WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 6: Deterministic Database

Xiangyao Yu
2/6/2020

Discussion Highlights

Silo compatible with operational logging?
No. See following example

Y.seq# =10 T1 write(Y)
X.seq# =5 T1.read(X)

T2.write (X) X.seg#=5
T1.seq# = 11| validate()
commit()

validate() |T2.seq#=6
commit()

For operational logging, must recover T1 before T2 (WAR
dependency). Silo does not keep track of WAR dependency.

Discussion Highlights

Reduce transaction latency in Silo?
 Adjust epoch length based on workload or abort rate
« Soft commit vs. hard commit
 Create epoch boundary dynamically

Distributed Silo?

 Global epoch number, TID synchronization
* One extra network round trip compared to 2PL.
Locking WS + RS validation + Write

Today’s Paper

Calvin: Fast Distributed Transactions
for Partitioned Database Systems

Alexander Thomson Thaddeus Diamond Shu-Chun Weng
Yale University Yale University Yale University
thomson @cs.yale.edu diamond@cs.yale.edu scweng@cs.yale.edu
Kun Ren Philip Shao Daniel J. Abadi
Yale University Yale University Yale University
kun@cs.yale.edu shao-philip@cs.yale.edu dna@cs.yale.edu
ABSTRACT 1. BACKGROUND AND INTRODUCTION

Many distributed storage systems achieve high data access through-
put via partitioning and replication, each system with its own ad-
vantages and tradeoffs. In order to achieve high scalability, how-
ever, today’s systems generally reduce transactional support, disal-
lowing single transactions from spanning multiple partitions. Calvin
is a practical transaction scheduling and data replication layer that

_at - o BRI SR B

One of several current trends in distributed database system de-
sign is a move away from supporting traditional ACID database
transactions. Some systems, such as Amazon’s Dynamo [13], Mon-
goDB [24], CouchDB [6], and Cassandra [17] provide no transac-
tional support whatsoever. Others provide only limited transaction-
ality, such as single-row transactional updates (e.g. Bigtable [11])

Ar trancantinnoe whnoa annaccac ara limitad ta cmall cnhoate AfF a

Today’s Agenda

Distributed transaction — Two-Phase Commit (2PC)
High availability

Calvin

Distributed Transaction

T.write(X)

T.write(Y)

T.write(2)

Coordinator

(Participant 1) Participant 2 Participant 3

Lock(X)

\

Lock(Y)

Lock(Z)

P
4

What about logging?

* Time

Two-Phase Commit (2PC)

T.write(X)

T.write(Y)

T.write(Z)

2PC is expensive

Coordinator
(Participant 1) Participant 2 Participant

Execution phase ...

Prepare |LOg
L L

3

Commit
Phase *——————————————————————l !

" Time

High Availability

Partition 1

Partition 2

Partition 3

* Every tuple is mapped to one partition

High Availability

» A partition of data is unavailable if a
Partition 1
server crashes

Partition 3

High Availability

<> <>
Partition 1 Partition 1
<> <>
Partition 2 Partition 2
<> <>
Partition 3 Partition 3
Replica 1 Replica 2

Partition 1

Partition 2

Partition 3

Replica 3

* Replicate data across

multiple servers

10

High Availability

<>
Partition 1

Partition 1

Partition 2

<>
Partition 3 Partition 3

Replica 1

Replica 2

Partition 1

* Replicate data across
multiple servers

 Data is available if at
least one partition is
still alive

Partition 2

Partition 3

Replica 3
P 11

High Availability

<>
Partition 1

Partition 2

Partition 1

Partition 1

* Replicate data across
multiple servers

 Data is available if at
least one partition is
still alive

* |f the primary node
fails, failure over to a

> > secondary node

Replica 1 Replica 2 Replica 3

Partition 2

Partition 3

12

High Availability

Partition 1

Partition 1

4

Partition 3

4

Partition 3

Replica 1 Replica 2

Partition 1

* Replicate data across
multiple servers

 Data is available if at
least one partition is
still alive

* |f the primary node
fails, failure over to a

secondary node
* Recovery from log if all
replicas fail

Replica 3
P 13

Implementing High Availability

1
S
0 O

Replica 1 Replica 2 Replica 3

o

14

Implementing High Availability

Log Shipping

p ’/\I /\ Network can be a
y ~ bottleneck for log
shipping

Logging

e Qjﬂ

Replica 1 Replica 2 Replica 3

15

Partition and Replication

Partition 1 Partition 1

Partition 1

Partition 2 Partition 2 Partition 2

Partition 3 Partition 3 Partition 3

Replica 1 Replica 2 Replica 3

Problem 1:
2PC is expensive

Problem 2:
Network can be a
bottleneck for log

shipping

16

Deterministic Transactions

Decide the global execution order of transactions before executing
them

All replicas follow same order to execute the transactions

Non-deterministic events are resolved and logged before dispatching
the transactions

Log batch of inputs -> No two-phase commit
Replicate inputs -> Less network traffic than log shipping

