WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 17: Smart NIC

Xiangyao Yu
3/24/2020

Announcements

Feedback on project proposals will be provided this week

Upcoming deadlines
» Paper submission: Apr. 23
* Peer review: Apr. 23 — Apr. 30
* Presentation: Apr. 28 & 30

Discussion Highlights

Active memory without in-order delivery?
« Assign seq number to each packet and resemble at the receiving side

Active Memory vs.Write Behind Logging?
» Both use “force” instead of “no-force”
« Can be combined (single- vs. multi-versioning)
« Keep data in persistent memory in Active Memory

Other examples of increasing computation to reduce network overhead
« Caching
« Data centric computing (moving computation to data)
« Compression and decompression
 Directory-based cache coherence: unicast vs. multicast

Today’s Paper

Offloading Distributed Applications onto SmartNICs using iPipe

Ming Liu
University of Washington

Arvind Krishnamurthy
University of Washington

Abstract

Emerging Multicore SoC SmartNICs, enclosing rich computing re-
sources (e.g., a multicore processor, onboard DRAM, accelerators,
programmable DMA engines), hold the potential to offload generic
datacenter server tasks. However, it is unclear how to use a Smart-
NIC efficiently and maximize the offloading benefits, especially for
distributed applications. Towards this end, we characterize four
commodity SmartNICs and summarize the offloading performance
implications from four perspectives: traffic control, computing ca-
pability, onboard memory, and host communication.

Rased on our characterization we bnild iPine an actar-based

SIGCOMM 2019

Tianyi Cui
University of Washington

Simon Peter
The University of Texas at Austin

Henry Schuh
University of Washington

Karan Gupta
Nutanix

last two years, major network hardware vendors have released dif-
ferent SmartNIC products, such as Mellanox’s BlueField [43], Broad-
com’s Stingray [7], Marvell (Cavium)’s LiquidIO [42], Huawei’s
IN5500 [24], and Netronome’s Agilio [47]. They not only target
acceleration of protocol processing (e.g., Open vSwitch [52], TCP
offloading, traffic monitoring, and firewall), but also bring a new
computing substrate into the data center to expand the server com-
puting capacity at a low cost: SmartNICs usually enclose computing
cores with simple microarchitectures that make them cost-effective.

Generally, these SmartNICs comprise a multicore, possibly wimpy,
processor (i.e., MIPS/ARM), onboard SRAM/DRAM, packet process-

Kernel Bypass

Copy
operations

\

Server: Initiator Server: Target / Server: Initiator

; icati ENES Aoplication g Application
Buffer G

Transport Protocol Driver

S RDMA NIC / ! RDMA NIC

Network Network

Server: Target

P

Conventional network stack Kernel bypass (DPDK and RDMA)

Kernel Bypass

Copy
operations

\

Server: Initiator Server: Target [Server: Initiator

; icati Ui Application {1l Application
; Butter

=

Server: Targe

Transport Protocol Driver

~ § romaniC B | romanic B4

Network Network

Conventional network stack Kernel bypass (DPDK and RDMA)

Pushing computation to storage => Smart SSD
Pushing computation to network => Smart NIC 5

