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Time Series Management Systems: A Survey
Søren Kejser Jensen, Torben Bach Pedersen, Senior Member, IEEE , Christian Thomsen

Abstract—The collection of time series data increases as more monitoring and automation are being deployed. These deployments
range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs)
producing large volumes of data at high velocity. To store and analyze these vast amounts of data, specialized Time Series Management
Systems (TSMSs) have been developed to overcome the limitations of general purpose Database Management Systems (DBMSs) for
times series management. In this paper, we present a thorough analysis and classification of TSMSs developed through academic or
industrial research and documented through publications. Our classification is organized into categories based on the architectures
observed during our analysis. In addition, we provide an overview of each system with a focus on the motivational use case that drove the
development of the system, the functionality for storage and querying of time series a system implements, the components the system is
composed of, and the capabilities of each system with regard to Stream Processing and Approximate Query Processing (AQP). Last, we
provide a summary of research directions proposed by other researchers in the field and present our vision for a next generation TSMS.

Index Terms—Approximation, Cyber-physical systems, Data abstraction, Data compaction and compression, Data storage
representations, Data structures, Database architectures, Distributed databases, Distributed systems, Internet of things, Scientific
databases, Sensor data, Sensor networks, Stream processing, Time series analysis
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1 INTRODUCTION

THE increase in deployment of sensors for monitoring
large industrial systems and the ability to analyze the

collected data efficiently provide the means for automation
and remote management to be utilized at an unprecedented
scale [1]. For example, the sensors on a Boeing 787 produce
upwards of half a terabyte of data per flight [2]. While the use
of sensor networks can range from an individual smart light
bulb to hundreds of wind turbines distributed throughout
a large area, the readings from any sensor network can
be represented as a sequence of values over time, more
precisely as a time series. Time series are finite or unbounded
sequences of data points in increasing order by time. Data
series generalize the concept of time series by removing the
requirement that the ordering is based on time. As time series
can be used to represent readings from sensors in general, the
development of methods and systems for efficient transfer,
storage, and analysis of time series is a necessity to enable
the continued increase in the scale of sensor network and
their deployment in additional domains [1], [3], [4], [5].
For a general introduction to storage and analysis of time
series see [6], [7], a more in-depth introduction to sensor
data management, data mining, and stream processing is
provided by [8], [9], [10].

While general Database Management Systems (DBMSs),
and in particular Relational Database Management Systems
(RDBMSs), have been successfully deployed in many situa-
tions, they are unsuitable to handle the velocity and volume
of the time series produced by the large scale sensor networks
deployed today [3], [4], [5], [11]. In addition, analysis of the
collected time series often requires exporting the data to
another application such as R or SPSS, as these provide

• S. K. Jensen, T. B. Pedersen, and C. Thomsen, are with the Department
of Computer Science at Aalborg University, Denmark. E-mail: {skj, tbp,
chr}@cs.aau.dk.

additional capabilities and a simpler interface for time series
analysis compared to an RDBMS, adding complexity to the
analysis pipeline [12]. In correspondence with the increasing
need for systems that efficiently store and analyze time
series, Time Series Management Systems (TSMSs)1 have been
proposed for multiple domains including monitoring of
industrial machinery, analysis of time series collected from
scientific experiments, embedded storage for Internet of
things (IoT) devices, and more. For this paper we define
a TSMS as any system developed or extended for storing
and querying data in the form of time series. Research into
TSMSs is not a recent phenomenon and the problems using
RDBMSs for time series have been demonstrated in the past.
In the 1990s Seshadri et al. developed the system SEQ and
the SQL-like query language SEQUIN [13]. SEQ was built
specifically to manage sequential data using a data model [14]
and a query optimizer that utilize that the data is stored as a
sequence and not a set of tuples [15]. SEQ was implemented
as an extension to the object-relational DBMS PREDATOR
with the resulting system supporting storage and querying
of relational and sequential data together. While additional
support for sequences was added to the SQL standard
through for examples window queries, development of
query languages and TSMSs continued throughout the early
2000s. Lerner et al. proposed the algebra and query language
AQuery [16] for which data is represented as sequences
that can be nested to represent structures similar to tables.
Utilizing the AQuery data model and information provided
as part of the query, such as sort order, novel methods for
query optimization were implemented with improved query
performance as a result. In contrast to AQuery which uses a
non-relational data model, Sadri et al. proposed an extension
to the SQL query language named SQL-TS for querying
sequences in the form of time series stored in an RDBMS

1. TSMS is one among multiple names for these systems commonly
used in the literature, another common name is Time Series Database.
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or from an incoming stream [17]. SQL-TS extended SQL
with functionality for specifying which column uniquely
identifies a sequence and which column the sequence should
be ordered by. Patterns to search for in each sequence can
then be expressed as predicates in a WHERE clause. They
proposed a query optimizer named OPS based on an existing
string search algorithm, making complex pattern matching
both simple to express and efficient to execute [18], [19].

It is clear that decades of research into management of
time series data have lead to the development of expressive
query languages and efficient query processing engines.
However, this past generation of TSMSs are unable to
process the amount of time series data produced today, as
support for parallel query processing is limited and the
capability to utilize distributed computing is non-existing.
In addition, as the TSMSs developed were designed for
general-purpose use, only limited optimizations could be
implemented for specific use cases [11]. As a result, as new
use cases and technologies appear, such as data management
for IoT devices and commodity distributed computing, a new
generation of TSMSs have been developed. With this paper
we provide an overview of the current research state-of-the-
art in the area of TSMSs presented as a literature survey
with a focus on the contributions of each system. The goal of
this survey is to analyze the current state-of-the-art TSMSs,
discuss the limitations of these systems, analyze research
directions proposed by other researchers in the field, and as a
result of our analyses present our vision for a next generation
TSMS. To focus the survey, we primarily analyze systems
designed for storing numerous time series persistently,
allowing the system to support aggregate analysis of multiple
data streams over time. In addition, while scalability has not
been used as a criterion for excluding systems, we see it
as an important characteristic for any TSMS and a focus of
this survey. As a consequence of these decisions, systems
such as Antelope [20], HybridStore [21], LittleD [22] and
StreamOp [23] developed for deployment on sensor nodes,
and more broadly research in the area of query processing
inside sensor networks, are not included. For an introduction
to the topic of query processing in sensor networks see [8].
Also, the survey only includes systems with papers published
in the current decade, due to the switch in focus towards Big
Data systems built using commodity hardware for large
scale data storage and analytics. For TSMSs we observed
a general trend towards distributed storage and processing,
except for TSMSs developed for evaluation of research or
for use in embedded systems. Furthermore, only systems
implementing methods specifically for storage and querying
of time series are included due to the effect design decisions
for each component have on the other. The survey also
provides an overview of open research questions in order
to provide not just an overview of existing systems but
also provide insight into the next generation of TSMSs.
Last, in addition to the systems proposed by academia or
produced through industrial research, many open-source and
proprietary TSMSs have been developed, with the systems
OpenTSDB, KairosDB, Druid, InfluxDB, and IBM Informix
being popular examples. For information about selecting a
TSMS for a particular workload see the following papers [12],
[24], [25], [26], [27], [28], [29].

The search method for the survey is a follows. An

unstructured search using Google Scholar was performed to
provide an overview of what research is performed in the
area of TSMSs, and to determine the relevant conferences,
terms specific to the research area, and relevant researchers.
Based on the papers found during the unstructured search,
iterations of structured search were performed. Relevant
publications found in each iteration were used as input for
the next iteration. In each iteration additional papers were
located by exhaustively going through the following sources
for each paper:

• The references included in the paper.
• Newer publications citing the paper, the citations were

found using Google Scholar.
• All conference proceedings or journal issues published

in this decade for the conference or journal in which
the paper was presented or published. For the data
management outlets the most commonly used were
ACM SIGMOD, IEEE Big Data and PVLDB, while papers
were primarily presented at USENIX conferences when
looking at system outlets.

• The publication history for each paper’s author found
using a combination of DBLP, Google Scholar and profile
pages hosted by the author’s employer.

The rest of the paper is organized as follows. Section 2
provides a summary of all the systems included in this survey
in addition to a description of the criteria each system will
be classified by. Section 3, 4, and 5, describe the systems
and are organized based on if the data store is internal,
external, or if the system extends an RDBMS. Section 6
provides an overview of open research questions proposed
by leading researchers in the field in addition to how these
ideas correspond to the surveyed systems, culminating in
our vision for a next generation system for time series
management and what research must be performed to realize
it. Last, a summary and conclusion are presented in Section 7.

