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Abstract—The collection of time series data increases as more monitoring and automation are being deployed. These deployments
range in scale from an Internet of things (IoT) device located in a household to enormous distributed Cyber-Physical Systems (CPSs)
producing large volumes of data at high velocity. To store and analyze these vast amounts of data, specialized Time Series Management
Systems (TSMSs) have been developed to overcome the limitations of general purpose Database Management Systems (DBMSs) for
times series management. In this paper, we present a thorough analysis and classification of TSMSs developed through academic or
industrial research and documented through publications. Our classification is organized into categories based on the architectures
observed during our analysis. In addition, we provide an overview of each system with a focus on the motivational use case that drove the
development of the system, the functionality for storage and querying of time series a system implements, the components the system is
composed of, and the capabilities of each system with regard to Stream Processing and Approximate Query Processing (AQP). Last, we
provide a summary of research directions proposed by other researchers in the field and present our vision for a next generation TSMS.

Index Terms—Approximation, Cyber-physical systems, Data abstraction, Data compaction and compression, Data storage
representations, Data structures, Database architectures, Distributed databases, Distributed systems, Internet of things, Scientific
databases, Sensor data, Sensor networks, Stream processing, Time series analysis

1 INTRODUCTION

HE increase in deployment of sensors for monitoring

large industrial systems and the ability to analyze the
collected data efficiently provide the means for automation
and remote management to be utilized at an unprecedented
scale [1]]. For example, the sensors on a Boeing 787 produce
upwards of half a terabyte of data per flight [2]]. While the use
of sensor networks can range from an individual smart light
bulb to hundreds of wind turbines distributed throughout
a large area, the readings from any sensor network can
be represented as a sequence of values over time, more
precisely as a time series. Time series are finite or unbounded
sequences of data points in increasing order by time. Data
series generalize the concept of time series by removing the
requirement that the ordering is based on time. As time series
can be used to represent readings from sensors in general, the
development of methods and systems for efficient transfer,
storage, and analysis of time series is a necessity to enable
the continued increase in the scale of sensor network and
their deployment in additional domains [1]], [3], [4], [5].
For a general introduction to storage and analysis of time
series see [6]], [7], a more in-depth introduction to sensor
data management, data mining, and stream processing is
provided by [8], [9], [10].

While general Database Management Systems (DBMSs),
and in particular Relational Database Management Systems
(RDBMSs), have been successfully deployed in many situa-
tions, they are unsuitable to handle the velocity and volume
of the time series produced by the large scale sensor networks
deployed today [3], [4], [5], [11]. In addition, analysis of the
collected time series often requires exporting the data to
another application such as R or SPSS, as these provide
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additional capabilities and a simpler interface for time series
analysis compared to an RDBMS, adding complexity to the
analysis pipeline [12]. In correspondence with the increasing
need for systems that efficiently store and analyze time
series, Time Series Management Systems ( TSMSSEI have been
proposed for multiple domains including monitoring of
industrial machinery, analysis of time series collected from
scientific experiments, embedded storage for Internet of
things (IoT) devices, and more. For this paper we define
a TSMS as any system developed or extended for storing
and querying data in the form of time series. Research into
TSMSs is not a recent phenomenon and the problems using
RDBMSs for time series have been demonstrated in the past.
In the 1990s Seshadri et al. developed the system SEQ and
the SQL-like query language SEQUIN [13]. SEQ was built
specifically to manage sequential data using a data model [14]
and a query optimizer that utilize that the data is stored as a
sequence and not a set of tuples [15]. SEQ was implemented
as an extension to the object-relational DBMS PREDATOR
with the resulting system supporting storage and querying
of relational and sequential data together. While additional
support for sequences was added to the SQL standard
through for examples window queries, development of
query languages and TSMSs continued throughout the early
2000s. Lerner et al. proposed the algebra and query language
AQuery [16] for which data is represented as sequences
that can be nested to represent structures similar to tables.
Utilizing the AQuery data model and information provided
as part of the query, such as sort order, novel methods for
query optimization were implemented with improved query
performance as a result. In contrast to AQuery which uses a
non-relational data model, Sadri et al. proposed an extension
to the SQL query language named SQL-TS for querying
sequences in the form of time series stored in an RDBMS

1. TSMS is one among multiple names for these systems commonly
used in the literature, another common name is Time Series Database.
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or from an incoming stream [17]. SQL-TS extended SQL
with functionality for specifying which column uniquely
identifies a sequence and which column the sequence should
be ordered by. Patterns to search for in each sequence can
then be expressed as predicates in a WHERE clause. They
proposed a query optimizer named OPS based on an existing
string search algorithm, making complex pattern matching
both simple to express and efficient to execute [18], [19].

