
Xiangyao Yu
2/6/2020

CS 839: Design the Next-Generation Database
Lecture 6: Deterministic Database

1

Discussion Highlights
Silo compatible with operational logging?

No. See following example

For operational logging, must recover T1 before T2 (WAR
dependency). Silo does not keep track of WAR dependency.

2

T1.write(Y)
T1.read(X)

validate()
commit()

T2.write (X)

validate()
commit()

T1.seq# = 11

Y.seq# = 10

X.seq# = 5

X.seq# = 5

T2.seq# = 6

Discussion Highlights
Reduce transaction latency in Silo?
• Adjust epoch length based on workload or abort rate
• Soft commit vs. hard commit
• Create epoch boundary dynamically

Distributed Silo?
• Global epoch number, TID synchronization
• One extra network round trip compared to 2PL:

Locking WS + RS validation + Write

3

Today’s Paper

4

Today’s Agenda
Distributed transaction – Two-Phase Commit (2PC)

High availability

Calvin

5

Distributed Transaction

6

Partition 1

Partition 2

Partition 3

T.write(X)

T.write(Y)

T.write(Z)

Coordinator
(Participant 1) Participant 2 Participant 3

Time

Lock(X)

Lock(Y)

Lock(Z)

What about logging?

Two-Phase Commit (2PC)

7

Partition 1

Partition 2

Partition 3

T.write(X)

T.write(Y)

T.write(Z)

Execution phase …

Time

Log
Log LogPrepare

Phase

Commit
Phase

2PC is expensive

Coordinator
(Participant 1) Participant 2 Participant 3

High Availability

8

Partition 1

Partition 2

Partition 3

• Every tuple is mapped to one partition

High Availability

9

Partition 1

Partition 2

Partition 3

• A partition of data is unavailable if a
server crashes

High Availability

10

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across
multiple servers

High Availability

11

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across
multiple servers
• Data is available if at

least one partition is
still alive

High Availability

12

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across
multiple servers
• Data is available if at

least one partition is
still alive
• If the primary node

fails, failure over to a
secondary node

High Availability

13

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across
multiple servers
• Data is available if at

least one partition is
still alive
• If the primary node

fails, failure over to a
secondary node
• Recovery from log if all

replicas fail

Implementing High Availability

14

Replica 1 Replica 2 Replica 3

Logging

Implementing High Availability

15

Replica 1 Replica 2 Replica 3

Logging

Log Shipping

Network can be a
bottleneck for log
shipping

Partition and Replication

16

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

Problem 1:
2PC is expensive

Problem 2:
Network can be a
bottleneck for log
shipping

Deterministic Transactions

17

Decide the global execution order of transactions before executing
them

All replicas follow same order to execute the transactions

Non-deterministic events are resolved and logged before dispatching
the transactions

Log batch of inputs -> No two-phase commit
Replicate inputs -> Less network traffic than log shipping

18

T1 T2 T3 … T1 T2 T3 …

Sequencer

19

Distributed across all nodes
• No single point of failure
• High scalability

Replicate transaction inputs asynchronously through Paxos

10ms batch epoch for batching

Batch the transaction inputs, determine their execution sequence, and dispatch
them to the schedulers

Scheduler

20

All transactions have to declare all lock requests before the
transaction execution starts

Single thread issuing lock requests

Example: T1.write(X), T2.write(X), T3.write(Y)
T1 locks X first
T3 can grab locks before T2 if T3 does not conflict with T1/T2

T1 T2 T3 …

Transaction Execution Phases
1)Analysis all read/write sets

-Passive participants (read-only partition)
-Active participants (has write in partition)

2) Perform local reads
3) Serve remote reads

- send data needed by remote ones.
4) Collect remote read results

- receive data from remote.
5) execute transaction logic and apply writes

21

Example

22

P1
(A)

P2
(B)

P3
(C)

Local RS: (A) (B) (C)
Local WS: (A) (C)
Active Participant Passive Participant Active Participant

Send B Send B

Execute Execute

Analyse RS/WS

Perform Local reads

Serve remote reads

Collect remote reads

Execute and write

T1 : A = A + B; C = C + B

Collect Remote Data Items

Perform Only Local write

Send A Send C

Conventional vs. Deterministic
T1: A = A + B; B = B + 1

23

Lock(A)

Lock(B)

P1
(A)

P2
(B)

B
A=A+B B=B+1

2PC

Conventional vs. Deterministic
T1: A = A + B; B = B + 1

24

Lock(A)

Lock(B)

P1
(A)

P2
(B)

B
A=A+B B=B+1

2PC

Lock(A) Lock(B)

P1
(A)

P2
(B)

B
A=A+B B=B+1

Paxos to replicate inputs

A

Conventional vs. Deterministic (replication)

25
Replica 1 Replica 2

Logging

Log Shipping

Replica 1 Replica 2

Logging

Replicate inputs

Dependent Transactions
UPDATE table SET salary = 1.1 * salary WHERE salary < 1000

Need to perform reads to determine a transaction’s read/write set

How to compute the read/write set?
• Modifying the client transaction code
• Reconnaissance query to discover full read/write sets
• If prediction is wrong (read/write set changes), repeat the process

26

Disk Based Storage
Fixed serial order leads to more blocking
• T1 write(A), write(B)
• T2 write(B), write(C)
• T3 write(C), write(D)

Solution
• Prefetch (warmup) request to relevant storage components
• Add artificial delay – equals to I/O latency
• Transaction would find all data items in memory

27

Checkpoint
Logs before a checkpoint can be truncated

Checkpointing modes
• Naïve synchronous mode:

Stop one replica, checkpoint, replay delayed transactions
• Zig-Zag

Stores two copies of each record

28

Evaluation

29

Calvin can scale out Calvin better than 2PC at high contention

Summary

30

Conventional distributed transactions
• Partition -> 2PC (network messages and log writes)
• Replication -> Log shipping (network traffic)

Deterministic transaction processing
• Determine the serial order before execution
• Replicate transaction inputs (less network traffic than log shipping)
• No need to run 2PC

Calvin – Q/A
Impact of deterministic transactions
• Series of papers from Prof. Daniel Abadi @ U Maryland
• Company: FaunaDB

Scheduler is a bottleneck for read-only workloads

31

Group Discussion
Is knowing read/write sets necessary for deterministic transactions?
How does the protocol change if we remove this assumption?

Can you think of other optimizations if the read/write sets are known
before transaction execution?

For a batch of transactions, Calvin performs a single Paxos to
replicate inputs. Is it possible to amortize 2PC overhead with batch
execution but not using deterministic transactions?

32

Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Submit review for
A Study of the Fundamental Performance Characteristics of GPUs and

CPUs for Database Analytics

33

https://wisc-cs839-ngdb20.hotcrp.com/