2 CLASSIFICATION CRITERIA

An overview of the TSMSs included in this survey is shown
with regards to our classification criteria in Table 1 and
the operations each system supports in Table 2. As some
publications refrain from naming the proposed system some
systems are marked as unnamed with only the references
as identification. The TSMSs were organized into three
categories based on how the data processing and storage
components are connected, due to the major impact this
architectural decision has on the implementation of the
system. In addition to the differences in architecture, the
remaining classification criteria were selected based on what
differentiated the surveyed systems from each other. For
systems incorporating an existing DBMS only additional
functionality described in the surveyed papers will be
documented. The full set of classification criteria are:
Architecture: The overall architecture of the implementation
is primarily determined by how the data store and data
processing components are connected. For some systems
both the data store and processing engine are internal and
integrated together in the same application, either due to
them being developed together or if an existing DBMS is
embedded and accessed through the provided interface.
Other systems use an existing external DBMS or Distributed
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File System (DFS) as a separate data store, requiring the
TSMS to implement methods for transferring time series data
to the external DBMS or DFS. Last, some implement methods
for processing time series as extensions to an existing RDBMS,
making the RDBMS’s internal implementation accessible for
the TSMS in addition to removing the need to transfer data
to an external application for analysis. As Table 1 is split into
sections based on architecture, the architecture used by the
systems in each section of the table is written in italics as the
heading for that section of the table.
Year: The year the latest paper documenting the surveyed
system was published. This is included to simplify compari-
son of systems published close to each other. The year of the
latest publication is used as new publications indicate that
functionality continues to be added to the system.
Purpose: The type of workload the TSMS was designed and
optimized for. The first type of systems are those designed
for collecting, analyzing and reacting to data from IoT
devices, next TSMSs developed for monitoring large industrial
installations for example data centers and wind turbines,
then systems for extracting knowledge from time series data
through data analytics, and last systems for which no other
real-world use case exist than the evaluation of research into
new formalisms, architectures, and methods for TSMSs.
Motivational Use Case: The intended use case for the sys-
tem based on the problem that inspired its creation. As
multiple systems designed for the same purpose can be
designed with different trade-offs, the specific problem a
system is designed to solve indicates which trade-offs were
necessary for a particular TSMS.
Distributed: Indicates if the system is intended for a cen-
tralized deployment on a single machine or built to scale
through distributed computing. It is included due to the effect
this decision had on the architecture of the system and the
constraints a centralized system adds in terms of scalability.
Maturity: The maturity of the system based on a three
level scale: proof-of-concept implementations implement only
the functionality necessary to evaluate a new technique,
demonstration systems include functionality necessary for
users to interact with the system and are mature enough for
the system to be evaluated with a real-life use case, mature
systems have implementations robust enough to be deployed
to solve real-life use cases and supported through either an
open-source community or commercial support.
Scale Shown: Scale shown is used as a concrete measure
of scalability and defined as the size of the largest data set
and number of nodes a TSMS can manage as documented in
the corresponding publications. The sizes of the data sets
are reported in bytes after the data has been loaded into
the TSMS. As data points differ in size depending on the
data types used and the amount of metadata included, data
sets for which the size is documented as the number of data
points are not included. While some systems are continuously
being improved, only the results presented in the referenced
publications are included for consistency.
Processing Engine: The data processing engine used by
the system for querying, and if supported, analyzing the
stored time series data. Included as this component provides
the system’s external interface for the user to access the
functionality provided by the system. If an existing system
is used we write the name of the system, otherwise if a new

engine has been developed we write implemented with the
implementation language added in parentheses.
API: The primary methods for interacting with the system.
The methods can be query languages, extensions of existing query
languages, client libraries developed using general purpose
programming languages, a web service, or a web interface.
Approximation: Describes the primary method, if any, for
approximating time series that each system supports. Using
approximation as part of a TSMS provides multiple benefits.
Representing time series as simple aggregates uses less stor-
age and reduces query processing time for queries capable
of utilizing the aggregate. Approximate Query Processing
(AQP) expands upon the capabilities of simple aggregates
and provides user-defined precision guarantees through
the use of mathematical models or sampling. In addition,
representing time series as mathematical models, such as a
polynomial regression model, provides functionality for data
analysis such as interpolation or forecasting depending on
the type of model utilized. AQP utilizing sampling reads only
a subset of a time series and uses this subset to produce an
approximate query result. A survey of mathematical models
for representing time series can be found in the second
chapter of [8], while additional information about sampling
and integration of AQP into a DBMS can be found in [75].
For this survey we differentiate between approximation
implemented as simple aggregates without guaranteed error
bounds, and AQP utilizing either mathematical models or
sampling to provide query results with precision guarantees.
Stream Processing: Describes the primary method each
system supports, if any, for processing time series in the form
of a stream from which data points are received one at a time.
As each data point is processed independently of the full time
series, each data point can be processed in-memory upon
ingestion for applications with low latency requirements [76].
For queries with an unbound memory requirement or high
processing time, AQP methods such as sampling or mathe-
matical models can be used to lower the resource requirement
as necessary [76]. Stream processing can be implemented
using user-defined functions, as functionality part of the TSMS,
or as a query interface based on streams. Examples of stream
processing include online computation of aggregates, online
constructing of mathematical models, removal of outliers in
real-time, and realignment of data points in a limited buffer
using windows. Operations performed after the data has
been ingested by a TSMS, such as maintaining indexes or
mathematical models constructed from data on disk, are not
included. For a discussion of stream processing in contrast to
traditional DBMSs see [76], while an in-depth introduction
can be found in [10].
Storage Engine: The data storage component or system
embedded into the application, used as external storage,
or extended to enable storage of time series. If an existing
system is used for data storage, we write the name of the
system. For TSMSs were the storage component has been
written from scratch, the column is marked as implemented
with the implementation language added in parentheses.
Storage Layout The internal representation used by the
system for storing time series, included due to the impact the
internal representation has on the systems batch processing,
stream processing and AQP capabilities.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TKDE.2017.2740932

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

TABLE 2
Summary of the Surveyed Systems in Terms of Functionality

Select Insert Append Update Delete Aggregates Join Over Analytics
Internal Stores
tsdb
[30]
FAQ
[31]

Jaccard, Top-
K, AQP, etc

WearDrive
[32], [33]
RINSE
[34], [35], [36]

NN-Search,
AQP

Unnamed
[37]

AQP

Plato
[38]

Interpola-
tion, AQP

Chronos
[39], [40]
Pytsms
[41], [42]
PhilDB
[43]

Pandas

External Stores
TSDS
[44]

AQP

SciDB
[45], [46], [47]

Linear Alge-
bra, AQP

Respawn
[48], [49]
SensorGrid
[50]
Unnamed
[51], [52], [53]

AQP

Tristan
[54], [55]

AQP

Druid
[56]

AQP

Unnamed
[57]

AQP

Unnamed
[58]
Bolt
[59]

AQP

Storacle
[60], [61]
Gorilla
[62]
Unnamed
[63]

Frequency
est, AQP, etc

servIoTicy
[64], [65]
BTrDB
[66], [67]

RDBMS Extensions
TimeTravel
[68], [69]

Forecasting,
AQP

F2DB
[70], [71]

Forecasting,
AQP

Unamed
[72], [73], [74]

Interpola-
tion, AQP

In addition to the classification criteria shown in Table 1,
the TSMSs are summarized with regard to their supported
query functionality in Table 2. To describe the functionality of
the surveyed TSMSs with a uniform set of well-known terms,
we elected to primarily express it using SQL. Two columns
for keywords not part of SQL have been added to mark
systems for which new data points can only be appended to
an existing time series and to show which capabilities for data
analytics each system supports. The full list of functionality
included is: the capability to select data points based on
timestamp or value, insert data points into a time series at
any location, append data points to the end of a time series,
update data points already part of a time series, delete data
points from a time series, compute aggregates from a time
series through the use of aggregate functions, join multiple
time series over timestamp or value, perform computations
over a time series using either window functions or user-
defined functions, and any support for data analytics part of
the system. In Table 2 we show a black circle if the TSMS
is known to support that type of query through its primary
API, and leave the cell empty if the TSMS is known to not
support that type of query or if we were unable to determine
if the functionality was supported or not. For the column
analytics we list the supported functionality to differentiate
the methods for data analytics supported by each system.

In the following three sections, we detail the primary
contributions provided by each system in relation to the
motivational use case and the classification criteria. Each
section documents one set of systems based on the archi-
tecture of the system as shown in Table 1 and Table 2.
In addition to a description of the contributions of each
system, illustrations, redrawn from the original publications,
are utilized to document the TSMSs. Two types of figures
are used depending on the contribution of each system:
architecture diagrams and method illustrations. Architecture
diagrams use the following constructs: system components
are shown as boxes with full lines, lines between components
show undefined connections, data is shown as boxes with
rounded corners, arrows show data flow between components,
logically related components are grouped by boxes with
dotted lines or by dotted lines for architectural layers, data
storage is shown as cylinders, cluster nodes are components
surrounded by boxes with dashed lines, and text labels are used
as descriptive annotations. Method illustrations follow a less
rigid structure due to the lack of correlation between the
illustrated methods but in general layout of data in memory
is shown as boxes with full lines. Squares with rounded corners
are used for nodes in tree data structures. Constructs only
used for a single figure are documented as part of the figure.

3 INTERNAL DATA STORES

3.1 Overview

Implementing a new TSMS as a single executable allows
for deep integration between the data storage and data
processing components. As the storage component is not
accessible to other applications, the data layout utilized can
be extensively optimized for the data processing component.
Communication between the two components is also simpli-
fied as no communication protocol suitable for transferring
time series is needed and no interface constrains access to
the data storage layer unless an existing embeddable DBMS
is used. The absence of external dependencies reduces the
complexity of deploying the TSMS due to the system being
self-contained. As a downside a system with an internal
data store cannot utilize existing infrastructure such as a
distributed DBMS or a DFS that already are deployed. In
addition, if a new data storage layer is developed for a TSMS,
instead of an existing embeddable DBMS being reused, time
will need to be spent learning how that particular data store
must be configured for it to perform optimally unless the
TSMS provides automatic configuration and maintenance.

