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Announcements

Feedback on project proposals will be provided this week

Upcoming deadlines
» Paper submission: Apr. 23
* Peer review: Apr. 23 — Apr. 30
* Presentation: Apr. 28 & 30



Discussion Highlights

Active memory without in-order delivery?
« Assign seq number to each packet and resemble at the receiving side

Active Memory vs.Write Behind Logging?
» Both use “force” instead of “no-force”
« Can be combined (single- vs. multi-versioning)
« Keep data in persistent memory in Active Memory

Other examples of increasing computation to reduce network overhead
« Caching
« Data centric computing (moving computation to data)
« Compression and decompression
 Directory-based cache coherence: unicast vs. multicast



Today’s Paper

Offloading Distributed Applications onto SmartNICs using iPipe

Ming Liu
University of Washington

Arvind Krishnamurthy
University of Washington

Abstract

Emerging Multicore SoC SmartNICs, enclosing rich computing re-
sources (e.g., a multicore processor, onboard DRAM, accelerators,
programmable DMA engines), hold the potential to offload generic
datacenter server tasks. However, it is unclear how to use a Smart-
NIC efficiently and maximize the offloading benefits, especially for
distributed applications. Towards this end, we characterize four
commodity SmartNICs and summarize the offloading performance
implications from four perspectives: traffic control, computing ca-
pability, onboard memory, and host communication.

Rased on our characterization we bnild iPine an actar-based

SIGCOMM 2019

Tianyi Cui
University of Washington

Simon Peter
The University of Texas at Austin

Henry Schuh
University of Washington

Karan Gupta
Nutanix

last two years, major network hardware vendors have released dif-
ferent SmartNIC products, such as Mellanox’s BlueField [43], Broad-
com’s Stingray [7], Marvell (Cavium)’s LiquidIO [42], Huawei’s
IN5500 [24], and Netronome’s Agilio [47]. They not only target
acceleration of protocol processing (e.g., Open vSwitch [52], TCP
offloading, traffic monitoring, and firewall), but also bring a new
computing substrate into the data center to expand the server com-
puting capacity at a low cost: SmartNICs usually enclose computing
cores with simple microarchitectures that make them cost-effective.

Generally, these SmartNICs comprise a multicore, possibly wimpy,
processor (i.e., MIPS/ARM), onboard SRAM/DRAM, packet process-
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Smart NIC Architecture
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On-path vs. Off-path
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(b). On-path SmartNIC

On-path: NIC cores handle all traffic on both send & receive paths
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On-path vs. Off-path
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On-path: NIC cores handle all traffic on both send & receive paths
Off-path: Host traffic does not consume NIC cores



SmartNIC Specifications

Vendor

LiquidlOll CN2350 mEVERE

2X 10GbE

Processor

12 cnMIPS core, 1.2GHz

Deployed SW

Firmware

LiquidlOll CN2360 Marvell

2X 25GbE

16 cnMIPS core, 1.5GHz

Firmware

CIUEEGER R EEYY W Mellanox

2X 25GbE

8 ARM A72 core, 0.8GHz

Full OS

Stingray PS225 Broadcom

2X 25GbE

8 ARM A72 core, 3.0GHz

Full OS

* Low power processor with simple micro-architecture

on-path

off-path
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On-Board Memory

L1 (ns) L2 (ns) L3 (ns) DRAM (ns)
LiquidIOII CNXX 8.3 55.8 N/A 115.0
BlueField 1IM332A 5.0 25.6 N/A 132.0
Stingray PS225 1.3 25.1 N/A 85.3
Host Intel server 1.2 6.0 22.4 62.2

1. Scratchpad/L1

2. Packet Buffer (only for on-path)
* Onboard SRAM with fast indexing

3. L2 cache
4. NIC local DRAM (4GB — 8GB)

5. Host DRAM (accessed through DMA)

14



Performance Characterization
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Bandwidth vs. Core Count
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» Echo server
» Packet transmission through a Smart NIC core incurs nontrivial cost

» Packet size distribution impacts availability of computing cycles
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Bandwidth vs. Packet Processing Cost
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* Processing headroom is workload dependent and only allows for
execution of tiny tasks
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Average and P99 Latency
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» Achieving maximum throughput using 6 and 12 cores

« Hardware support reduces synchronization overheads
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Send/Recv Latency
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» Special accelerators for packet processing
« Send/recv Latency lower than RDMA or DPDK
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Host Communication
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IPipe Framework
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Actor Programming Model

Objectl Object2 Object3

%

Me
thod&()
4@%
‘ﬁ-‘-“‘“/‘

Object-oriented programming
- Encapsulation: internal data of an object is not accessible from the outside
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Actor Programming Model

Objectl Object2 Object3

C
Object-oriented programming

- Encapsulation: internal data of an object is not accessible from the outside
« Calls to different objects executed by the same thread
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Actor Programming Model

Objectl Object2 Object3

| |

Feturp

Object-oriented programming
- Encapsulation: internal data of an object is not accessible from the outside
« Calls to different objects executed by the same thread
* Must handle concurrent accesses 24



Actor Programming Model

Objectl Object2 Object3 Actorl Actor2 Actor3

| |

process
messageA

:_“ _. messageB
dequeued

process
here

messageB

.