It is clear that decades of research into management of
time series data have lead to the development of expressive
query languages and efficient query processing engines.
However, this past generation of TSMSs are unable to
process the amount of time series data produced today, as
support for parallel query processing is limited and the
capability to utilize distributed computing is non-existing.
In addition, as the TSMSs developed were designed for
general-purpose use, only limited optimizations could be
implemented for specific use cases [11]. As a result, as new
use cases and technologies appear, such as data management
for IoT devices and commodity distributed computing, a new
generation of TSMSs have been developed. With this paper
we provide an overview of the current research state-of-the-
art in the area of TSMSs presented as a literature survey
with a focus on the contributions of each system. The goal of
this survey is to analyze the current state-of-the-art TSMSs,
discuss the limitations of these systems, analyze research
directions proposed by other researchers in the field, and as a
result of our analyses present our vision for a next generation
TSMS. To focus the survey, we primarily analyze systems
designed for storing numerous time series persistently,
allowing the system to support aggregate analysis of multiple
data streams over time. In addition, while scalability has not
been used as a criterion for excluding systems, we see it
as an important characteristic for any TSMS and a focus of
this survey. As a consequence of these decisions, systems
such as Antelope [20], HybridStore [21]], LittleD [22] and
StreamOp [23] developed for deployment on sensor nodes,
and more broadly research in the area of query processing
inside sensor networks, are not included. For an introduction
to the topic of query processing in sensor networks see [8]].
Also, the survey only includes systems with papers published
in the current decade, due to the switch in focus towards Big
Data systems built using commodity hardware for large
scale data storage and analytics. For TSMSs we observed
a general trend towards distributed storage and processing,
except for TSMSs developed for evaluation of research or
for use in embedded systems. Furthermore, only systems
implementing methods specifically for storage and querying
of time series are included due to the effect design decisions
for each component have on the other. The survey also
provides an overview of open research questions in order
to provide not just an overview of existing systems but
also provide insight into the next generation of TSMSs.
Last, in addition to the systems proposed by academia or
produced through industrial research, many open-source and
proprietary TSMSs have been developed, with the systems
OpenTSDB, KairosDB, Druid, InfluxDB, and IBM Informix
being popular examples. For information about selecting a
TSMS for a particular workload see the following papers [12],
[24], 125], [26], [27]], [28], [29].

The search method for the survey is a follows. An
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unstructured search using Google Scholar was performed to
provide an overview of what research is performed in the
area of TSMSs, and to determine the relevant conferences,
terms specific to the research area, and relevant researchers.
Based on the papers found during the unstructured search,
iterations of structured search were performed. Relevant
publications found in each iteration were used as input for
the next iteration. In each iteration additional papers were
located by exhaustively going through the following sources
for each paper:

o The references included in the paper.

e Newer publications citing the paper, the citations were
found using Google Scholar.

o All conference proceedings or journal issues published
in this decade for the conference or journal in which
the paper was presented or published. For the data
management outlets the most commonly used were
ACM SIGMOD, IEEE Big Data and PVLDB, while papers
were primarily presented at USENIX conferences when
looking at system outlets.

o The publication history for each paper’s author found
using a combination of DBLP, Google Scholar and profile
pages hosted by the author’s employer.

The rest of the paper is organized as follows. Section
provides a summary of all the systems included in this survey
in addition to a description of the criteria each system will
be classified by. Section [} [} and [5} describe the systems
and are organized based on if the data store is internal,
external, or if the system extends an RDBMS. Section [f]
provides an overview of open research questions proposed
by leading researchers in the field in addition to how these
ideas correspond to the surveyed systems, culminating in
our vision for a next generation system for time series
management and what research must be performed to realize
it. Last, a summary and conclusion are presented in Section[7}