3.2 Systems

tsdb presented by Deri et al. [30] is a centralized TSMS
designed for monitoring the large quantity of requests to the
.it DNS registry. For storage tsdb utilizes the embeddable
key-value store BerkeleyDB. The use of BerkeleyDB provides
a uniform mechanism for storage of both the time series and
the metadata used by the database. Data points ingested by
tsdb are added to an array and when the array reaches a
predefined size it is chunked and stored in BerkeleyDB. Each
chunk is stored with a separate key computed by combining
the starting timestamp for the array with a chunk id. tsdb
requires all time series in the database to cover the same
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time interval, meaning each time series must have the same
start timestamp and contain the same number of data points.
This restriction simplifies computations that include multiple
time series stored in the system, at the cost of tsdb not
being applicable for domains where the need for regular
time series adds complexity or is impossible to achieve. In
terms of additional capabilities tsdb does not support stream
processing, aggregation, or AQP.

The TSMS FAQ proposed by Khurana et al. [31] utilizes
sketches organized in a range tree for efficient execution
of approximated queries on time series with histograms
as values. The system consists of multiple components as
shown in Fig. 1. First, an index containing multiple types of
sketches and histograms, each supporting a different type
of query or providing a different trade-off between accuracy
and query response time. An index manager and an error
estimator are utilized by the query planner to select the most
appropriate representation based on the provided query
and the required error bound. However, utilization of the
presented data structure, and thereby the TSMS in general,
for use with stream processing of time series is relegated to
future work. In addition, the external interface provided by
the proof-of-concept implementation is not detailed in the
paper.

WearDrive by Huang et al. [32] is a distributed in-memory
TSMS for IoT, that demonstrates an increase in performance
and battery life for a wearable device by transferring sensor
data to a smartphone over a wireless connection. The system
primarily uses volatile memory for storage as the flash
storage used for wearable devices was identified as being a
bottleneck in earlier work by Li et al. [33]. By extending the
firmware used by a wearable device, WearDrive provides
the same persistence guarantees as non-volatile flash storage.
The system is split into two applications, as shown in Fig. 2,
each built on top of a key-value store implemented for in-
memory use. The store is organized as a sequential log of
key-value pairs per application with each log file indexed by
a hash map. WearCache is running on the wearable device
and stores only a few sensor readings locally as the data
is periodically pushed to remote memory or remote flash
which is physically located on the smartphone, causing a
drop in battery life for the smartphone. WearKV runs on the
smartphone and stores the complete set of sensor readings
collected from the wearable devices sensors in addition to
the data sent from the smartphone itself to the wearable
device. A simple form of stream processing is supported
as applications can register to be notified when new values
are produced by a specific sensor or for a callback to be
executed with all the new sensor values produced over an
interval. No support for AQP is provided by WearDrive.
While the system is designed for a smaller scale, it follows
a structure similar to other TSMSs with the wearable as
resource-constrained device collecting data points. The data
points are then transferred to the smartphone which serves as
the system’s backend and provides more capable hardware
for storage and aggregate analysis.

RINSE, proposed by Zoumpatianos et al. [34], is a
centralized system for data analytics supporting execution of
efficient nearest neighbor queries on time series by utilizing
the ADS+ adaptive index by Zoumpatianos et al. [35],
[36]. The implementation is split into two components: a

Fig. 1. The architecture of the FAQ system, redrawn from [31]

backend and a web frontend. The backend serve as the data
storage and indexing component, storing time series in an
unspecified ASCII on-disk format indexed using ADS+. The
web frontend is served through NodeJS and provide the
means to execute nearest neighbor queries by drawing a
pattern to search for. In addition, the capabilities of the data
storage component are available through a TCP socket. The
use of ADS+ for its index provides the system with multiple
capabilities. First, as ADS+ is an adaptive tree-based index
only internal nodes are initialized while the leafs, containing
the data points from the time series, are only initialized if
that part of the time series is used in a query. This reduces
the time needed to construct the index before queries can be
executed compared to alternative indexing methods. Second,
approximate queries can be executed directly on the index,
providing both AQP and an index for exact queries using
the same data structure.

A centralized TSMS that utilizes models for AQP was
proposed by Perera et al. [37]. The system manages a set of
models for each time series and the TSMS optimizer selects
the most appropriate model for each query, falling back to
the raw data points if necessary. To construct the models
the system splits each time series into smaller segments and
attempts to approximate each segment with a model. The
use of segmentation allows different models optimized for
the structure of each segment to be used. If a model with the
necessary precision cannot be constructed for a segment then
the segment is represented only by the data points, meaning
only exact queries can be executed for that segment. The
authors proposed an extension of the SQL query language
with additional capabilities for AQP: support for specifying
which model to use, the maximum error bound for the query,
and a maximum query execution time. How a particular
query should be executed is left to the query optimizer
which given the provided model, maximum query execution
time, the required error bound and statistics collected from
past queries determines if a model can be used or if the
query must be performed using the raw data. However, in
the current R based implementation, AQP using models is
only supported for SQL aggregate queries. A later paper
by the same authors, Perera et al. [77], reused the method
of approximating time series using models to reduce the
storage requirements of materialized OLAP cubes.

Another centralized TSMS that implements model-based
AQP is Plato proposed by Katsis et al. [38]. The system
combines an RDBMS with methods from signal processing
to provide a TSMS with functionality for data analytics,
removing the need for exporting the data to other tools such
as R or SPSS. Plato consists of three layers, as shown in
Fig. 3, in order to accommodate implementation of models,
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Fig. 2. The split architecture of WearDrive, remote resources are logical and actually located on the other device. The figure was redrawn from [32]

construction of model-based representations of time series,
and querying of time series represented as models. At the
lowest level, an external interface allows for additional
models to be implemented by domain experts. By providing
an interface for implementing new models, Plato becomes
simple to extend for new domains. The implemented models,
however, have to be constructed manually by a database
administrator by fitting a model to a specific data set, as an
automated model selection through a cost function is left
as future work. AQP is supported by querying the models
manually through one of two extensions of SQL. ModelQL is
designed to appeal to data analysts familiar with R or SPSS,
while the InfinityQL language is designed to be familiar to
users experienced with SQL. Queries are evaluated directly
on a model if the model implements the functionality being
used in the query. If the functionality is not implemented,
the model is instantiated at the resolution necessary for the
particular query. As future work the authors propose that
models are not used only as a method for representation of
time series, but also returned as the query result in order to
provide insight into the structure of the data.

The centralized open-source system Chronos by Chardin
et al. [39] is designed as a TSMS for monitoring industrial
systems located in a hydroelectric dam. Due to the location,
all persistent storage is flash based to provide increased
longevity, with a substantial drop in write performance
compared to spinning disks. To accommodate the use of
flash memory, an abstraction layer, proposed by Chardin et
al. [40], is implemented on top of the file system so writes
are kept close to the previous write on the flash memory
ensuring near sequential writes. This is preferable as write
duration increases the further from the previous write it is
performed. The abstraction layer index data stored on this
logical file system through a B-Tree implementing a new
splitting algorithm modified to not degrade in performance
when used with flash memory. The system provides a simple
form of stream processing through efficient support for out-
of-order inserts by buffering and reorganizing ingested data
before making it persistent, thereby providing a trade off
between efficient out-of-order inserts and the possibility of
data loss due to hardware failure as the temporary buffers
are stored in volatile memory. However, no support for
stream processing using user-defined functions, functionality
for construction of aggregates or creation of approximate
representation of time series are provided.

Pytsms and its extension RoundRobinson serve as the
reference implementation for two formalisms for TSMSs

proposed by Serra et al. [41], [42]. However, as the implemen-
tation only serves as the proof-of-concept for the formalisms
presented in the papers, no attempt was made to make
them efficient nor make the implementation comparable
in functionality to existing TSMSs. Pytsms implements a
centralized TSMS for storage of time series. In addition to
storage, Pytsms implements a set of operations that can
be performed on time series. RoundRobinson provides a
multiresolution abstraction on top of Pytsms. The concept
of multiresolution time series is implemented as buffers and
round robin discs. When a buffer is filled, either through a
time series being bulk loaded or streamed from a sensor
into Pytsms, an aggregate is computed by executing an
aggregation function with the data points in the buffer as
input. The aggregate is added to the disc which functions as
a fixed size round robin buffer discarding old aggregates as
new are added. As both buffers and discs can be configured,
the system is capable of creating any aggregated view of a
time series that is needed such as high resolution aggregates
for the most recent part of a time series and then decrease
the resolution in increments for historical data. An example
of such a configuration is shown in Fig. 4. The example
shows a schema for a time series represented at different
resolutions where only a few aggregates are stored for the
entire six hundred days the time series represents, while a
high number of data points are stored for the discs containing
more recent data.

PhilDB proposed by MacDonald [43] is an open-source
centralized TSMS designed for data analytics in domains
where updates to existing data points are a requirement. To
preserve the existing readings and allow for old versions
of a time series to be analyzed, PhilDB separates storage
of time series into two parts: data points and updates. The
data points are stored sequentially in binary files as triples
containing a timestamp, a value, and last an integer used as
a flag to indicate properties of the data point, for example
if the data point is missing a value in an otherwise regular
time series. Any updates performed to a time series is stored
in an HDF5 file collocated with the binary file storing the
data points. Each row in the HDF5 stores the same data as
the triples in the binary file with an additional timestamp
added to indicate when the update was performed. As the
original data points are kept unchanged, queries can request
a specific version of the time series based on a timestamp.
Additionally, a time series is identified by a user-defined
string and can be associated with additional attributes such
as the data source for the time series, all stored using SQLite.
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Fig. 3. The architectural layers of the Plato TSMS, redrawn from [38]

Reading and writing the time series to disk is implemented
as part of PhilDB, however, as its in-memory representation
it uses Pandas. The use of Pandas provides a uniform data
format for use by the DBMS and allows it to interface directly
with the Python data science ecosystem.