Smart NIC Architecture

Network
Traffic

Traffic control

Traffic manager/NIC

switch

TX/RX DMA
ports engine

N

Computing units

Multicore processor

NIC core I
L1Cache

Accelerators

Packet processing

Domain specific

Onboard memory

N

Host communication

Packet buffer

Scratchpad L2/DRAM

DMA

Multi-queue

engine

[T et

Smart NIC Architecture

Network
Traffic

Traffic control

Traffic manager/NIC

switch X
TX/RX DMA

ports engine

N

Onboard memory

Packet buffer

Scratchpad L2/DRAM

(—
<
-

Computing units

Multicore processor

NIC core I
L1Cache

Accelerators

Packet processing

Domain specific

N

Host communication

DMA

Multi-queue

engine

[T et

Smart NIC Architecture

Network
Traffic

Traffic control

Traffic manager/NIC

TX/RX
ports

engine

switch X
DMA

N

Onboard memory

Packet buffer

Scratchpad L2/DRAM

Computing units

Multicore processor

NIC core I
L1Cache

Accelerators

Packet processing

Domain specific

N

Host communication

DMA

(—
<
-

Multi-queue

engine

[T et

Smart NIC Architecture

Network
Traffic

Traffic control

Traffic manager/NIC

switch X
TX/RX DMA

ports engine

N

Onboard memory

Packet buffer

Scratchpad L2/DRAM

(—
<
-

Computing units

Multicore processor

NIC core I
L1Cache

Accelerators

Packet processing

Domain specific

Host communication

DMA

Multi-queue

engine

10

On-path vs. Off-path

S8109 1SOH

(b). On-path SmartNIC

On-path: NIC cores handle all traffic on both send & receive paths

11

On-path vs. Off-path

Host cores ‘

NIC switch

|
|
|
vt

TX/RX ports| o

(b). On-path SmartNIC (c). Off-path SmartNIC

S8109 1SOH

S . W W W —— —

On-path: NIC cores handle all traffic on both send & receive paths
Off-path: Host traffic does not consume NIC cores

SmartNIC Specifications

Vendor

LiquidlOll CN2350 mEVERE

2X 10GbE

Processor

12 cnMIPS core, 1.2GHz

Deployed SW

Firmware

LiquidlOll CN2360 Marvell

2X 25GbE

16 cnMIPS core, 1.5GHz

Firmware

CIUEEGER R EEYY W Mellanox

2X 25GbE

8 ARM A72 core, 0.8GHz

Full OS

Stingray PS225 Broadcom

2X 25GbE

8 ARM A72 core, 3.0GHz

Full OS

* Low power processor with simple micro-architecture

on-path

off-path

13

On-Board Memory

L1 (ns) L2 (ns) L3 (ns) DRAM (ns)
LiquidIOII CNXX 8.3 55.8 N/A 115.0
BlueField 1IM332A 5.0 25.6 N/A 132.0
Stingray PS225 1.3 25.1 N/A 85.3
Host Intel server 1.2 6.0 22.4 62.2

1. Scratchpad/L1

2. Packet Buffer (only for on-path)
* Onboard SRAM with fast indexing

3. L2 cache
4. NIC local DRAM (4GB — 8GB)

5. Host DRAM (accessed through DMA)

14

Performance Characterization

15

Bandwidth vs. Core Count

14} "~ 64B —<— 256B 1024B —+— | N 64B —=— 2568 T1024B —+—
@ 12| 128B —~— 512B 15008 —%— || @ 30| 128B —— 512B 1500B —%— ||
G0} e
s 8f a
s 6| |
©
5 4 o
m o %)

=23 4 5 6 7 8 9 10 11 12

Core (#) Core (#)
10 GbE LiquidlO [l CN2350 25 GbE Stingray PS225

» Echo server
» Packet transmission through a Smart NIC core incurs nontrivial cost

» Packet size distribution impacts availability of computing cycles
16

Bandwidth vs. Packet Processing Cost

35 r ' 1 , 1 r
. 256B-10GbE —%— 256B-25GbE —%—
730 1024B-10GbE 1024B-25GbE *
8252*:: = x *,
£ 20 10 GbE: LiquidlO Il CN2350
S15¢ 25 GbE Stingray PS225
2 10% 3¢
©
m 5f

0

0 0125 025 05 1 2 4 8 16
Packet processing latency (us)

* Processing headroom is workload dependent and only allows for
execution of tiny tasks

17

Average and P99 Latency

100} | 606re-avg — 600re-b99 |
12core-avg 1 12core-p99

» 80}

E _

607

&

< 40 m -

~ 20| H HI

Lol 1 |

512 1024 1500
Packet size (10 GbE LiquidlO Il CN2350

» Achieving maximum throughput using 6 and 12 cores

« Hardware support reduces synchronization overheads
18

Send/Recv Latency

35| SmartNIC-send —6— DPDK-recv —%— |
' SmartNIC-recy —+— RDMA-send —4&—
% S DPDK-send RDMA-recv -
225} _
g : X %
21.5 / _
— 1y = A, A 2 =
§—
0.5 S S & < S = o b
Og 8 16 32 64 128 256 512 1024

Packet size (B
acket size (B) 10 GbE LiquidIO Il CN2350

» Special accelerators for packet processing
« Send/recv Latency lower than RDMA or DPDK

