RDMA NIC emits fabric pauses,
which can quickly spread to other switches and servers. This
led us to implement a cap of 1M RDMAs/sec per machine
and credits were statically allocated to each client. Switching
to Snap/Pony allowed us to remove these caps, to increase
IOP rates, and to rely on congestion control on lossy fabrics
to handle transient hot-spotting. Then switching to our cus-
tom indirect read operation with integrated batching yielded
another significant performance boost.
5.5 Transparent Upgrades

Figure 9 shows production statistics for a transparent up-
grade performed in one of our production cells, supporting
internal services, on 2019-01-18. The median blackout du-
ration is 250ms, which is slightly above the goal of 200ms
we set when starting the project. The latency distribution
is heavy-tailed, and strongly correlates with the amount of
state checkpointed. Internal application owners do not notice
the blips that occur once per week, although we are explor-
ing ways to further reduce blackout duration through more
incremental transfer steps.

6 Experiences, Challenges, and Future Work
This section discusses our experiences in building and

deploying Snap and related networking technologies. We also
discuss ongoing work and recent challenges.
6.1 In-Application Transports

An alternative to kernel TCP or Pony Express is a transport
that operates entirely in the address space of an application
process, using either frameworks such as netmap [55] or
DPDK [1] for high-performance use cases, or UDP sockets
for lower-performance WAN use cases like QUIC [40]. Such
an in-application transport design enables applications to run
transport code in their own thread contexts, which can enable
faster CPU scale-out in response to bursts and can improve
latency by avoiding system calls (kernel TCP) or the cross-
core hop between application threads and network threads
(Pony Express). Indeed, we experimented with this approach,
but found that, despite the benefits, it imposed too many
manageability and performance drawbacks.

11



SOSP ’19, October 27–30, 2019, Huntsville, ON, Canada Marty and De Kruijf, et al.

First and most important, our transparent upgrade approach
described in Section 4 relies on running the transport as a
separate process. With well-managed weekly releases of Snap,
we can quickly make wire protocol changes to systems like
Pony Express without needing to speak all wire formats of
any client library that is installed anywhere. While some of
our techniques could apply to in-application transports with
extensions for dynamic linking, binary upgrades would still
be at the whim of a large number of individual service owners.

Second, we find that datacenter transports are sensitive to
careful CPU provisioning and scheduling, while transports
that run in an application container encounter a complicated
set of threading and CPU provisioning issues. A spin-polling
transport thread with a provisioned core in every applica-
tion could help ameliorate scheduling unpredictability, but
considering that it is common for us to run dozens of indi-
vidual applications on a single machine, this approach is not
practical in general. At the same time, relying on interrupt-
driven wakeup of an application transport thread can see
unpredictable scheduling delays. Non-responsive transports
cause collateral damage, for instance, when well-provisioned
servers see excessive transport timeouts and needless retrans-
missions because packets that have successfully reached a
client are stuck waiting for CPU service. Interrupt-driven
Snap leverages our MicroQuanta kernel scheduling class to
help bound the scheduling delay, but this is a privileged sched-
uling class that cannot be used by arbitrary internal applica-
tions without special policy and arbitration.
6.2 Memory Mapping and Management

One significant challenge with non-kernel networking lies
with memory management. This is true not only for the Snap
approach, but also for offload stacks like hardware RDMA
and for in-application userspace stacks.

Ultimately, applications wish to send and receive data in
and out of their heaps. While the Linux kernel can copy di-
rectly to and from any application-specified virtual memory
address, and also implement zero-copy by translating through
an application’s page table and temporarily pinning applica-
tion buffers, Snap does not have access to application page
tables and Linux cannot share arbitrary anonymous-backed
heap memory between processes. In Linux, any memory
shared between applications and Snap must be backed by
tmpfs or memfds [6]. We considered modifying our heap
implementation to back all application heap memory with
tmpfs, and to then coordinate with Snap to map everything
into the Snap address space (and page table), but we did not
implement this due to concerns around TLB shootdowns,
as any application address space modification can result in
inter-processor interrupts targeting the core(s) running Snap.
Moreover, our heap implementation frequently returns mem-
ory to the kernel to account for phase behavior, which can
result in frequent remappings.

Hardware RDMA NICs, along with OS bypass, encounter
similar problems because they also do not have access to ap-
plication page tables and rely on long-lived memory pinning
and I/O page tables. While many MPI stacks provide an al-
ternative heap that transparently registers heap memory with
NICs, fluid address space modifications in our environment
may require excessive coordination with a NIC (or IOMMU).

Pony Express does register some application-shared mem-
ory with the NIC for zero-copy transmit; but we do so se-
lectively and some of our current applications take a copy
from application heap memory into bounce buffer memory
shared and registered with Snap (and vice versa). We are ex-
ploring techniques to avoid these copies, for instance, if the
cost of a custom system call to translate and temporarily pin
the memory is cheaper than a memory copy.
6.3 Dynamic CPU Scaling

Scheduling and scaling of CPU for Snap is an area of on-
going research and development. In this paper we presented
three different approaches: dedicated cores, spreading en-
gines, and compacting engines. Our initial Snap deployments
used dedicates cores, in part because of simplicity but also
because static provisioning meets performance SLOs up to a
known load threshold, and thus many deployments continue
to use dedicated cores today. However, as we seek to grow
usage of Snap, particularly with Pony Express as a general-
purpose TCP/IP replacement, dynamic provisioning of host
networking CPU resources has become paramount; we find
that kernel TCP networking usage is very bursty, sometimes
consuming upwards of a dozen cores over short bursts. Al-
though our performance evaluation demonstrated that our
compacting engines scheduler provides the best overall CPU
efficiency, and provides the lowest latency at low loads and
in the presence of system call antagonists, we also showed
that spreading engines can offer better tail latency at higher
Snap loads because of the delay in reacting to engine queue
build-up. We are currently working towards achieving the
best of both worlds by combining elements of both types of
schedulers, and continuing to refine our kernel support.
6.4 Rebalancing Across Engines