3.3 Discussion
A few common themes can be seen among the TSMSs that
use an internal data store. First, only WearDrive [32] is
distributed and is specialized for use with wearable devices.
Instead, researchers implementing distributed TSMSs use ex-
isting distributed DBMSs and DFSs running externally from
the TSMS as will be described in Section 4. Similarly, only
tsdb [30], Plato [38] and PhilDB [43] are intended for use as
general TSMSs and have implementations complete enough
for this task based on the description in their respective pub-
lications. The remaining systems serve only as realizations
of new theoretical methods, FAQ [31] is used for evaluating
a method for model-based AQP, RINSE [34] demonstrates
the capabilities of the ADS+ index [35], [36], Chronos [39]
illustrates the benefits of write patterns optimized for flash
storage but does neither provide thread-safety nor protection
against data corruption, the system by Perera et al. [37] is
incomplete, and both Pytms and RoundRobinson [41], [42]
are simple implementations of a formalism. In summary,
researchers focusing on development of general purpose
TSMSs are at the moment focused on systems that solve
the problem at scale through distributed computing, with
centralized systems being relegated to being test platforms
for new theoretical methods. A similar situation can be seen
in terms of AQP and stream processing as none of the three
general purpose TSMS, tsdb [30], Plato [38] and PhilDB [43],
support stream processing, and only Plato implements
model-based AQP. In addition, Plato provides an interface
for users to implement additional models, making it possible
for domain experts to use models optimized for a specific
domain. For the research systems, FAQ [31], RINSE [34]
and the system Perera by et al. [37] all support AQP using
models, while Pytms and RoundRobinson [41], [42] only
provide user-defined aggregates. None of the four research
systems implemented functionality for stream processing.

4 EXTERNAL DATA STORES

4.1 Overview
Implementing a new TSMS by developing a data processing
component on top of an existing DBMS or DFS provides

Fig. 4. A time series stored at multiple resolutions using discs of static
size and with static granularity for each measurement, redrawn from [41]

multiple benefits. Existing DBMS and DFS deployments
can be reused and knowledge about how to configure
the system for a particular workload can still be applied.
The development time for the system is also reduced as
only part of the TSMS must be implemented. In terms of
disadvantages, the choice of DBMS will restrict how data is
stored and force the processing component to respect that
data model. Second, deployment of the system becomes more
complicated as multiple separate systems must be deployed,
understood, and configured for a particular workload.

4.2 Systems

TSDS developed by Weigel et al. [44] is an open-source cen-
tralized system designed for data analytics. TSDS supports
ingesting multiple time series stored in different formats,
caching them and then serving them from a central location
by providing a HTTP interface for querying the time series.
As part of TSDS a TSMS named TSDB is developed. TSDB
is used primarily for caching and storing each separate time
series in a sequential binary format on disk to reduce query
response time. Multiple adapters have been implemented
to allow for ingesting times series from sources such as
ASCII files and RDBMSs. Transformations through filters
and sampling can be performed by TSDS so only the time
interval and resolution requested are retrieved from the
system without depending on an external data analytics
program such as R or SPSS. As the system is designed for
ingesting static data sets no methods for stream processing
is provided. Development of TSDS is no longer in progress,
however, the TSDS2 project is developing a new version of
the TSMS.

Proposed by the SciDB Development Team [47] and
Stonebraker et al. [45], [46], SciDB is a distributed DBMS
designed to simplify large scale data analytics for researchers.
While not designed exclusively for use as a TSMS, SciDB
includes functionality for storing sequential data from sen-
sors used to monitor experiments. SciDB stores data as
N-dimensional arrays instead of tables like in an RDBMS,
thereby defining an implicit ordering of the data stored.
The arrays are versioned and updates to existing arrays
produce a new version. A SciDB cluster uses an instance
of PostgreSQL for storing the system catalog containing
configuration parameters and array metadata, including for
example the array version number. Two query languages
are implemented: AQL a language similar to SQL that
provides a high level declarative interface and AFL which
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is a lower level language inspired by APL, which allows a
chain of operators to be defined directly. Matrix operations
are performed outside SciDB using the ScaLAPACK linear
algebra library executing alongside the DBMS. In addition,
multiple client libraries have been developed, such as SciDB-
R that supports R programs executed in SciDB. Support for
AQP is provided through a function for sampling a subset
of data from arrays, and stream processing is limited to an
API inspired by Hadoop Streaming for streaming arrays
through external processes akin to Unix pipes. Other DBMSs
have been implemented using the open-source SciDB code
base. As an example Li et al. [78] created FASTDB, a DBMS
specialized for use in astronomy. FASTDB extends SciDB in
several areas: an interactive frontend for data exploration,
additional monitoring for cluster management, a parallel
data loader, a method for dynamically determining the ap-
propriate size of chunks when splitting the data into chunks
for storage, and last enhancements of the query optimizer in
SciDB was implemented. For additional information about
DBMSs based on arrays see the survey by Rusu et al. [79].

The distributed TSMS Respawn presented by Buevich
et al. [48] is designed for monitoring using large scale
distributed sensor networks and provide low latency range
queries on the produced data points. In Respawn, data
storage is performed by the multi-resolution TSMS Bodytrack
DataStore which is integrated into two different types of
nodes: sensor network edge nodes and cloud nodes as shown
in Fig. 5. Edge nodes are ARM based devices that are placed
at the edge of a sensor network and ingest the data points
produced by the sensor network and compute aggregates
at multiple different resolutions, enabling reduced query
response time for queries at resolutions lower than what the
sensor is being sampled at. In addition to the distributed
edge nodes, server grade cloud nodes are deployed to
provide a cache of the data stored in the edge nodes,
with segments of time series being migrated using two
preemptive strategies. Periodic migration forces migration
of low resolution aggregates at specific intervals, as the high
resolution data usually is used only if an unusual reading
is found through analysis of the low resolution time series.
Proactive migration defines how segments of a time series
should be migrated based on the standard deviation of the
data points, as this can indicate irregular readings worth
analyzing further. Queries are performed through HTTP
requests and to determine if they should be sent to an edge
node or to a cloud node a dispatcher is implemented to
track what data has been migrated. After the location of the
time series at the requested resolution has been provided,
all communication is done directly between the client and
the edge node or cloud node, without routing it through the
dispatcher. Respawn was utilized as part of the Mortar.io
platform for building automation presented by Palmer et
al. [49]. Mortar.io provides a uniform abstraction on top of
the automation infrastructure, such as sensors, providing
a web and mobile interface in addition to simplifying
the development of applications communicating with the
distributed hardware components.

SensorGrid is a grid framework for storage and analysis of
sensor data through data analytics proposed by Cuzzocrea
et al. [50]. The proposed architecture consists of sensors, a
set of stream sources that represent nodes for interacting

Fig. 5. Architecture of the Respawn TSMS with edge nodes collecting
data at the source and migrating it to cloud nodes, redrawn from [48]

with sensors and transition of the collected data points to
stream servers that store the data. To reduce query response
time for aggregate queries, the stream servers pre-compute a
set of aggregates defined by the system with no mechanism
provided for defining a user-defined aggregation function.
The aggregates are computed using an application-specific
time interval and the sensor that produced the data points,
with the requirement that an aggregation hierarchy for
sensors must be explicitly defined. Distributed processing is
implemented as part of the stream servers providing them
with three options when a query requests data not present
at a node: redirect the query, use a local approximation of
the data requested by the query at the cost of accuracy, or
decompose the query into multiple sub queries and send
them to other nodes in the grid. In addition to approximation,
the system supports execution of queries over fixed windows,
and even continuous queries over moving windows using
SQL for stream processing. The SensorGrid architecture was
realized as a distributed TSMS and used for hydrogeology
risk analysis developed at IRPI-CNR, where the stream
source and stream server nodes are integrated with the
RDBMS Microsoft SQL Server 2000 and a web interface for
visualizing the data.