19

Host Communication

4 _ . . . | 12 —
. . . DMA blocking read s
3.5} DMADrMﬁ-B:ggmg :ggg @10} DMA non-blocking read 7 |
— 3} : i] 2 DMA blocking write s
@ DMA blocking write S s} DMA non-blocki ; !
=25} DMA non-blocking write —+— = non-blocking write &1
? 2t A A A MA/A §_ 6
s15f 4T S 4|
3 g *
0.5 + + + + + + ~+ =
O)—% 76 32 64 128 256 512 1024 2048 0 4 8 16 32 64 128 256 512 1024 2048
Payload size (B) Payload size (B)
6 l
RDMA one-sided read —&— . .
_ 5L RDMA one-sided write —— D S DMA latency is 10X higher than
44 A A A A = A & 1 -
Sl _ DRAM latency in host cores
c
& 2} ; /% 1-sided RDMA latency is higher
T than DMA latency
O)—% 16 32 64 128 256 512 1024 2048

Payload size (B)
20

IPipe Framework

21

Actor Programming Model

Objectl Object2 Object3

%

Me
thod&()
4@%
‘ﬁ-‘-“‘“/‘

Object-oriented programming
- Encapsulation: internal data of an object is not accessible from the outside

22

Actor Programming Model

Objectl Object2 Object3

C
Object-oriented programming

- Encapsulation: internal data of an object is not accessible from the outside
« Calls to different objects executed by the same thread

23

Actor Programming Model

Objectl Object2 Object3

| |

Feturp

Object-oriented programming
- Encapsulation: internal data of an object is not accessible from the outside
« Calls to different objects executed by the same thread
* Must handle concurrent accesses 24

Actor Programming Model

Objectl Object2 Object3 Actorl Actor2 Actor3

| |

process
messageA

:_“ _. messageB
dequeued

process
here

messageB

.

Object-oriented programming Actor programming model
« Encapsulation * An Actor has its local private states
» Actors communicate through messages

25

Advantages of Actor Model

Actor model supports computing heterogeneity and hardware
parallelism automatically

Actors have well-defined associated states and can be migrated
between the NIC and the host dynamically

26

IPipe Scheduler

Host server Migration steps
FCFS push migration DRR push| migration 1 Remove from runtime
_ Cond: Mean/> Mean_thresh Cond: Mailboxllen > Q_thresh d | Sp at Ch er
Cond: Mean <(1-a) Mean_thresh 2. Actor finishes execution
¥ Cona: Tail> Tl thresh B 3. Moves objects to host
[O e [O O 4. Forwards buffered
, . requests to host
L upgrade
reqs — | NIC FCFS core _lJCond: Tail < (1-a) Tail _thresh| NIC DRR core J_

27

iPipe-host object table

Object ID | Actor ID |Start address| Size

1 1 Oxfc0000000 | 1KB

Oxfc0001234 | 2KB

X X
yA yA 0Ox10f005678 | 4KB
X X 0x10f00abcd | 8KB

Distributed Memory Object (DMO)

iPipe-NIC object table

-

(a). Object migration

Normal SkipList node

struct node{
char key[KEY_LEN];
char *val;
struct node *forwards[MAX_LEVEL]; |

}

Object ID | Actor ID | Start address | Size
0 0 0x10f000000 | 1KB
X X Ox10f00123412KB
y y 0x10f005678 | 4KB
7 X Ox10f00abed{8KB
DMO SkipList node

struct node{
char key|KEY_LENJ;

int val_object;
int forward_obj_id[MAX_LEVEL];

}

(b). Skiplist node implementation in DMO

All pointers replaced by object IDs

28

Security Isolation

Actor state corruption:
* Problem: Malicious actor manipulating other actors’ states
 Solution: Paging mechanism to secure object accesses

Denial of service:

« Problem: An actor occupies a SmartNIC core and violates the service
availability of other actors

e Solution: Timeout mechanism

29

Applications on iPipe

30

Replicated Key-Value Store

Log-structured merge tree for durable storage
Replication using Multi-Paxos

Actors:

