
Xiangyao Yu
3/12/2020

CS 839: Design the Next-Generation Database
Lecture 16: High Availability

1

Announcements

2

Online lectures
• Until at least April 10

Canvas (canvas.wisc.edu)
–> Courses

–> COMPSCI839: Core Topics in Computing (005) SP20
–> BBCollaborate Ultra

http://canvas.wisc.edu/

Learning to Use BBCollaborate Ultra

3

Blackboard Collaborate Ultra
• Mute your audio by default
• Raise hand
• Breakout groups

Discussion Highlights

4

RDMA for transaction execution phase
• No need to partition or replicate indexes
• Centralized locking and replication can be faster
• Centralized logging service
• Accessing and locking remote data using RDMA
• Prefetch data into local memory

DB components significantly affected by a faster network
• Two phase commit, Consensus, Replication
• Less worry about locality
• Breakdown program into multiple microservices
• Data shuffling in the network
• Distributed system becomes NUMA is network is sufficiently fast

Opportunities and challenges of memory disaggregation
• Opportunities: Independent scaling of CPU and memory; simplifying scheduling; larger aggregated

memory capacity; potentially faster fault tolerance
• Challenges: independent failure of compute and memory; consistency and coherency; data

placement and partitioning

Today’s Paper

5
VLDB 2019

Common wisdom: Network is a severe performance
bottleneck in a distributed database

Key Idea

Common wisdom: Network is a severe performance
bottleneck in a distributed database

No longer true for the next-generation high
bandwidth RDMA-enabled network

Key Idea

Common wisdom: Network is a severe performance
bottleneck in a distributed database

No longer true for the next-generation high
bandwidth RDMA-enabled network

This paper: Rethinking high-availability (HA)
protocols in the context of RDMA-based network

Key Idea

High Availability

• Replicate data across
multiple servers
• Data is available if at least

one partition is still alive
• If the primary node fails,

failure over to a secondary
node

9

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

Active Passive

10

Log shipping: primary nodes send log to backup nodes.
• Network traffic for log
• CPU cycles for log replay

Active Passive

11

Log shipping: primary nodes send log to backup nodes.
• Network traffic for log
• CPU cycles for log replay

Active Active (H-Store/VoltDB)

12

Partition-based locking
• After locking a partition, primary and backup run the same code
• No concurrency within a partition

Active Active (Calvin)

13

Deterministic execution following pre-assigned sequential order

Active-Active vs. Active-Passive

14

Network is the bottleneck in a conventional distributed database
Performance improves when network activity decreases

Active/Active & Active/Passive

CPU is the bottleneck in an RDMA-based distributed database
Performance improves when CPU activity decreases

15

Bottleneck Shifts from Network to CPU

16

Old optimization goal: Reduce network demand
New optimization goal: Reduce CPU demand

CPU
demand

Network
demand

Bottleneck Shifts from Network to CPU

17

CPU
demand

Network
demand

Active-Passive Active-Active

CPU Demand Replay logs Duplicate execution
Network Demand Send logs Send input

<
>

Bottleneck Shifts from Network to CPU

18

CPU
demand

Network
demand

Key idea: Coordinator directly updates memory states
of backup nodes using one-sided RDMA

Active Memory

Coordinator directly updates memory states of all nodes using
one-sided RDMA 19

P1

B1

P2

B2

Exec T1(A)

Exec T1(A)

Update

Update

Coord.

Update

Update

Commit

Commit

Commit

Commit

Active Memory

Less CPU consumption: no log replay, no redundant execution
More network traffic: direct updates consume higher bandwidth than
log shipping or inputs replication 20

Active Memory

Challenge: Fault Tolerance

Coordinator must unilaterally guarantee fault tolerance properties 21

P1

B1

P2

B2

Exec T1(A)

Exec T1(A)

Update

Update

Coord.

Update

Update

Commit

Commit

Commit

Commit

Two-Phase Commit

Undo Logging in Active Memory

Write UNDO entry before directly updating memory
Set the commit bit in UNDO log entry to 1 22

P1

B1

P2

B2

Exec T1(A)

Exec T1(A)

Update

Update

Coord.

Update

Update

Commit

Commit

Commit

Commit

UNDO

UNDO

UNDO

UNDO

Phase 1 Phase 2

Phase1 Message Format

23

RDMA guarantees in-order processing of network messages

Undo Log Buffer

24

• A dedicated Undo log buffer for each remote node

• Each Undo Log Buffer has a fixed number of entries

• An entry is reclaimed after the transaction commits

Fault Tolerance
Need to handle only transactions in the UNDO buffer
• Otherwise the transaction must have already committed

If primary replica fails, promote a backup to be the new primary
All nodes broadcast UNDO buffers

If a transaction T has commit bit set in all UNDO buffers
-> commit the transaction

Otherwise
-> rollback and abort the transaction

25

Evaluation – Scalability

26

Evaluation – Scalability
LS: Log Shipping AM: Active Memory

27

Evaluation – Latency

28

Evaluation – Multi-Partition Transactions

29

Evaluation – Network Bandwidth

30

Evaluation – Network Bandwidth

31

Evaluation – Network Traffic

32

Evaluation – Replication Factor

33

Evaluation – Contention

34

Summary

35

• RDMA shifts the bottleneck from network to CPU
• Conventional HA protocols (i.e., active-passive and active-active) are

optimized for reducing network demand and is thus are no longer
optimal for RDMA
• Active-memory is optimized to reduce CPU demand
• Active-memory achieves 2x performance improvement

High Availability – Q/A
How long does recovery take?

Extend the idea to UC or UD queue pairs?
• In-order delivery of UNDO and updates

Exhaust entries in the circular UNDO log buffer?

Concurrency control other than NO-WAIT?

Eventual consistency? (RDMA for consensus)

Crash recovery? (NVM)

Log entry cannot fit in UNDO buffer?

Undo buffer overhead (w.r.t. cluster size, # of connections, etc.)

Backups unanimously decide to abort the current transaction?

36

Group Discussion
How to make Active Memory work when the network does not support
in-order delivery?

What is the similarity between Active Memory and Write Behind
Logging (discussed in Lecture 11)? Can they be combined?

List other examples in computer systems that increase CPU
computation to reduce network overhead. How can RDMA change the
design tradeoff in these cases?

37

Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Have a great Spring Break!

38

https://wisc-cs839-ngdb20.hotcrp.com/