Guo et al. [51], [52], [53] proposed a TSMS that uses
mathematical models stored in a distributed key-value store
to reduce query response time. The system consists of three
parts, a key-value store for storing segments of the time
series represented by models, two in-memory binary trees
used as an index for the modelled segments, and last an AQP
method based on MapReduce. To enable the index to support
both point and range queries, the binary trees are ordered
by intervals, with one tree constructed for time intervals and
another for value intervals. Similarly, two tables are created
in the key-value store as one stores the modelled segments
with the start time and end time as part of each segment’s key,
while the other table stores each model with the minimum
and maximum value that is part of the modelled segment
as part of its key. Query processing is shown in Fig. 6 and is
performed by first traversing the index to lookup segments
relevant to the query by determining which nodes overlap
with the time and values specified in the query. Second,
MapReduce is used to extract the relevant segments from
the key-value store and re-grid them. As each node in the
tree might reference multiple segments, the mapping phase
prunes the sequence of proposed segments to remove those
that do not fit the provided query, and last the reducer phase
re-grids the segments to provide values approximating the
original data points. The described method does only rely
on the current data point and a user-specified error bound
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Fig. 6. Model-based AQP combining an in-memory tree and a distributed
KV-store for the TSMS by Guo et al. [51], [52], [53], redrawn from [51]

allowing it to be implemented in terms of stream processing.
Tristan is a TSMS designed by Marascu et al. [54] for

efficient analytics of time series through the use of AQP
and online dictionary compression. The system is based
on the MiSTRAL architecture also proposed by Marascu et
al. [55]. The system’s architecture is shown in Fig. 7 and
is split into three different layers: a data acquisition and
compression layer, a storage layer, and last a query execution
layer. The data acquisition and compression layer ingests
data into segments which are then stored in a temporary
data store managed by the storage layer. When a segment
reaches a pre-configured size, the segment is compressed as
a sequence of smaller fixed size time series using a dictionary
provided as a parameter to the system. The accuracy of
the compressed time series can be configured based on the
number of fixed sized time series it is represented as. Creation
of the dictionary is performed through offline training,
however, when operational, the system will continue to
adjust the dictionary based on predefined time intervals.
The storage layer manages access to the uncompressed
time series, the temporary store, the dictionaries used for
compression and the compressed segments. The current
implementation of the storage layer is based on a customized
version of the open-source in-memory DBMS HYRISE. Last,
the query execution layer receives queries from the user
in an unspecified manner and format. Tristan is capable
of using three different methods for answering the query:
if the query is for data that is in the process of being
compressed, the query is executed against the temporary data
store, if the query references a compressed segment Tristan
determines if the query can be answered directly from the
compressed representation and only decompresses the time
series segment if answering the query from the compressed
form is not possible. The system supports use of AQP to
reduce query response time due to its functionality for
selecting the precision for compressing segments by adjusting
how many smaller fixed size time series it is represented by.
Tristan only supports stream processing through its capability
to transform incoming data into an approximate model by
buffering it in an uncompressed form in a temporary data
store. No support for transforming the data through user-
defined functions are possible.

Fig. 7. The MiSTRAL architecture realized by the TSMS Tristan with data
flow occurring only in offline mode as dotted arrows, redrawn from [55]

Yang et al. implemented the open-source system
Druid [56] as a distributed TSMS for efficiently ingesting time
series in the form of events from log files, and then perform-
ing OLAP-based data analytics on the ingested data. Druid is
based on a shared nothing architecture coordinated through
Zookeeper in-order to optimize the cluster for availability.
Each task required by a Druid cluster is implemented as a
specialized type of node as shown in Fig. 8. Real-Time nodes
ingest events and store them in a local buffer to efficiently
process queries on recent events in real-time. Periodically a
background task collects all events at the node and converts
them into immutable segments and uploads them to a DFS.
Historical nodes execute queries for segments stored in the
DFS and caches the segments used in the query to reduce
query response time for subsequent queries. Coordinator
nodes manage the cluster’s configuration stored in a MySQL
database, in addition to controlling which segments each
historical node must serve. Last, the broker nodes accept
queries formatted as JSON through HTTP POST requests
and route them to the relevant real-time and historical nodes.
When the query result is returned it is cached at the broker
for subsequent queries. Druid does not provide any support
for stream processing, and the authors suggest combining
Druid with a stream processing engine. However, Druid does
support aggregation of time series when ingested or when
queried, and provides a set of aggregate functions while also
supporting user-defined aggregation functions in addition to
HyperLogLog for approximate aggregates.

Huang et al. [57] designed a distributed TSMS that
uses IBM Informix for storage and provides a uniform SQL
interface for querying both time series and relational data
together. The system is classified as an Operational Data
Historian (ODH) by the authors, marking monitoring as
a clear priority. The TSMS consists of three components:
A configuration component, a storage component, and a
query component as shown in Fig. 9. The configuration
component manages metadata for use by other components
in the system. Concretely, it provides information about
the data sources the system is ingesting data from, and the
IBM Informix instances available to the system. The storage
component ingests data through a set of writer APIs into an
appropriate data structure and compresses the data before it
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Fig. 8. The architecture of a Druid cluster annotated with information
about data flow between nodes in the cluster, redrawn from [56]

is stored. Different data structures are used depending on if
the time series is regular or irregular. The three supported
data formats are shown in Fig. 10. The first two formats store
a single time series and contain four components, a starting
timestamp, a device id, a counter and a blob of values. If
the time series consists of data points separated by regular
intervals only the value from the data points are stored
without timestamps using the first format. If the time series is
not regular then data points are stored as both the delta time
compared to the starting timestamp and values using the
second format. Last using the third format, a group of time
series can be combined and stored in a single data structure,
in which case the device id is changed to a group id and each
element in the blob will then contain a reduced device id, a
time delta and a value. To compress time series segments two
existing compression algorithms are used, both supporting
either lossless compression or lossy compression within an
error bound. For stable values the data is compressed using
a linear function, while quantization is used for fluctuating
time series. The query component provides a virtual table as
the query interface for the time series, allowing SQL to be
used as a uniform query interface for both time series and
relational data stored in the same TSMS.

Williams et al. [58] propose a distributed system for
ingesting and analyzing time series produced by sensors
monitoring industrial installations. The system is based on
Pivotal’s Gemfire in-memory data grid due to the authors
arguing that a disk-based system is an unsolvable bottleneck
for data analytics. The data points produced by the sensors
are ingested by a proprietary processing platform that cleans
the data and performs real-time analytics before the data is
inserted into the in-memory data grid. In the in-memory
data grid, the cleaned data points are organized into a
set of bins each containing a fixed time interval, sorted
by time and identified by both the sensor id and the id
of the machinery the sensor is installed on. The authors
argue that each bin should only contain a few minutes of
data as a compromise between duplicating the machine and
sensor identifier, while also reducing the amount of data
being retrieved during query execution to extract a subset
of the data points in a bin. Inside a bin, the segment of
data points produced by a specific sensor is stored as a
doubly linked list, allowing memory usage to scale with the
number of data points in the bin while achieving comparable

Fig. 9. Architecture of the TSMS proposed as an Operational Data
Historian (ODH) by Huang et al. [57]. The figure was redrawn from [57]

read and write performance to a statically allocated circular
array. Due to memory limitations, the in-memory data grid is
used as a FIFO cache, storing all data points over a pre-
specified time frame, with efficient transfer of the data
to a long term disk based solution designated as future
work. Additionally, neither AQP nor pre-commutation of
aggregates when the data is ingested is supported by the
system. For more information about in-memory big data
storage and data analytics see the survey by Zhang et al. [80].

Bolt developed by Gupta et al. [59] is a distributed open-
source TSMS designed for being embedded into applications
to simplify the development of applications for IoT. Data is
organized into tuples containing a timestamp and a collection
of tag and value pairs, providing the opportunity to store not
only readings from sensors but also annotate each reading
with metadata. Bolt’s implementation is based on encrypted
streams in a configuration with one writer, the application
that created the stream, and multiple readers that can request
readings from the stream. Sample-based AQP is provided
as a function call with a parameter indicating how many
elements should be skipped between each returned sample.
The streams are chunked and stored sequentially in a log
file on disk, while an index is kept in memory to provide
efficient queries for tags or tags in a specific time frame. If the
index reaches a pre-specified size, it is spilled to disk with
only a summary kept in-memory, making querying historical
data more expensive than recent data points. Sharing data
between multiple instances of Bolt is achieved by having a
metadata server provide information about the location of
available streams, while exchange of the encrypted data is
performed through either Amazon S3 or Microsoft Azure.

A similar TSMS Storacle, was developed for monitoring
a smart grid and proposed by Cejka et al. [60]. The system
is designed to have low system requirements allowing it
to be used throughout a smart grid and connected to local
sensors and smart meters. The TSMS provides the means
for computing aggregates and in general process data from
multiple sources locally before it is transmitted to the cloud
over SSH. The cloud is defined as a remote storage with
support for replication, offline data processing and remote
querying. Storacle uses protocol buffers as its storage format
and uses a three-tiered storage model consisting of in-
memory storage, local storage and cloud storage. Storacle
supports multiple parameters for configuring the amount
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Fig. 10. The data structures for storage of time series used in the TSMS
proposed by Huang et al. [57]. The figure was redrawn from [57]

of data that should be kept in-memory or stored locally
for efficient access. However, the most recent data is kept
when data is transferred to the next tier, ensuring that the
most recent readings always are available. In addition to
immutable storage of time series Storacle provides support
for mutable storage of tags and meta-fields, both of which are
lists of strings but tags can be used as part of a query while
meta-fields cannot. Last, Storacle uses stream processing to
process each ingested data point and produce aggregates
from the data such as the number of data points, the average
of their values, the min and max values, in addition to a
histogram of observed values. Additional software built on
top of Storacle is presented by the authors in the form of a
CSV exporting tool and a tool that continuously retrieves the
latest data points and computes aggregates for monitoring.
In addition to the application presented in the original paper,
Faschang et al. [61] proposed an integrated framework for
active management of a smart grid in which Storacle was
integrated with a message bus named GridLink.

