
Xiangyao Yu
1/30/2020

CS 839: Design the Next-Generation Database
Lecture 4: Multicore (Part I)

1



Announcements
Email me if you are not in HotCRP

https://wisc-cs839-ngdb20.hotcrp.com

New deadline for submitting paper review: 
Before lecture starts

This course is on PhD breadth requirement list 

Please talk to me to discuss project ideas

2

https://wisc-cs839-ngdb20.hotcrp.com/


Discussion Highlights
Transactions on column-store
• Pros: Compression, good for read workload, good for sequential writes
• Cons: More I/O for row selection/update/insert

Data format for HTAP?
• Hot data in row format, convert cold data to column format in background
• Different formats in replicas

Small processor near disk
• Compression/decompression, encryption, filtering, sorting, hashing, hot data
• Coalesce random accesses
• Fast indexing

3



Today’s Paper

4



Story Behind the Paper

5

Lesson learned: Talk to people about your research



6

Many-core systems have arrived
ØThe era of single-core CPU speed-up is 

over
ØNumber of cores on a chip is increasing 

exponentially
§ 1000-core chips are a near…

ØDBMSs are not ready
§ Most DBMSs still focus on single-threaded 

performance
§ Existing works on multi-cores focus on 

small core count

Xeon Phi (up to 61 cores)

Tilera (up to 100 cores)



7

Many-core systems have arrived



8

Databases on 1000-core systems
Ø DBMS on future computer architectures
Ø Will DBMSs scale to this level of parallelism?

§ What are the main bottlenecks to scalability?
§ What improvements will be needed from the software and 

hardware perspectives?

All classic concurrency control algorithms fail to 
scale to 1000 cores.



Ø On Line Transaction Processing (OLTP)
Ø Concurrency control is a key limiting factor to the scalability

Ø new database: DBx1000
§ Support all seven classic concurrency control algorithms
§ Study the fundamental bottlenecks
§ https://github.com/yxymit/DBx1000

Ø Graphite Multi-core Simulator

1000-Core DBMS



Simulated Hardware

10

Simulated Hardware
• CPU: 1024 in-order core
• Cache: 32KB L1, 512KB L2
• Network: 2D-mesh

32

32

L2$

Core L1$

SW

…
…

…



Graphite Simulator[1]

11[1] J. Miller, et al. Graphite: A Distributed Parallel Simulator for Multicores. HPCA’10



Concurrency Control Schemes

12

CC Scheme Description

DL_DETECT 2PL with deadlock detection

NO_WAIT 2PL with non-waiting deadlock prevention

WAIT_DIE 2PL with wait-and-die deadlock prevention

TIMESTAMP Basic T/O algorithm

MVCC Multi-version T/O

OCC Optimistic concurrency control

HSTORE T/O with partition-level locking

Two–Phase 
Locking (2PL)

Timestamp 
Ordering (T/O)

Partitioning



2PL – DL_DETECT

13

Wait-for Graph:

T1 <---- T2 when T2 waits for a lock held by T1

Periodically, detect cycles in the graph and abort the transaction that holds the 
fewest locks



2PL – NO_WAIT, WAIT_DIE

14

NO_WAIT: A transaction cannot wait for another transaction. Whenever two 
transactions conflict, the requesting transaction aborts.

WAIT_DIE: A transaction T1 waits for another transaction T2 only if T1 has 
higher priority than T2 (e.g., T1 starts execution before T2).

Pros over NO_WAIT
• Guaranteed forward progress (i.e., no starvation)
• Fewer aborts

Cons over NO_WAIT
• Locking logic is more complex



Timestamp Ordering – Basic 

15

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 15)



Timestamp Ordering – Basic 

16

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)



Timestamp Ordering – Basic 

17

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 25)



Timestamp Ordering – Basic 

18

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=25

Read from T (T.ts.= 25)



Timestamp Ordering – Basic 

19

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 15)



Timestamp Ordering – Basic 

20

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 5)



Timestamp Ordering – Basic 

21

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Orderwts=10 rts=20

Write from T (T.ts.= 25)



Timestamp Ordering – Basic 

22

Each transaction is assigned a unique timestamp indicating the serial order

Timestamp Order

Write from T (T.ts.= 25)

rts=wts=25



Timestamp Ordering – MVCC

23

MVCC: Multi-Version Concurrency Control

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)