2 CLASSIFICATION CRITERIA

An overview of the TSMSs included in this survey is shown
with regards to our classification criteria in Table [I| and
the operations each system supports in Table 2| As some
publications refrain from naming the proposed system some
systems are marked as unnamed with only the references
as identification. The TSMSs were organized into three
categories based on how the data processing and storage
components are connected, due to the major impact this
architectural decision has on the implementation of the
system. In addition to the differences in architecture, the
remaining classification criteria were selected based on what
differentiated the surveyed systems from each other. For
systems incorporating an existing DBMS only additional
functionality described in the surveyed papers will be
documented. The full set of classification criteria are:

Architecture: The overall architecture of the implementation
is primarily determined by how the data store and data
processing components are connected. For some systems
both the data store and processing engine are internal and
integrated together in the same application, either due to
them being developed together or if an existing DBMS is
embedded and accessed through the provided interface.
Other systems use an existing external DBMS or Distributed
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File System (DFS) as a separate data store, requiring the
TSMS to implement methods for transferring time series data
to the external DBMS or DFS. Last, some implement methods
for processing time series as extensions to an existing RDBMS,
making the RDBMS'’s internal implementation accessible for
the TSMS in addition to removing the need to transfer data
to an external application for analysis. As Table|l]is split into
sections based on architecture, the architecture used by the
systems in each section of the table is written in italics as the
heading for that section of the table.

Year: The year the latest paper documenting the surveyed
system was published. This is included to simplify compari-
son of systems published close to each other. The year of the
latest publication is used as new publications indicate that
functionality continues to be added to the system.

Purpose: The type of workload the TSMS was designed and
optimized for. The first type of systems are those designed
for collecting, analyzing and reacting to data from IoT
devices, next TSMSs developed for monitoring large industrial
installations for example data centers and wind turbines,
then systems for extracting knowledge from time series data
through data analytics, and last systems for which no other
real-world use case exist than the evaluation of research into
new formalisms, architectures, and methods for TSMSs.
Motivational Use Case: The intended use case for the sys-
tem based on the problem that inspired its creation. As
multiple systems designed for the same purpose can be
designed with different trade-offs, the specific problem a
system is designed to solve indicates which trade-offs were
necessary for a particular TSMS.

Distributed: Indicates if the system is intended for a cen-
tralized deployment on a single machine or built to scale
through distributed computing. It is included due to the effect
this decision had on the architecture of the system and the
constraints a centralized system adds in terms of scalability.
Maturity: The maturity of the system based on a three
level scale: proof-of-concept implementations implement only
the functionality necessary to evaluate a new technique,
demonstration systems include functionality necessary for
users to interact with the system and are mature enough for
the system to be evaluated with a real-life use case, mature
systems have implementations robust enough to be deployed
to solve real-life use cases and supported through either an
open-source community or commercial support.

Scale Shown: Scale shown is used as a concrete measure
of scalability and defined as the size of the largest data set
and number of nodes a TSMS can manage as documented in
the corresponding publications. The sizes of the data sets
are reported in bytes after the data has been loaded into
the TSMS. As data points differ in size depending on the
data types used and the amount of metadata included, data
sets for which the size is documented as the number of data
points are not included. While some systems are continuously
being improved, only the results presented in the referenced
publications are included for consistency.

Processing Engine: The data processing engine used by
the system for querying, and if supported, analyzing the
stored time series data. Included as this component provides
the system’s external interface for the user to access the
functionality provided by the system. If an existing system
is used we write the name of the system, otherwise if a new

http://dx.doi.org/10.1109/TKDE.2017.2740932

4

engine has been developed we write implemented with the
implementation language added in parentheses.