Pelkonen et al. designed Gorilla [62] at Facebook as a dis-
tributed in-memory TSMS to serve as a caching layer for an
existing system based on Apache HBase for monitoring the
infrastructure at Facebook. Gorilla was designed to reduce
query response time for data points collected in the last 26
hours, with the time frame determined by analyzing how
the existing system was used. The system was designed as a
cache instead of a replacement as the existing TSMS based
on HBase contained petabytes of data. Data points ingested
by Gorilla contain three components: a key, a timestamp and
a value. The key is unique for each time series and used for
distributing the data points, ensuring each time series can be
mapped to a single host. Each time series is stored in statically
sized blocks aligned with a two-hour window, with one block
being written to at a time per time series and older blocks
being immutable. Gorilla uses a lossless compression method
for both timestamps and values based on the assumption
that data points are received at an almost regular interval
as shown in Fig. 11. The method works by having each
block be prefixed with a timestamp at full resolution, and
the first data point stored with the timestamp encoded as the
delta between the block’s prefixed timestamp and the data
point’s timestamp, and the data point’s value stored in full.
Subsequent data points are compressed using two methods,
one for timestamps and another for values. Timestamps
are compressed by first computing the deltas between the
current and previous timestamps and then storing a delta

Fig. 11. Gorilla’s compression with bit patterns written in single quotes
and the size of values in bits written in parentheses, redrawn from [62]

of these deltas using variable length encoding. Values are
compressed by first XOR’ing the current and previous value,
and then storing the difference with zero bits trimmed if
possible. Both methods resort to storing a single zero bit in
the instance where the computed delta or XOR result show
no difference. To ensure availability Gorilla replicates all
data to a different data center but provides no consistency
guarantees. As each query is redirected to the nearest location
the TSMS trades lower query response time for consistency.
For fault tolerance Gorilla achieves persistence by writing the
time series data to a DFS with GlusterFS being used at the
time the paper was written. Data processing and analytics
are performed by separate applications that retrieve blocks
of compressed data from the in-memory TSMS through a
client library, with applications for computing correlation
between time series, real-time plotting and computation
of aggregates being developed. Similarly, no capabilities for
stream processing are implemented directly as part of Gorilla.
An open-source implementation of the ideas presented in the
paper was published by Facebook as the Beringei project.

Mickulicz et al. [63] propose a TSMS for data analytics
using a novel approach for executing approximate aggregate
queries on time series with the storage requirement defined
by the time interval and not the size of the raw data points.
By defining what aggregate queries will be executed, what
granularity aggregates will be required in terms of time, and
with what error bound, a hierarchy of aggregates can be
computed during data ingestion. The computed aggregates
are stored in a binary search tree with the aggregates
spanning the smallest time intervals at the leaves and an
aggregate over the entire time series at the root. This structure
enables efficient query response time for aggregate queries
with differently sized time intervals, as aggregates over
large time intervals can be answered using aggregates at
the root of the tree, while queries over smaller time intervals
use aggregates from the leaves. The presented approach
is implemented as part of a distributed TSMS used for
analyzing time series of events from mobile applications. The
system consists of three components: a set of aggregation
servers that computes multiple aggregates based on the
ingested events, multiple MySQL RDBMSs for storing both
the unmodified events and the aggregates computed, and last
a querying interface routing queries to the relevant RDBMS.
In terms of aggregates, the system uses a simple sum for
counting events, HyperLogLog for approximately computing
the number of distinct values, and the Count-Min Sketch for
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approximate frequency estimation.
servIoTicy is a TSMS implemented by Pérez et al. [64] for

storing time series and metadata from IoT devices and is
split into a frontend and a backend component. The frontend
provides a REST API serving JSON for interacting with the
system. To increase the number of devices that can commu-
nicate with the system, the REST API is accessible using
multiple different communication protocols. The backend
provides data storage using a combination of Couchbase
and Elasticsearch for storage and query processing. Data
is stored in Couchbase as one of two differently structured
JSON documents. The first JSON format is used for storing
metadata about the IoT devices the system is ingesting data
from, while the second format is used to store data received
from each IoT device. To reduce query processing time, the
data stored in Couchbase is indexed by Elasticsearch. Stream
processing using user-defined topologies is implemented
through integration with Apache Storm. Apache Storm has
also been extended with a mechanism for updating a function
being executed in an Apache Storm Bolt. The system can
then execute a specific version of the Bolt depending on the
data points being processed. To change the topology it is still
required that the system is terminated before a new topology
can be deployed. In terms of AQP no support is currently
provided by servIoTicy. Due to servIoTicy being part of the
COMPOSE project [81], it was later integrated with the web
service discovery system iServe, to augment the data stored
in servIoTicy as documented by Villalba et al. [65].

BTrDB proposed by Andersen et al. [66], [67] is an open-
source distributed TSMS designed for monitoring high preci-
sion power meters producing time series with timestamps
at nanosecond resolution. A new system was developed as
existing TSMSs were evaluated and determined to be unable
to support the required ingestion rate and resolution of the
timestamps. In addition to the high resolution no guarantees
can be made about the ordering of data points or if each data
point only will be received once. In BTrDB both problems
are solved by storing each time series as a copy-on-write
k-ary tree with each leaf node in the tree containing data
points for a user-defined time interval and each internal node
containing aggregates such as min, max, and mean of the
data points stored in children nodes. An example of the tree
is shown in Fig. 12. This data structure provides multiple
benefits. Data points received out of order can be inserted at
the correct leaf node without any changes to the rest of the
stored time series, support for efficient queries at multiple
different resolutions is also enabled by the tree structure, as a
time series can be extracted at multiple different resolutions
by using the pre-computed aggregates, and last as the tree is
a persistent data structure, older versions of a time series are
available despite new data points being inserted and other
being deleted. The system is split into three components.
BTrDB provides the query interface, optimization of data
ingestion through buffering, and manipulation of the k-ary
trees. A DFS in the form of CEPH is used for persistent
storage of the k-ary trees constructed for each time series,
and last MongoDB is used to store the metadata necessary
for BTrDB. To reduce the storage requirements for the
trees, compression is applied. To compress a sequence, the
compression algorithm computes the delta to the mean of the
previous deltas in the sequence, and the computed deltas are

Fig. 12. The copy-on-write K-ary tree stores time series in the leafs while
aggregates and version numbers are in non-leaf nodes, redrawn from [66]

then encoded with Huffman encoding. Apart from the API
being structured around streams BTrDB does not provide
any stream processing capabilities. However, the low query
responds time for reads and writes provided by the TSMS
were utilized to implement the DISTIL stream processing
framework that integrates with BTrDB [67].

4.3 Discussion

The main domains covered by systems with external data
stores are IoT, monitoring of industrial or IT systems, and
management of scientific data. The developed systems are
in general complete, in use, and support larger data sets by
scaling out through distributed computing and caching of
data in memory for efficient processing of either the most
recently collected or queried data. TSDS [44] and Tristan [54]
are exceptions as both of them operate as centralized systems
limiting their scalability. An interesting observation is also
that none of the systems implement an entirely new data
storage layer, and instead to varying degrees reuse existing
systems for example MySQL, HDFS and Couchbase. Only
three systems, the system by Williams et al. [58], Gorilla [62],
and servIoTicy [64], provide no capabilities for constructing
approximate representation of time series while the remain-
ing systems support either simple aggregates or AQP. The
systems implementing AQP using models are either research
systems or provide limited functionality for implementing
additional user-defined models. The system by Guo et al. [51],
[52], [53] is used to demonstrate a new indexing and query
method and provides a generic schema for storing the
models. Tristan employs AQP by representing time series
using multiple smaller fixed sized time series but the TSMS
provides no interface for implementing other methods for
representing time series suitable for AQP. Druid [56] allows
implementation of aggregation methods through a Javascript
scripting API or through a Java extensions API. The TSMS
developed by Huang et al. [57] provides no mechanisms
for implementing new models for use by the system and
only two types of models are implemented and used for
compression. No interface is documented for extending the
system by Mickulicz et al. [63] with new models, however,
the authors note that the approximate representation used
as part of the proposed tree structure can take different
forms depending on the queries the tree the must support. In
summary, only Druid [56] and to a certain degree the system
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by Mickulicz et al. [63] provide an interface for end users
to implement alternative representations of time series so
domain experts can use models optimized for a particular
domain. Multiple aspects of stream processing are utilized
by this category of systems. Stream processing using user-
defined computation is provided by SensorGrid [50] through
the use of SQL window functions, while servIoTicy [64]
and the TSMS by Williams et al. [58] support user-defined
functions. Tristan [54], Guo et al. [51], [52], [53], Huang et
al. [57], and Mickulicz et al. [63] construct models from
data points online. Last, SciDB [45], [46], [47], Bolt [59] and
BTrDB [66], [67], logically structure some APIs as streams.

5 RDBMS EXTENSIONS

5.1 Overview

Existing RDBMSs have been extended with native function-
ality for efficient storage, querying and analysis of time
series stored in the RDBMS. Implementing functionality for
processing time series data directly into an RDBMS provides
multiple benefits. It simplifies analysis by providing storage
and analysis through one system, removing the need for
data to be exported and the analysis performed using an
additional program such as R or SPSS. Existing functionality
from the RDBMS can be reused for the implementation of
the extensions. Last, extending a known system, such as
PostgreSQL, allows knowledge of said system to be reused.
However, as with all extensions of existing systems, decisions
made about the RDBMS implementation can restrict what
changes can be made, and functionality such as transactions
add unnecessary overhead if the time series is immutable.