Timestamp Ordering – MVCC

24

MVCC: Multi-Version Concurrency Control

Timestamp Orderwts=10 rts=20

Read from T (T.ts.= 5)

A transaction can read previous versions



Timestamp Ordering

25

Pros:
• Timestamp order is the serialization order
• Logic for locking is simplified
• In MVCC, read-only and read-write transactions do not conflict

Cons:

• Timestamp allocation is a bottleneck



Pessimistic/Optimistic vs. 2PL/TO

26

Pessimistic Optimistic

Timestamp 
Ordering

MVCC



Partition-Level Locking – H-store

Pro: Only one lock per partition
Con: Performance degrades for multi-partition transactions 27



Partition-Level Locking – H-store

28

Single Partition 
Transaction

Multi Partition 
Transaction

% of Multi-partition Txn



Evaluation – Experimental Setup
Yahoo! Cloud Serving Benchmark (YCSB)

• 20 million tuples

• Each tuple is 1KB (total database is ~20GB)

Each transaction reads/modifies 16 random tuples following a skewed pattern

Serializable isolation level

29



Evaluation – Readonly

30

2PL schemes are scalable for read-only benchmarks



Evaluation – Readonly

31

2PL schemes are scalable for read-only benchmarks

Timestamp allocation limits scalability



Evaluation – Readonly

32

2PL schemes are scalable for read-only benchmarks

Timestamp allocation limits scalability
Memory copy hurts performance 



Evaluation – Medium Contention
Write : Read = 50% : 50%

33
DL_DETECT does not scale due to deadlocks and thrashing



Evaluation – High Contention

34

Scaling stops at small core count



Evaluation – High Contention

35

Scaling stops at small core count

NO_WAIT has good performance until 1000 cores



Evaluation – High Contention

36

Scaling stops at small core count

NO_WAIT has good performance until 1000 cores

OCC wins at 1000 cores



Scalability Bottlenecks

37

Concurrency 
Control

Waiting
(Thrashing)

High Abort 
Rate

Timestamp 
Allocation

Multi-
partition

DL_DETECT

NO_WAIT

WAIT_DIE

TIMESTAMP

MULTIVERSION

OCC

HSTORE



Solutions to Timestamp Allocation

38

Mutex based allocation



Solutions to Timestamp Allocation

39

Mutex based allocation
Atomic instruction 



Solutions to Timestamp Allocation

40

Mutex based allocation
Atomic instruction 
Batch allocation



Solutions to Timestamp Allocation

41

Mutex based allocation
Atomic instruction 
Batch allocation
Hardware Counter (~1000 million ts/s)



Solutions to Timestamp Allocation

42

Mutex based allocation
Atomic instruction 
Batch allocation
Hardware Counter (~1000 million ts/s)
Distributed Clock (perfect scalability)

– All clocks must be synchronized



1000-core – Q/A

43

Why 1000?

Workload realistic? 

Simulator (Graphite) realistic? 

Distributed transactions? 
• Harding, R., Van Aken, D., Pavlo, A. and Stonebraker, M., An evaluation of distributed 

concurrency control. VLDB 2017
• Similar conclusions

Abyss removed?



Summary

44

Core counts will keep increasing

Conventional concurrency control protocols do not scale
• Lock trashing
• Timestamp allocation

Need software hardware codesign 
(software-only solutions can go a long way)



Group Discussion
What are the pros and cons of timestamp ordering over two-phase locking? 
Can you think of other examples of using timestamps in other fields of CS?

What are the main pros and cons of a multi-version concurrency control 
(MVCC) protocol? How is MVCC related to HTAP (Hybrid 
transactional/analytical processing)? 

Can you think of any hardware changes to a multicore CPU that can 
improve the performance/scalability of concurrency control? 

45



Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Submit review for
Speedy Transactions in Multicore In-Memory Databases
[optional] TicToc: Time Traveling Optimistic Concurrency Control
[optional] Hekaton: SQL Server's Memory-Optimized OLTP Engine

46

https://wisc-cs839-ngdb20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/silo.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/tictoc.pdf
http://pages.cs.wisc.edu/~yxy/cs839-s20/papers/Hekaton-Sigmod2013-final.pdf