API: The primary methods for interacting with the system.
The methods can be query languages, extensions of existing query
languages, client libraries developed using general purpose
programming languages, a web service, or a web interface.
Approximation: Describes the primary method, if any, for
approximating time series that each system supports. Using
approximation as part of a TSMS provides multiple benefits.
Representing time series as simple aggregates uses less stor-
age and reduces query processing time for queries capable
of utilizing the aggregate. Approximate Query Processing
(AQP) expands upon the capabilities of simple aggregates
and provides user-defined precision guarantees through
the use of mathematical models or sampling. In addition,
representing time series as mathematical models, such as a
polynomial regression model, provides functionality for data
analysis such as interpolation or forecasting depending on
the type of model utilized. AQP utilizing sampling reads only
a subset of a time series and uses this subset to produce an
approximate query result. A survey of mathematical models
for representing time series can be found in the second
chapter of [8]], while additional information about sampling
and integration of AQP into a DBMS can be found in [75]].
For this survey we differentiate between approximation
implemented as simple aggregates without guaranteed error
bounds, and AQP utilizing either mathematical models or
sampling to provide query results with precision guarantees.
Stream Processing: Describes the primary method each
system supports, if any, for processing time series in the form
of a stream from which data points are received one at a time.
As each data point is processed independently of the full time
series, each data point can be processed in-memory upon
ingestion for applications with low latency requirements [76].
For queries with an unbound memory requirement or high
processing time, AQP methods such as sampling or mathe-
matical models can be used to lower the resource requirement
as necessary [76]. Stream processing can be implemented
using user-defined functions, as functionality part of the TSMS,
or as a query interface based on streams. Examples of stream
processing include online computation of aggregates, online
constructing of mathematical models, removal of outliers in
real-time, and realignment of data points in a limited buffer
using windows. Operations performed after the data has
been ingested by a TSMS, such as maintaining indexes or
mathematical models constructed from data on disk, are not
included. For a discussion of stream processing in contrast to
traditional DBMSs see [76]], while an in-depth introduction
can be found in [10].

Storage Engine: The data storage component or system
embedded into the application, used as external storage,
or extended to enable storage of time series. If an existing
system is used for data storage, we write the name of the
system. For TSMSs were the storage component has been
written from scratch, the column is marked as implemented
with the implementation language added in parentheses.
Storage Layout The internal representation used by the
system for storing time series, included due to the impact the
internal representation has on the systems batch processing,
stream processing and AQP capabilities.
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TABLE 2
Summary of the Surveyed Systems in Terms of Functionality
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In addition to the classification criteria shown in Table
the TSMSs are summarized with regard to their supported
query functionality in Table[2] To describe the functionality of
the surveyed TSMSs with a uniform set of well-known terms,
we elected to primarily express it using SQL. Two columns
for keywords not part of SQL have been added to mark
systems for which new data points can only be appended to
an existing time series and to show which capabilities for data
analytics each system supports. The full list of functionality
included is: the capability to select data points based on
timestamp or value, insert data points into a time series at
any location, append data points to the end of a time series,
update data points already part of a time series, delete data
points from a time series, compute aggregates from a time
series through the use of aggregate functions, join multiple
time series over timestamp or value, perform computations
over a time series using either window functions or user-
defined functions, and any support for data analytics part of
the system. In Table [2] we show a black circle if the TSMS
is known to support that type of query through its primary
API, and leave the cell empty if the TSMS is known to not
support that type of query or if we were unable to determine
if the functionality was supported or not. For the column
analytics we list the supported functionality to differentiate
the methods for data analytics supported by each system.
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In the following three sections, we detail the primary
contributions provided by each system in relation to the
motivational use case and the classification criteria. Each
section documents one set of systems based on the archi-
tecture of the system as shown in Table [I| and Table
In addition to a description of the contributions of each
system, illustrations, redrawn from the original publications,
are utilized to document the TSMSs. Two types of figures
are used depending on the contribution of each system:
architecture diagrams and method illustrations. Architecture
diagrams use the following constructs: system components
are shown as boxes with full lines, lines between components
show undefined connections, data is shown as boxes with
rounded corners, arrows show data flow between components,
logically related components are grouped by boxes with
dotted lines or by dotted lines for architectural layers, data
storage is shown as cylinders, cluster nodes are components
surrounded by boxes with dashed lines, and text labels are used
as descriptive annotations. Method illustrations follow a less
rigid structure due to the lack of correlation between the
illustrated methods but in general layout of data in memory
is shown as boxes with full lines. Squares with rounded corners
are used for nodes in tree data structures. Constructs only
used for a single figure are documented as part of the figure.

3 INTERNAL DATA STORES
3.1

Implementing a new TSMS as a single executable allows
for deep integration between the data storage and data
processing components. As the storage component is not
accessible to other applications, the data layout utilized can
be extensively optimized for the data processing component.
Communication between the two components is also simpli-
fied as no communication protocol suitable for transferring
time series is needed and no interface constrains access to
the data storage layer unless an existing embeddable DBMS
is used. The absence of external dependencies reduces the
complexity of deploying the TSMS due to the system being
self-contained. As a downside a system with an internal
data store cannot utilize existing infrastructure such as a
distributed DBMS or a DFS that already are deployed. In
addition, if a new data storage layer is developed for a TSMS,
instead of an existing embeddable DBMS being reused, time
will need to be spent learning how that particular data store
must be configured for it to perform optimally unless the
TSMS provides automatic configuration and maintenance.