5.2 Systems

TimeTravel, by Khalefa et al. [68], extends PostgreSQL with
the capability to do model-based AQP and continuously
compute forecasts for time series stored in the centralized
RDBMS. Using forecasting and an extended SQL query
language, TimeTravel simplifies data analytics by providing
a uniform interface for both exact query processing used for
historical values and approximate query processing used for
historical and future values. Use of AQP is necessary as the
computed forecasts will have some estimation error due to
the exact values being unknown. However, the use of AQP
is also beneficial for reducing query time on historical data.
The architecture of TimeTravel can be seen in Fig. 13, and
consists of a hierarchical model index, offline components
for building and compressing the model index, and online
components for query processing and maintenance of the
model index. The models range from a coarse grained model
with a high error bound at the top to multiple finer grained
models with lower error bounds at the bottom. This hierarchy
allows the system to process queries more efficiently by
using a model of the right granularity based on the required
accuracy of the result. To build the model hierarchy, the
system requires multiple parameters to be specified: First,
hints about the time series seasonal behavior, second, error
bound guarantees required for the application that will query
the data, and last what method to use for forecasting. The
system builds the hierarchical model index by creating a
single model, and then based on that model’s error, it splits

Fig. 13. Architecture of the TimeTravel TSMS with components for index
construction and query processing. The figure was redrawn from [68]

the time series into more fine-grained models based on the
required error bound and provided seasonality. In terms
of stream processing, TimeTravel provides no extensions
to PostgreSQL other than the module for maintaining the
model index automatically. The methods created as part
of TimeTravel have been incorporated into a Electricity
Data Management System (EDMS) developed as part of
the MIRABEL smart grid project [82] by Fisher et al. [69]. To
facilitate both exact and approximated analysis of time series
in the EDMS, a real-time data warehouse is implemented
as part of the system. For approximate queries the AQP
functionality implemented as part of TimeTravel were used
while exact queries were answered from the data points
stored in an array in PostgreSQL.

Another endeavor to extend PostgreSQL with the capa-
bility to forecast time series in a centralized RDBMS is F2DB
proposed by Fischer et al. [70]. The use case for F2DB is data
analytics using data warehouse based business intelligence,
and the system extends the SQL query language with
statements for manually creating models and performing
forecast on said models. As an alternative to creating a
model by specifying it as part of an SQL statement, F2DB
can compute which model provides the best fit for a given
time series based on an evaluation criteria. The system
provides a general architecture for implementing forecast
models, allowing domain experts to add additional models
to the system so they can be used through the SQL query
language. The current implementation provides the means to
create models based on ARIMA and exponential smoothing.
All models are stored in a central index and maintained
automatically by the system as shown in Fig. 14, but no
extensions providing stream processing are provided. To fa-
cilitate efficient query execution, the model index provides an
interface for describing the hierarchical relationship between
models to the query language. Based on query statistics
and model performance, an alternative configuration of
models might be proposed by a model advisor [71]. The
advisor selects a configuration of models to use by utilizing
a set of heuristics named indicators. Each indicator is either
focused on a single time series or the relationship between
multiple time series in the dimensional hierarchy. The choice
of one of multiple models is determined based on a trade-
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Fig. 14. Overview of the F2DB TSMS. Models are constructed from time
series stored in the base tables, indexed, and then used by the model
usage component for query processing. The figure was redrawn from [70]

off between accuracy and performance cost. The produced
model configuration can then be loaded into F2DB.

Bakkalian et al. [72] present a proof-of-concept PL/SQL
extension for the Oracle RDBMS. The implemented extension
allows time series to be stored and queried as linear functions
in an OLAP data model. The system splits storage of a
time series into two tables: the raw data is organized in
one table as events with each row representing an event
with a timestamp, metadata, and a value. Another table
stores the intervals between each two consecutive events as
a model, with the current implementation supporting linear
functions only. Queries are executed directly against the
models as they substitute the raw data representation. The
use of linear functions allows the system to interpolate values
not present in the raw data set to support AQP. The authors
also discuss the theoretical use of models for forecasting
time series as a benefit of a model-based approach to time
series storage and querying. However, no information is
provided about support for forecasting being implemented.
In addition, no support for stream processing is described
in the paper. The proposed system builds directly upon the
following two publications in which some of the authors
participated. Bebel et al. [73] proposed a model for OLAP
analysis of sequential data that formalized the notion of
sequences as facts and where sequences were formalized as
an ordered collection of events. Building upon the model
proposed in the previously mentioned paper, Koncilia et
al. [74] proposed a new model enabling OLAP analysis
of sequential data by formally introducing the notion of
intervals as the time between two consecutive events, as well
as defining a sequence to be an ordered set of intervals.

5.3 Discussion
TimeTravel [68] and F2DB [70] provide similar capabilities
for forecasting time series stored in an RDBMS. However,
the intended use case for the systems differs. TimeTravel
is focused on approximating time series using models to
provide AQP for historical, present, and future values. In
addition, a hierarchy of models is created so the system can
select a model based on the necessary accuracy to decrease
query time, and allow users to indicate what seasonality

the time series will exhibit. F2DB is motivated by a need to
perform forecasting in a data warehouse and use the multi-
dimensional hierarchy as part of the modelling process. The
systems also differ in-terms of their ability to perform AQP
as TimeTravel supports execution of AQP queries on both
historical data and as forecast queries, while F2DB’s focus
is on forecast queries. The system by Bakkalian et al. [72]
represents time series using models but does not focus on
their use for forecasting. This system instead uses models
to reduce the storage requirement and query response time
for OLAP queries. In addition to extending PostgreSQL and
Oracle RDBMS with new methods for storing and querying
time series, researchers have also extended RDBMSs with
functionality for analytics without any changes to data
storage through for example MADLib [83] and SearchTS [84].
Despite all of surveyed TSMSs in this section extend an
RDBMS with AQP functionality, none of the systems imple-
ment functionality for stream processing.

6 FUTURE RESEARCH DIRECTIONS

The increase in time series data produced has lead researchers
to discuss new directions for research into development of
TSMSs, with new research opportunities being created as a
result of this effort.

6.1 Research Directions Proposed in Literature

Cuzzocrea et al. [85] detail how the combination of sensor
networks with cloud infrastructure enables the development
of new types of applications, detail problems with the
current state-of-the-art, and present a set of open problems
regarding the combination of sensor networks with cloud
infrastructure. The first problem presented is that different
sources of sensor data often are heterogeneous, increasing the
difficulty of combining different data sources for analytics.
Heterogeneous data sources also complicate the addition
of structure to a data set as a prerequisite for an analytical
task. Another problem described is the amounts of sensor
data produced which add additional requirements to the
scalability of TSMSs. The authors propose to utilize methods
from both RDBMSs and NoSQL database systems, and
develop new systems with a high focus on scalability,
primarily through horizontal partitioning and by reducing
the reliance on join operations.

Cuzzocrea [86] provides an overview of the state-of-the-
art methods for managing temporal data in general. However,
while the general topic of the paper is temporal data
management, a discussion of existing research and future
research direction in the area of sensor data and scientific
data management is also included in the paper. In addition,
the author provides a discussion of additional open research
questions within the area of temporal and sensor data
management. For this summary only the proposed research
directions relevant for management of time series data are
included. The presented research directions are primarily
centered around the problem of scalability. First the author
argues that new storage methods are required, in conjunction
with additional research into indexing mechanisms. In terms
of data analysis, the author sees a hybrid system combining
in-memory and disk based storage together with the next
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Fig. 15. Architecture proposed by Shafer et al. [12], redrawn from [12]

generation of system using the distributed data processing
model popularized by Apache Hadoop as an import research
direction. This architecture was later realized for general
purpose data by SnappyData [87], [88]. In addition, the
author proposes that further research into AQP method
be performed, as such methods have already been proven
successful for sensor data. The development of innovative
analytical methods robust against imprecise values and
outliers is presented as a pressing concern, and new methods
for data visualization are presented as being necessary, as
existing solutions for visualization of time series at different
resolutions cannot be used at the scale required today.

Additional arguments for further research into the de-
velopment of TSMSs were presented by Shafer et al. [12].
Traditional RDBMSs support functionality unnecessary for
processing time series, such as the ability to delete and
update arbitrary values, with the argument that supporting
functionality that is not necessary for analyzing time series
adds complexity and overhead to these systems. In addition,
since time series analysis often follows a common set of
access patterns, creating a system optimized specifically
for these access patterns should lead to a performance
increase over a general purpose DBMS. The authors present
an overview of some existing TSMSs and DBMSs suitable
for time series analysis, and argue that they all effectively
function as column stores with additional functionality
specific for processing time series added on top. Using a
column store for storing and processing time series provides
the benefit of run length compression and efficient retrieval
of a specific dimension of a time series [89]. However, the
authors dispute the use of column stores and describe a set
of design principles for a time series data store as shown
in Fig. 15. They propose that time series data store should
separate time series into timestamps and values, the values
be partitioned based on their origin to make appending them
to a time ordered list trivial, and last the values should be
archived in blocks ordered by time to allow for efficient
access to a continuous part of the time series. A preliminary
evaluation demonstrates that using these principles, a higher
compression rate compared to existing RDBMS and TSMS,
can be achieved.