As discussed in Section 2.2, engines are single-threaded,
which steers Snap developers away from the overheads of fine-
grained synchronization and towards siloing state as much
as possible. Pony Express engines, for example, do not cur-
rently share flow state between engines, and flows also do not
currently rebalance between engines. As a consequence, how-
ever, serialization of flow processing across flows within an
engine can limit performance. Our client libraries implement
a variety of different mechanisms to spread load across mul-
tiple engines, ranging from simple sharding of flows across
engines to duplicating flows and implementing rebalancing
above the Pony Express layer. Nonetheless, we are consid-
ering the possible need for fine-grained rebalancing across
engines using mechanisms such as work stealing [48, 51].
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6.5 Stateful Offloads
Our early experience with an OS-bypass RDMA stack

implemented entirely in hardware and directly accessed by
uncoordinated application libraries did not scale and did not
have the iteration velocity required. Nonetheless as Moore’s
Law slows we continue to explore the next generation of state-
ful offloads as they overcome hurdles for datacenter adoption.
Going forward, we see several benefits in leveraging Snap
as a centralized management layer for accessing future hard-
ware offloads. First, it allows us to deploy workarounds for
hardware and firmware bugs frequently encountered in com-
plex, stateful NICs. Second, it can flexibly implement the
traditional role of an OS in providing multiplexing and man-
agement policies. Third, providing robust and secure virtual
functions for complex hardware offloads is challenging and
Snap can provide a transparent fallback mechanism when
needed. Finally, decoupling applications from specific hard-
ware allows us to transparently migrate applications between
machines irrespective of the underlying hardware.

7 Related Work
In the space of networking as a separate host service,

TAS [35], IsoStack [57], and SoftNIC [26] dedicate cores
for efficiency and low latency, with a focus on performance
through minimization, spin-polling, and the elimination of
data structure sharing. At the same time, in the space of library
OS solutions, IX [14, 52], ZygOS [51], and Shinjuku [31] de-
velop high-performance systems that service a single applica-
tion in a single address space, integrating application process-
ing handlers into the transport itself and assuming dedicated
NIC resources. ZygOS diverges from IX by incorporating task
stealing with intermediate buffering, and Shinjuku adds intelli-
gent preemption; however, all three efforts sidestep problems
around inter-application sharing and arbitration, and require
Dune virtualization [13]. None of the above efforts tackle
efficiency and low latency with fine-grained dynamic CPU
scaling, transparent upgrades, or achieve the full generality of
what Snap provides in a general-purpose, multi-application
production and/or cloud environment.

Other recent approaches take advantage of lightweight run-
times and kernel bypass to achieve high performance, both
inside academia [30, 32, 42, 48, 50, 53] and outside [1, 55].
Perhaps the most similar to our work is Shenango [48], which
tackles dynamic CPU scaling even more aggressively than
our work by dedicating an entire core to thread scheduling
and packet steering functions. However, Shenango requires
a custom application scheduling runtime and requires parti-
tioning cores away from the operating system. Snap uniquely
integrates with a general purpose host through its Micro-
Quanta kernel scheduling class and also uniquely addresses
transparent upgrades.

On the transport side, mixed onload/offload approaches
have been previously proposed for TCP [54, 56]. There is
also abundant recent work on datacenter transports [11, 17,

24, 27, 46, 49], although much of it requires fabric modifica-
tion, which is not in scope for this work. Like Pony Express
running on machines without RDMA offload, FaSST [34]
implements RDMA using two-sided datagram exchange, and
also like Pony Express, LITE [60] exposes RDMA through
a software indirection layer, but implemented in the kernel
rather than in userspace.

In terms of kernel design, FlexSC [58] is similar to Snap
in leveraging modern multicore hardware and delegating sys-
tem calls to separate threads from application threads, but
it does not propose a microkernel-like approach to doing
so. At the same time, microkernels have a decades-long his-
tory [10, 15, 16, 20, 23, 28, 29, 41, 61]. Most relevant is the
work of Thekkath et al. [59], which discusses the trade-offs
implementing network protocols in a monolithic kernel versus
a microkernel approach. They ultimately dismiss the latter,
citing domain switching overheads. However, as previously
discussed, these overheads have diminished significantly with
multi-core systems and fine-grained memory sharing mecha-
nisms in modern server architectures.

8 Conclusions
We present the design and architecture of Snap, a widely-

deployed, microkernel-inspired system for host networking.
Snap enables numerous teams to develop high-performance
packet processing systems with high developer and release
velocity. We describe, in detail, a communication stack based
on this microkernel approach and how we transparently up-
grade the communication stack without draining applications
from running machines. Our evaluation demonstrates up to
3x improvement in Gbps/core efficiency, sub-10-microsecond
latency, dynamic scaling capability, millions of one-sided
operations per second, and CPU scheduling with a customiz-
able emphasis between efficiency and latency. Snap has been
running in production for 3 years supporting the extensible
communication needs of several critical systems. Our experi-
ence indicates that the Snap release velocity has essentially
been a requirement for deploying these services because of the
needed iteration speed in production. The performance gains
are a corollary benefit, enabled by aggressive deployment
of novel application structures that bring to bear advanced
one-sided and low-latency messaging features in a way that
would otherwise not have been possible.
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