Overview

3.2 Systems

tsdb presented by Deri et al. [30] is a centralized TSMS
designed for monitoring the large quantity of requests to the
.it DNS registry. For storage tsdb utilizes the embeddable
key-value store BerkeleyDB. The use of BerkeleyDB provides
a uniform mechanism for storage of both the time series and
the metadata used by the database. Data points ingested by
tsdb are added to an array and when the array reaches a
predefined size it is chunked and stored in BerkeleyDB. Each
chunk is stored with a separate key computed by combining
the starting timestamp for the array with a chunk id. tsdb
requires all time series in the database to cover the same
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time interval, meaning each time series must have the same
start timestamp and contain the same number of data points.
This restriction simplifies computations that include multiple
time series stored in the system, at the cost of tsdb not
being applicable for domains where the need for regular
time series adds complexity or is impossible to achieve. In
terms of additional capabilities tsdb does not support stream
processing, aggregation, or AQP.

The TSMS FAQ proposed by Khurana et al. [31] utilizes
sketches organized in a range tree for efficient execution
of approximated queries on time series with histograms
as values. The system consists of multiple components as
shown in Fig.[I} First, an index containing multiple types of
sketches and histograms, each supporting a different type
of query or providing a different trade-off between accuracy
and query response time. An index manager and an error
estimator are utilized by the query planner to select the most
appropriate representation based on the provided query
and the required error bound. However, utilization of the
presented data structure, and thereby the TSMS in general,
for use with stream processing of time series is relegated to
future work. In addition, the external interface provided by
the proof-of-concept implementation is not detailed in the
paper.

WearDrive by Huang et al. [32] is a distributed in-memory
TSMS for IoT, that demonstrates an increase in performance
and battery life for a wearable device by transferring sensor
data to a smartphone over a wireless connection. The system
primarily uses volatile memory for storage as the flash
storage used for wearable devices was identified as being a
bottleneck in earlier work by Li et al. [33]. By extending the
firmware used by a wearable device, WearDrive provides
the same persistence guarantees as non-volatile flash storage.
The system is split into two applications, as shown in Fig.
each built on top of a key-value store implemented for in-
memory use. The store is organized as a sequential log of
key-value pairs per application with each log file indexed by
a hash map. WearCache is running on the wearable device
and stores only a few sensor readings locally as the data
is periodically pushed to remote memory or remote flash
which is physically located on the smartphone, causing a
drop in battery life for the smartphone. WearKV runs on the
smartphone and stores the complete set of sensor readings
collected from the wearable devices sensors in addition to
the data sent from the smartphone itself to the wearable
device. A simple form of stream processing is supported
as applications can register to be notified when new values
are produced by a specific sensor or for a callback to be
executed with all the new sensor values produced over an
interval. No support for AQP is provided by WearDrive.
While the system is designed for a smaller scale, it follows
a structure similar to other TSMSs with the wearable as
resource-constrained device collecting data points. The data
points are then transferred to the smartphone which serves as
the system’s backend and provides more capable hardware
for storage and aggregate analysis.

RINSE, proposed by Zoumpatianos et al. [34], is a
centralized system for data analytics supporting execution of
efficient nearest neighbor queries on time series by utilizing
the ADS+ adaptive index by Zoumpatianos et al. [35],
[36]. The implementation is split into two components: a
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Fig. 1. The architecture of the FAQ system, redrawn from [31]

backend and a web frontend. The backend serve as the data
storage and indexing component, storing time series in an
unspecified ASCII on-disk format indexed using ADS+. The
web frontend is served through Node]S and provide the
means to execute nearest neighbor queries by drawing a
pattern to search for. In addition, the capabilities of the data
storage component are available through a TCP socket. The
use of ADS+ for its index provides the system with multiple
capabilities. First, as ADS+ is an adaptive tree-based index
only internal nodes are initialized while the leafs, containing
the data points from the time series, are only initialized if
that part of the time series is used in a query. This reduces
the time needed to construct the index before queries can be
executed compared to alternative indexing methods. Second,
appr