Sharma et al. [1] present new research directions for
time series analysis in the area of Cyber-Physical Systems
(CPSs). Creating CPSs by combining sensor networks with
software for detailed analysis and decision-making allows
for a new wave of informed automation system based on
sensor readings. However, the authors argue that before
such systems can be realized at a large scale, multiple

challenges must be resolved. First, the lack of information
about how changes to a CPS change the sensor readings
produced, prevents systems from automatically controlling
the monitored system based on information from the sensors.
As a possible solution the authors propose using graph-
based methods to infer the relationship between changes to
a system and its sensor readings. Changes in discrete state
could also be used to predicate changes to sensor readings,
such as predicting a change in the speed of a car if cruise
control is turned on or off. Another problem presented is
scaling systems large enough to analyze the amount of low
quality data large networks of cheap sensors produce, due
both to the amount of data produced and the necessity to
clean it before it can be analyzed. For this problem, the
authors propose that existing methods designed for detection
of sequential patterns in symbolic data could be effective for
time series data mining, if efficient methods for converting
time series to a symbolic representation can be created.

Another proponent for the development of specialized
systems for analysis of time series and data series is Pal-
panas [3], [4], [5] as he argues that the development of a
new class of systems he names Data Series Management
System (SMS) is a requirement for analysis of data series
to continue to be feasible as the amounts of data from data
series increase. However, for an SMS to be realized, methods
enabling a system to intelligently select appropriate storage
and query execution strategies based on the structure of
the data is necessary. As time series from different domains
exhibit different characteristics, the system should be able
to take these characteristics into account, and utilize one or
multiple different representations to minimize the necessary
storage requirement while still allowing for adaptive indexes
to be created and queries to be executed efficiently. Parallel
and distributed query execution must be an integrated part
of the system to take advantage of not only multi-core
processor and SIMD instructions, but also the scalability
provided by distributed computing. To determine an ap-
propriate execution method for a query in an SMS a cost-
based optimizer specialized for data series would also be a
required component, and it should abstract away the parallel
execution of the analysis and indexing methods implemented
in the system. However, the author argues that no existing
cost-based optimizer is suitable for use in a SMS. In addition
to the proposed system architecture, an argument for the
development of a standardized benchmark for comparison
of SMSs is also presented.

6.2 Online Model-Based Sensor Warehouse

In addition to the proposed research direction into storage
and analysis of time series, and based on the surveyed
systems, we see the following areas as being of primary
interest for the scalability and usability of TSMSs to be further
increased. The end result of the research we propose is a
distributed TSMS with a physical layer storing time series as
mathematical models, serving as the DBMS for a distributed
data warehouse designed specifically for analysis of sensor
data collected as time series and updated in real-time.
Online Distributed Model-Based AQP: Among the sys-
tems in the survey, few utilized models to approximate time
series and provide a means for AQP, opting instead to reduce
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query response time through pre-computed aggregates and
distributed computing. However, we believe that for use
cases where approximate results are acceptable, the use of
models provide a more flexible means for AQP. This is due to
the configurable error bound and storage requirements, the
capability to infer missing values and remove outliers, and
due to some queries being answerable directly from the mod-
els, dramatically decreasing query response time. Similarly,
to the use of models for distributed batch processing, the
use of models for distributed stream processing should be
evaluated, with the possibility that new algorithms could be
developed due to the reduction in bandwidth use. Research
in this direction has been performed by Guo et al. [51],
[52], [53]. However, the proposed system does primarily
demonstrate a new indexing solution. In addition, the
system only provides limited support for low latency stream
processing and the system does not implement a declarative
query language. Centralized TSMSs that use models as an
integral part of the system and provide a declarative interface
have been designed, for example Plato [38], TimeTravel [68]
and F2DB [70]. However, as these systems do not utilize
distributed computing, they are limited in terms of scalability.
Automatic Model Management: Additional support for
helping users determine how model-based AQP should be
utilized is necessary. Most TSMSs using model-based AQP
either provide no means for implementing and selecting
models appropriate for a particular time series or relegate
the task to domain experts [38], with only a few systems,
for example F2DB [70], [71], providing a mechanism for
automatic selection of models. While development of new
models and integration of such into a TSMS properly will
need to be performed manually for some time, a TSMS
supporting AQP using models should at minimum imple-
ment methods for automatically fitting models to time series
based on an error function for both batch and streaming
data. While researchers have proposed some methods for
automatically fitting models to time series stored in a DBMS,
only a few publications present methods for approximating
times series by automatically selecting appropriate models
in real-time [90], [91]. Inspired by similar proposals in the
area of machine learning [92], we propose that methods and
systems be developed that interactively guide non-expert
user to select appropriate models for a particular time series
without the need for an exhaustive search when data is
stored in a DBMS, and provide efficient selection of models
for segmenting and approximating time series with a pre-
specified error bound when ingested. Similarly, such a TSMS
should as part of query processing provide insights into
how an error bound should be interpreted and how a model
might have effected the time series it represents.
Model-Based Sensor Data Warehousing: A distributed
TSMS using models for stream and batch processing of
time series has the capability to scale through the use of
distributed processing by adjusting the acceptable error
bound for a query, through selection of alternative models,
and by implementing a query optimizer capable of taking
the properties of the models used into account. However, to
enable simple analytics on top of the model, an abstraction
is needed. One possible abstraction, the data cube, has
already been used successfully for analyzing time series
data with the MIRABEL project as an example [69], [82],

while the methods proposed by Perera et al. [77] and
Bakkalian et al. [72] demonstrated that, for centralized
systems, representing time series using models in a data
cube can lead to reduced storage requirements and query
response times. However, a system utilizing models for
representing time series in a data cube has, to the best of
our knowledge, never been successfully integrated with
methods for continuously updating a data cube such as for
example Stream Cubes [93] or systems such as Tidalrace [94],
in a distributed system. Another benefit of using a data cube
is that it is a well-known by data analysts, providing users of
our envisioned TSMS with a familiar interface for analytics
of multi-dimensional time series. Therefore, we see a data
cube as a useful abstraction for analyzing multi-dimensional
time series represented using models at the physical layer, if
methods for continuously maintaining an OLAP cube can be
unified with the methods for representing time series using
models in a distributed TSMS.

7 CONCLUSION

The increasing amount of time series data that is being
produced requires that new specialized TSMSs be developed.
In this paper we have provided a systematic and thorough
analysis and classification of TSMSs. In addition, we have
discussed our vision for the next generation of systems for
storage and analysis of time series, a vision that is based on
the analysis in this survey and the directions for future work
proposed by other researches in the field.

From our analysis we provide the following conclusions.
TSMSs that use an internal data store and integrate it directly
with the query processing component are predominately
centralized systems, while distributed TSMSs are being
developed using existing DFSs and distributed DBMSs.
Research into systems with an internal data store is instead
primarily focused on systems for embedded devices or which
function as a proof-of-concept implementation of a new
theoretical method. This point is further reinforced as only
a few of the proposed TSMSs in the internal data store
category can be considered mature enough for deployment
in a business critical scenario. This situation is contrasted
by the set of systems using external data stores, as a larger
portion of these systems are distributed and developed
by or in collaboration with a corporate entity where the
system then can be deployed in order to solve a data
management problem. As none of the TSMSs surveyed
use a distributed storage system developed and optimized
exclusively for persistent storage of time series, it is an
open question what benefit such a storage solution would
provide. Last, systems built as extensions to existing RDBMSs
are few and all extend a RDBMS with support for AQP
through the use of mathematical models. Other extensions
to RDBMSs have added new methods for query processing
but no additional functionality for storage of time series.
The described RDBMSs are in general complete in terms
of development, two of the systems were integrated into
larger applications for use in a smart grid and the last
being a prototype. However none of the RDBMS systems are
distributed, limiting their ability to scale.

Additional functionality built on top of the central storage
and query processing components is scarce in all three
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categories of systems. At the time of writing, only a limited
number of systems provide any capabilities for stream
processing to support transformation of the data as it is being
ingested. In contrast to implementing stream processing
during data ingestion, some TSMSs provide mechanisms for
piping the data through a set of transformations after it has
been stored in the TSMS or structure APIs around streams.
Compared to stream processing, more TSMSs implement
methods for approximating time series as a means to
reduce query response time, storage requirements, or provide
advanced analytical capabilities. However, for the systems
that implement methods for approximating time series, it is
uncommon to have an interface for domain experts to extend
the systems with additional user-defined methods or models
optimized for a particular domain or data set.

The future research directions proposed by experts in
the field are primarily focused on the need for a TSMS
with a storage solution and query processor developed
from the ground up for time series, instead of reusing
existing components or data models from for example an
RDBMS for storage of time series. Additionally, it is proposed
that such systems should support in-memory, parallel and
distributed processing of time series as a means to reduce
query processing time enough for interactive data analytics
and visualization. AQP is mentioned as another possibility
for reducing query processing time. As future work we
propose that a TSMS that inherently provides a data cube
as the means for analyzing multi-dimensional time series
be developed. The system should provide interactive query
speeds through the use of distributed in-memory processing
and incorporate AQP as a central part of the system from
the start. The system must support stream processing to
transform and clean the data as it is ingested, and provide
the means for construction of user-defined models, in order
to compress the time series and enable AQP.

In summary, we propose that a distributed TSMS provid-
ing the same analytical capabilities as a data warehouse
be developed specifically for use with time series. The
TSMS should provide functionality that allows the data to
be updated in real-time, support stream processing using
user-defined functions and allow queries to be executed on
both historical and incoming data at interactive query speed
through the use of AQP.
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