Object-oriented programming Actor programming model
« Encapsulation * An Actor has its local private states
» Actors communicate through messages

25



Advantages of Actor Model

Actor model supports computing heterogeneity and hardware
parallelism automatically

Actors have well-defined associated states and can be migrated
between the NIC and the host dynamically

26



IPipe Scheduler

Host server Migration steps
FCFS push migration DRR push| migration 1 Remove from runtime
_ Cond: Mean/> Mean_thresh Cond: Mailboxllen > Q_thresh d | Sp at Ch er
Cond: Mean <(1-a) Mean_thresh 2. Actor finishes execution
¥ Cona: Tail> Tl thresh B 3. Moves objects to host
[O e [O O 4. Forwards buffered
, . requests to host
L upgrade
reqs — | NIC FCFS core _lJCond: Tail < (1-a) Tail _thresh| NIC DRR core J_
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iPipe-host object table

Object ID | Actor ID |Start address| Size

1 1 Oxfc0000000 | 1KB

Oxfc0001234 | 2KB

X X
yA yA 0Ox10f005678 | 4KB
X X 0x10f00abcd | 8KB

Distributed Memory Object (DMO)

iPipe-NIC object table

-

(a). Object migration

Normal SkipList node

struct node{
char key[KEY_LEN];
char *val;
struct node *forwards[ MAX_LEVEL]; |

}

Object ID | Actor ID | Start address | Size
0 0 0x10f000000 | 1KB
X X Ox10f00123412KB
y y 0x10f005678 | 4KB
7 X Ox10f00abed{8KB
DMO SkipList node

struct node{
char key|KEY_LENJ;

int val_object;
int forward_obj_id[MAX_LEVEL];

}

(b). Skiplist node implementation in DMO

All pointers replaced by object IDs

28



Security Isolation

Actor state corruption:
* Problem: Malicious actor manipulating other actors’ states
 Solution: Paging mechanism to secure object accesses

Denial of service:

« Problem: An actor occupies a SmartNIC core and violates the service
availability of other actors

e Solution: Timeout mechanism

29



Applications on iPipe
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Replicated Key-Value Store

Log-structured merge tree for durable storage
Replication using Multi-Paxos

Actors:

1. Consensus actor

2. LSM Memtable actor

3. LSM SSTable read actor
4.

LSM compaction actor

31



Distributed Transactions

nase 1: read and lock
nase 2: validation

nase 3: log by coordinator
nase 4: commit

v U U U

Actors:
1. Coordinator
2. Participant
3. Logging actor

32



Real-Time Analytics

Analytics over streaming data

Actors:
1. Filter

2. Counter
 Sliding winder and periodically emit tuple to the ranker

3. Ranker
« Sort to report top-n

33



Core (#)

Evaluation — Busy CPU Cores
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Host CPU cycles are saved
Offloading adapts to workload
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Evaluation — Latency vs. Throughput
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Evaluation — iPipe Overhead
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Overhead 1: DMO address translation when accessing objects

Overhead 2: Cost of iPipe scheduler
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Smart NIC — Q/A

Actor Model in detall

Compare to RMA based approaches as defined in SNAP (SOSP’19)?
Are SmartNICs widely used nowadays and where?

Can transactional databases benefit from SmartNIC?

Limitation of SmartNIC (cost?)

Side-channel attacks?

Offloading control-intensive complex workloads to SmartNICs a promising
path?

37



Group Discussion

SmartNIC pushes computation to network while SmartSSD pushes
computation to storage. What are the main differences in terms of
opportunities and challenges between the two technologies?

What database operations should be pushed to SmartNIC? Please
discuss OLTP and OLAP separately.

One can consider processors in a Smart NIC as extra heterogeneous
cores in a system. What extra benefits do we get by putting these extra
cores into the NIC (in contrast to putting them close to storage or
CPU)?

38



Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Next lecture will be given by Dr. Mike Marty from Google
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