1. Consensus actor

2. LSM Memtable actor

3. LSM SSTable read actor
4.

LSM compaction actor

31

Distributed Transactions

nase 1: read and lock
nase 2: validation

nase 3: log by coordinator
nase 4: commit

v U U U

Actors:
1. Coordinator
2. Participant
3. Logging actor

32

Real-Time Analytics

Analytics over streaming data

Actors:
1. Filter

2. Counter
 Sliding winder and periodically emit tuple to the ranker

3. Ranker
« Sort to report top-n

33

Core (#)

Evaluation — Busy CPU Cores

2| | DPDK-64B = iPipe-256B mmmmm DPDK-1KB === | 10}| DPDK-64B = iPipe-256B mmmmm DPDK-1KB === ||
iPipe-64B ——1 DPDK-512B mmm iPipe-1KB =—=3 iPipe-64B —— DPDK-512B s iPipe-1KB ===
6| DPDK-256B mmmmm iPipe-512B = I 81| DPDK-256B iPipe-512B -
5t M F* M
4t o 6]]]
3t 3 4}
2 5
| | 0 H
0 RTA DT DT RKV 0 RTA DT DT RKV RKV
Woker Coord. QParticipantfl Leader Follower Woker Coord. Participant Leader Follower
(a) 10GbE w/ LiquidIOII CN2350. (b) 25GbE w/ LiquidIOII CN2360.

Host CPU cycles are saved
Offloading adapts to workload

34

Evaluation — Latency vs. Throughput

—
[2])

Latency (u

—_

Latency (us

140

120 |
100 |
80|
60 |
40
20

0

140

120 |
100 |
80|
60
40|
20

0

Latency (us)

Latency (us)

120

100
80}
60|
40
20}

0

120
100
80
60
40

20

0

[DPDK —6— iPipe —>— |

0 05 i

25 3
Per-core Throughput (Mop/s)

15 2 35

(c) RKV.

"[DPDK —©— _ iPipe —>¢— |
0 05 1 15 2 25 3 35 4

Per-core Throughput (Mop/s)

160
[DPDK —©— _ iPipe —>— | | [DPDK —6— iPipe —»%— ||
120}
[72]
2 100
& 8o}
(0]
3 Rje?
40} X— ”*
20}
0 05 1 15 2 25 3 35 00— o5 1 15 2 25 3 35
Per-core Throughput (Mop/s) Per-core Throughput (Mop/s)
(a) RTA. (b) DT.
Figure 14: Latency versus per-core throughput for three applications on 10GbE network. Packet size is 512B.
—_— 160 —_—
| DPDK —&— iPipe —¢— | 140l | DPDK —&— iPipe —¢— |
| 120}
[72]
| =100}
| & sop
£ 60}
< 4 - 40 | % 3¢ N
a a 1 20}
0 05 1 15 2 25 3 35 4 0005 1 15 2 25 3 35 4
Per-core Throughput (Mop/s) Per-core Throughput (Mop/s)
(a) RTA. (b) DT.

(c) RKV.

35

Evaluation — iPipe Overhead

400

Leader w/o iPipe — Leader w/ iPipe —
Follower w/o iPipe Follower w/ iPipe 1 |

w
-
o

CPU usage (%)
- N
o o
o o
|

o

u

30 50 70 90
Network Load (%) Replicated Key-Value Store

Overhead 1: DMO address translation when accessing objects

Overhead 2: Cost of iPipe scheduler
36

Smart NIC — Q/A

Actor Model in detall

Compare to RMA based approaches as defined in SNAP (SOSP’19)?
Are SmartNICs widely used nowadays and where?

Can transactional databases benefit from SmartNIC?

Limitation of SmartNIC (cost?)

Side-channel attacks?

Offloading control-intensive complex workloads to SmartNICs a promising
path?

37

Group Discussion

SmartNIC pushes computation to network while SmartSSD pushes
computation to storage. What are the main differences in terms of
opportunities and challenges between the two technologies?

What database operations should be pushed to SmartNIC? Please
discuss OLTP and OLAP separately.

One can consider processors in a Smart NIC as extra heterogeneous
cores in a system. What extra benefits do we get by putting these extra
cores into the NIC (in contrast to putting them close to storage or
CPU)?

38

Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Next lecture will be given by Dr. Mike Marty from Google

39

https://wisc-cs839-ngdb20.hotcrp.com/