17

client application

I\

transactions and distributed snapshot reads

low-isolation reads and

low-isolation reads and single-partition snapshot reads

single-partition snapshot reads

per-node replication of transaction input
(asynchronous or via Paxos)

sequencer

sequencer

sequencer

sequencer sequencer sequencer

scheduler scheduler scheduler scheduler scheduler scheduler

transaction 1 transaction
execution I I I I t I t I I execution
threads - Y = threads
/ A [A I I / I I I
B \ oy Y) A

|
|

-

S

T SR i -
storage storage storage storage storage
w. v. v' _—/. v.
partition 1 partition 2 partition 3 partition 1 partition 2

replica A replica B

S

storage

——

partition 3

J

18

Sequencer

Distributed across all nodes
 No single point of failure
» High scalability

Replicate transaction inputs asynchronously through Paxos
10ms batch epoch for batching

Batch the transaction inputs, determine their execution sequence, and dispatch
them to the schedulers

19

Scheduler

All transactions have to declare all lock requests before the
transaction execution starts

Single thread issuing lock requests

T1 T2 T3] ---

Example: T1.write(X), T2.write(X), T3.write(Y)
T1 locks X first
T3 can grab locks before T2 if T3 does not conflict with T1/T2

Transaction Execution Phases

1)Analysis all read/write sets
-Passive participants (read-only partition)
-Active participants (has write in partition)
2) Perform local reads

3) Serve remote reads

- send data needed by remote ones.
4) Collect remote read results

- receive data from remote.

5) execute transaction logic and apply writes

21

Example

T1: A=A+B;C =C+8B

Local RS: (A) (B) (C)

Local WS: (A) (C)

Active Participant Passive Participant Active Participant
>
>

Perform Only Local write

Analyse RS/WS

Perform Local reads
Serve remote reads

Collect remote reads

Execute and write

22

Conventional vs. Deterministic

T1: A=A+B; B=B +1

Lock(A)
\>
Lock(B)
B -
A=A+B B=B+1
[2PC

—
u =

23

Conventional vs. Deterministic

T1: A=A+B; B=B +1

Lock(A)

 »
B Lock(B)

— B=B+1

]
[2PC

—
u =

A=A+B <«

Paxos to replicate inputs

Locli(A) A

B LoEk(B)

—

A=A+B

—> B=B+1

24

Conventional vs. Deterministic (replication)

Log Shipping Replicate inputs

=)

)

L
|
-

@ <:| QJ// //

? —ad
& =

Logging ﬂ ﬂ Logging
o O

Replica 1 Replica 2 Replica 1 Replica 2 .

Dependent Transactions

UPDATE table SET salary = 1.1 * salary WHERE salary < 1000
Need to perform reads to determine a transaction’s read/write set

How to compute the read/write set?
» Modifying the client transaction code
« Reconnaissance query to discover full read/write sets
* |f prediction is wrong (read/write set changes), repeat the process

26

Disk Based Storage

Fixed serial order leads to more blocking
* T1 write(A), write(B)
« T2 write(B), write(C)
« T3 write(C), write(D)

Solution
* Prefetch (warmup) request to relevant storage components
 Add artificial delay — equals to I/O latency
* Transaction would find all data items in memory

27

Checkpoint

Logs before a checkpoint can be truncated

Checkpointing modes
« Naive synchronous mode:
Stop one replica, checkpoint, replay delayed transactions
» Zig-Zag

Stores two copies of each record

28

Evaluation

total throughput (txns/sec)

Calvin can scale out Calvin better than 2PC at high contention
1800000 — — 250
10% distributed txns, contention index=0.0001 —_ Calvin. 4 nodes
1600000 100% distributed txns, contention index=0.0001 —— g i
10% distributed txns, contention index=0.01 -------- 5 S a | Calvin, 8 l}()zdpeé
s stem R*-style system w/ 2PC --------]
1400000 T 200 y tyle sy :
-S]
1200000 2
» 150
1000000 5
(@)
800000 c
@ 100
600000« -
s
400000 .§ 50
200000 O
7))
0 0
0 10 20 30 40 50 60 70 80 90 100 0.001 0.01 0.1 1
number of machines contention factor

29

Summary

Conventional distributed transactions
« Partition -> 2PC (network messages and log writes)
 Replication -> Log shipping (network traffic)

Deterministic transaction processing
 Determine the serial order before execution

 Replicate transaction inputs (less network traffic than log shipping)
* No need to run 2PC

30

Calvin — Q/A

Impact of deterministic transactions
» Series of papers from Prof. Daniel Abadi @ U Maryland
« Company: FaunaDB

Scheduler is a bottleneck for read-only workloads

31

Group Discussion

Is knowing read/write sets necessary for deterministic transactions?
How does the protocol change if we remove this assumption?

Can you think of other optimizations if the read/write sets are known
before transaction execution?

For a batch of transactions, Calvin performs a single Paxos to
replicate inputs. Is it possible to amortize 2PC overhead with batch
execution but not using deterministic transactions?

32

Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Friday 11:59pm

Submit review for

A Study of the Fundamental Performance Characteristics of GPUs and
CPUs for Database Analytics

33

https://wisc-cs839-ngdb20.hotcrp.com/

