
Xiangyao Yu
2/27/2020

CS 839: Design the Next-Generation Database
Lecture 12: HBM

1



Announcements

2

Upcoming deadlines:
• Form groups: Today
• Proposal due: Mar. 10

Fill this Google sheet for course project information
• https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B

28-f-PBpQPHX01Mk/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1W7ObfjLqjDChm49GqrLg49x6r4B28-f-PBpQPHX01Mk/edit?usp=sharing


Project Proposal

3

Use VLDB 2020 format
• https://vldb2020.org/formatting-guidelines.html

The proposal is 1-page containing the following
• Project name
• Author list
• Abstract (1-2 paragraphs about your idea)
• Introduction (Why is the problem interesting; what’s your contribution)
• Methodology (how do you plan to approach the problem)
• Task-list (Who works on what tasks of the project)
• Timeline (List of milestones and when you plan to achieve them)

Submit proposal by March 10 to https://wisc-cs839-ngdb20.hotcrp.com

https://vldb2020.org/formatting-guidelines.html
https://wisc-cs839-ngdb20.hotcrp.com/


Discussion Highlights

4

High availability and remote recovery
• HA requires synchronous round trip
• Network may become a bottleneck with HA 
• WBL cannot be simply extended to provide HA or remote recovery. Possible 

solutions (1) add REDO logging (2) use RDMA to directly update remote NVM

REDO vs. UNDO vs. WBL
• WBL pros: instant recovery, small log size
• WBL cons: requires multi-versioning, works only for NVM
• UNDO: bounded log size (typically small)

WBL with three-tier architecture
• Challenges: Pulling cold data from SSD, page vs. byte granularity
• Log and hot data in NVM, cold data in SSD



Today’s Paper

5DaMoN@SIGMOD 2018



Today’s Agenda
High Bandwidth Memory (HBM)

Intel Xeon Phi processor

Joins on HBM

6



High Bandwidth Memory (HBM)

7

Compared to DRAM, HBM has
• Slightly higher latency
• Much higher bandwidth
• Limited capacity

CPU 
register 

On-chip 
cache 

(SRAM)

High-bandwidth 
memory (HBM)

Main memory (DRAM)

Non-volatile memory (NVM)

Solid-state drive (SSD) 

Hard disk drive (HDD)



High Bandwidth Memory (HBM)

8

DRAM DIMMs

High-bandwidth memory 



HBM Specs

9

HBM (2013) HBM2 (2016) HBM2E (2018) HBM3 (2020?)
Max Capacity 
(per stack)

4 GB 8 GB 24 GB 64 GB

Max bandwidth 
(per stack)

128 GB/s 256 GB/s 307 GB/s 512 GB/s

• High bandwidth memory has growing capacity and bandwidth 



Where is HBM Used?

10

• Nvidia Pascal GPU, Nvidia Volta GPU

• AMD Radeon GPU

• Intel Xeon Phi CPU

HBM is mostly used in GPUs today



Intel Xeon Phi Processors

11



Xeon Phi

PCIe-based coprocessor

12

Knights Corner Knights Landing

Standalone CPU



Knights Corner

13

• 61 physical cores (244 threads)
• 16 GB GDDR5 memory
• Communicate with CPU through PCIe



Knights Landing (KNL)

14

• 72 physical cores (288 threads)
• 16 GB MCDRAM (HMC)
• 400+ GB/s
• Standalone processor

Throughput Power Throughput/Power
Intel Skylake 128 GFLOPS 100+ Watts ~1 GFLOPS/Watt
Knights Corner 1209 GFLOPS 300 Watts ~4 GFLOPS/Watt 
Knights Landing 3456 GFLOPS 200+ Watts ~13 GFLOPTS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt



KNL – Architecture 

15



KNL – Instruction Set 

16

SIMD instructions
• Streaming SIMD 

Extensions (SSE), 128 bits
• Advanced Vector 

Extensions (AVX), 256 bits
• AVX-512, 512 bits



KNL – Cluster Modes

17

All-to-all mode: No affinity between 
the tile, directory, and memory 

Dir



KNL – Cluster Modes

18

All-to-all mode: No affinity between 
the tile, directory, and memory 

Quadrant mode: Divides the KNL 
chip into four quadrants; affinity 
between directory and memory, no 
affinity between tile and directory Dir



KNL – Cluster Modes

19

All-to-all mode: No affinity between 
the tile, directory, and memory 

Quadrant mode: Divides the KNL 
chip into four quadrants; affinity 
between directory and memory, no 
affinity between tile and directory

