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CS 839: Design the Next-Generation Database
Lecture 6: Deterministic Database
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Discussion Highlights
Silo compatible with operational logging? 

No. See following example

For operational logging, must recover T1 before T2 (WAR 
dependency). Silo does not keep track of WAR dependency. 
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T1.write(Y)
T1.read(X)

validate()
commit()

T2.write (X)

validate()
commit()

T1.seq# = 11

Y.seq# = 10

X.seq# = 5

X.seq# = 5

T2.seq# = 6



Discussion Highlights
Reduce transaction latency in Silo?
• Adjust epoch length based on workload or abort rate
• Soft commit vs. hard commit 
• Create epoch boundary dynamically

Distributed Silo? 
• Global epoch number, TID synchronization 
• One extra network round trip compared to 2PL: 

Locking WS + RS validation + Write 
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Today’s Paper
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Today’s Agenda
Distributed transaction – Two-Phase Commit (2PC)

High availability 

Calvin
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Distributed Transaction
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Partition 1

Partition 2

Partition 3

T.write(X)

T.write(Y)

T.write(Z)

Coordinator
(Participant 1) Participant 2 Participant 3

Time

Lock(X)

Lock(Y)

Lock(Z)

What about logging?



Two-Phase Commit (2PC)
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Partition 1

Partition 2

Partition 3

T.write(X)

T.write(Y)

T.write(Z)

Execution phase …

Time

Log
Log LogPrepare

Phase

Commit
Phase

2PC is expensive

Coordinator
(Participant 1) Participant 2 Participant 3



High Availability 
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Partition 1

Partition 2

Partition 3

• Every tuple is mapped to one partition



High Availability 
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Partition 1

Partition 2

Partition 3

• A partition of data is unavailable if a 
server crashes



High Availability 
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Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across 
multiple servers



High Availability 
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Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across 
multiple servers
• Data is available if at 

least one partition is 
still alive



High Availability 
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Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across 
multiple servers
• Data is available if at 

least one partition is 
still alive
• If the primary node 

fails, failure over to a 
secondary node



High Availability 
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Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

• Replicate data across 
multiple servers
• Data is available if at 

least one partition is 
still alive
• If the primary node 

fails, failure over to a 
secondary node
• Recovery from log if all 

replicas fail



Implementing High Availability
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Replica 1 Replica 2 Replica 3

Logging



Implementing High Availability
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Replica 1 Replica 2 Replica 3

Logging

Log Shipping

Network can be a 
bottleneck for log 
shipping



Partition and Replication
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Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Replica 1 Replica 2 Replica 3

Problem 1: 
2PC is expensive

Problem 2:
Network can be a 
bottleneck for log 
shipping



Deterministic Transactions
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Decide the global execution order of transactions before executing 
them

All replicas follow same order to execute the transactions

Non-deterministic events are resolved and logged before dispatching 
the transactions

Log batch of inputs -> No two-phase commit
Replicate inputs -> Less network traffic than log shipping
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T1 T2 T3 … T1 T2 T3 …



Sequencer
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Distributed across all nodes
• No single point of failure
• High scalability 

Replicate transaction inputs asynchronously through Paxos

10ms batch epoch for batching 

Batch the transaction inputs, determine their execution sequence, and dispatch 
them to the schedulers



Scheduler
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All transactions have to declare all lock requests before the 
transaction execution starts 

Single thread issuing lock requests

Example: T1.write(X), T2.write(X), T3.write(Y)
T1 locks X first 
T3 can grab locks before T2 if T3 does not conflict with T1/T2

T1 T2 T3 …



Transaction Execution Phases
1)Analysis all read/write sets

-Passive participants (read-only partition)
-Active participants (has write in partition)

2) Perform local reads
3) Serve remote reads

- send data needed by remote ones. 
4) Collect remote read results

- receive data from remote. 
5) execute transaction logic and apply writes
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Example
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P1 
(A)

P2
(B)

P3
(C)

Local RS:   (A) (B)                                  (C)
Local WS:  (A)                 (C)
Active Participant           Passive Participant           Active Participant 

Send B Send B

Execute Execute 

Analyse RS/WS

Perform Local reads

Serve remote reads

Collect remote reads

Execute and write

T1 :   A  = A + B; C  = C + B

Collect Remote Data Items

Perform Only Local write

Send A Send C



Conventional vs. Deterministic
T1:  A = A + B;  B = B + 1
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Lock(A)

Lock(B)

P1 
(A)

P2
(B)

B
A=A+B B=B+1

2PC



Conventional vs. Deterministic
T1:  A = A + B;  B = B + 1
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Lock(A)

Lock(B)

P1 
(A)

P2
(B)

B
A=A+B B=B+1

2PC

Lock(A) Lock(B)

P1 
(A)

P2
(B)

B
A=A+B B=B+1

Paxos to replicate inputs

A



Conventional vs. Deterministic (replication)
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Replica 1 Replica 2

Logging

Log Shipping

Replica 1 Replica 2

Logging

Replicate inputs



Dependent Transactions
UPDATE table SET salary = 1.1 * salary WHERE salary < 1000

Need to perform reads to determine a transaction’s read/write set

How to compute the read/write set? 
• Modifying the client transaction code 
• Reconnaissance query to discover full read/write sets 
• If prediction is wrong (read/write set changes), repeat the process
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Disk Based Storage
Fixed serial order leads to more blocking
• T1 write(A), write(B)
• T2 write(B), write(C)
• T3 write(C), write(D)

Solution
• Prefetch ( warmup ) request to relevant storage components
• Add artificial delay – equals to I/O latency 
• Transaction would find all data items in memory
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Checkpoint
Logs before a checkpoint can be truncated

Checkpointing modes
• Naïve synchronous mode: 

Stop one replica, checkpoint, replay delayed transactions
• Zig-Zag

Stores two copies of each record
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Evaluation
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Calvin can scale out Calvin better than 2PC at high contention



Summary
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Conventional distributed transactions
• Partition -> 2PC (network messages and log writes)
• Replication -> Log shipping (network traffic)

Deterministic transaction processing
• Determine the serial order before execution
• Replicate transaction inputs (less network traffic than log shipping)
• No need to run 2PC



Calvin – Q/A 
Impact of deterministic transactions
• Series of papers from Prof. Daniel Abadi @ U Maryland
• Company: FaunaDB

Scheduler is a bottleneck for read-only workloads
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Group Discussion
Is knowing read/write sets necessary for deterministic transactions? 
How does the protocol change if we remove this assumption?

Can you think of other optimizations if the read/write sets are known 
before transaction execution?

For a batch of transactions, Calvin performs a single Paxos to 
replicate inputs. Is it possible to amortize 2PC overhead with batch 
execution but not using deterministic transactions?
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Before Next Lecture
Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Friday 11:59pm

Submit review for
A Study of the Fundamental Performance Characteristics of GPUs and 

CPUs for Database Analytics 
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https://wisc-cs839-ngdb20.hotcrp.com/