Sub-NUMA clustering (SNC): 
Divides the KNL chip into two or 
four nonuniform memory access 
(NUMA) domains. Affinity between 
tile, directory, and memory

Dir



KNL – Memory Modes

20

Cache Mode: Memory side cache for DDR memory; transparent to 
software
Flat Mode: Software sees both address spaces (malloc() vs. 
hbw_malloc())
Hybrid Mode: Software sees both address spaces



KNL – Memory Modes – Cache Mode

• Direct-mapped cache (A cacheline maps to only one location in 
MCDRAM)
• Cache lookup: loads both tag and data
• For a hit, return data 
• For a miss, access DDR DRAM

21



Xeon Phi Today?

22



Joins on HBM

23



Join Algorithms 
Symmetric Hash Join

No Partitioning Hash Join

Partitioned Hash Join

Parallel Radix Join 

M-Way Sort-Merge Join 

24



Symmetric Hash Join (SHJ)

25

R S

1. insert

R’s hashtable S’s hashtable

2. Probe

3. output



Symmetric Hash Join (SHJ)
• SHJ produces output 

tuples as early as possible 

• If one relation arrives 
entirely before the other 
relation, SHJ degenerates 
to a simple hash join

26

R S

R’s hashtable S’s hashtable



No Partitioning Hash Join
• Build Phase

27

Relation R

R’s hash table 

Insert to hash table in parallel

Need latches to protect 
concurrent inserts



No Partitioning Hash Join
• Build Phase

• Probe Phase

28

Relation R

R’s hash table 

R’s hash table 

Relation S

Insert to hash table in parallel

Lookup hash table in parallel

Need latches to protect 
concurrent inserts



Partitioned Hash Join
• Build Phase

• Probe Phase

29

Relation R

R’s partitioned hash table

R’s partitioned hash table 

Relation S

Insert to per-partition hash table in parallel

Probe the per-partition hash table



Radix Hash Join
Want a partition to fit in cache
Þ Large number of partitions 
Þ TLB misses

30



Radix Hash Join
Want a partition to fit in cache
Þ Large number of partitions 
Þ TLB misses

31



Radix Hash Join
Want a partition to fit in cache
Þ Large number of partitions 
Þ TLB misses

32



M-Way Sort-Merge Join 

For both R and S
• Range-partition the local 

chunk of the input relation
• Sort local partitions one-by-

one
• Merge partitions across 

threads

Merge sorted R and S 
through a linear scan 

33



Evaluation – No Partitioning Join
• Flat mode improves 

performance by 3.5x

• Cache mode does not 
improve performance

34



Evaluation – Parallel Hash Join 

35

• Flat mode improves 
performance by 3.5x

• Cache mode does not 
improve performance

• Parallel hash join 
performs worse than no 
partitioning join 



Evaluation – Parallel Radix Join 

36

Implementation of [5] Implementation of [3]

• Cache mode improves some performance
• Optimized Radix join is much faster than no partitioning join



Evaluation – Sort-Merge Join 

37



Lessons Learned
1. Flat mode better than cache mode

2. High amounts of threads can easily lead to memory bottlenecks 

3. Do not place everything in HBM 

4. Random memory access patterns do not saturate bandwidth in 
general, being therefore not ideal for HBM 

5. High bandwidth improves highly parallel hash joins and sort-merge 
joins more or less equally 

6. Uneven load balancing by skew as well as latches on partitions are 
not noticeably influenced by HBM 

38



Summary
Xeon Phi: High bandwidth memory integrated with multicore CPU

HBM is more popular with GPU than CPU

Cache mode does not always lead to performance improvement 

39



NVM – Q/A 
What is AVX? 

What is non-uniform memory access (NUMA)

“Cycles per output tuple” and bandwidth are inversely correlated

HBM + NVM?

Different DB variants for each type of data (e.g., relational data, 
graphs, streams etc.)

40



Group Discussion
What in your opinion makes HBM more successful with GPU than CPU?

41

REG

SRAM

HBM

DRAM

NVM

SSD

HDD

With new memory/storage devices showing up, the 
storage hierarchy is getting more and more complex. 
How do you think the trend will continue? 

Do you think APU can be a promising database 
accelerator in the future? 

• Accelerated processing unit (APU) integrates CPU and GPU 
(and potentially HBM) on a single die



Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Submit review for
• Query Processing on Smart SSDs: Opportunities and Challenges
• [optional] Enabling Cost-effective Data Processing with Smart SSD

42

https://wisc-cs839-ngdb20.hotcrp.com/

