WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 839: Design the Next-Generation Database
Lecture 7: GPU Database

Xiangyao Yu
2/11/2020

Announcements

[Optional] 5-min presentation of your project idea
* Find teammates
* Receive feedback
« Email me if you are interested

Discussion Highlights

Necessary to know read/write set?
* No. But not knowing the sets severely degrades performance. (any solutions?)

Optimizations if know read/write sets?

* No need to broadcast reads to all active participants

» Use better deterministic ordering to improve performance
« Enforce no conflicts within a batch -> no need to lock
 Blind write optimization

Batch to amortize 2PC?

* Run 2PC in batches
« Epoch-based concurrency control like Silo

Today’s Paper

A Study of the Fundamental Performance Char-
acteristics of GPUs and CPUs for Database Analytics

Anil Shanbhag Samuel Madden Xiangyao Yu
MIT University of Wisconsin-Madison
anil@csail. mit.edu madden@csail.mit.edu yxy@cs.wisc.edu
ABSTRACT KEYWORDS

There has been significant amount of excitement and recent
work on GPU-based database systems. Previous work has
claimed that these systems can perform orders of magnitude
better than CPU-based database systems on analytical

wrnrlrlnade enirh ace thace fanind in decician eiinnnart and

SIGMOD 2020

in-memory analytics, heterogenous systems, GPU data ana-
lytics, GPU query performance

ACM Reference Format:
Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study

TS | ™ 1 .1 ™ " ™1 . f AMTTY 1

Today’s Agenda

GPU background
Data analytics on CPU vs. GPU

Crystal library

GPU Background

« Graphics processing unit
(GPU)

 Accelerators for graphics
computation

» Dedicated accelerators
with simple, massively
parallel computation

* More and more used for
general-purpose
computing

CPU vs. GPU

ALU = ALU
Control
ALU = ALU

CPU

CPU: A few powerful cores with large caches. Optimized for sequential
computation

CPU vs. GPU

ALU = ALU EI
Control =
ALU = ALU =

-
-
-
-

CPU GPU

CPU: A few powerful cores with large caches. Optimized for sequential
computation

GPU: Many small cores. Optimized for parallel computation

CPU vs. GPU — Processing Units

1990 2000 2010

40 Years of Microprocessor Trend Data

Nvidia

| Throughput | __ Power | Throughput/Power

Intel Skylake 128 GFLOPS/4 Cores 100+ Watts ~1 GFLOPS/Watt
NVIDIA V100 15 TFLOPS 200+ Watts ~75 GFLOPS/Watt

CPU vs. GPU — Memory System

[T . W A T

QOD ISP PR (SN *9F S e \
! .

~ DRAM DIMMs

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)
10

CPU vs. GPU — Memory System

~ DRAM DIMMs

Upto 1.2 TB/s

o5

PHY PHY GPU/CPU/Soc Die

O N O O O O o O O O O o N = [o | o] O o

I O - I I I
Package Substrate

- 3 o <
o $
» L :! RO
-
] :
| B
ot i R
?ﬂ’”l" Y e
el

ol LT

CPU: Large memory (up to Terabytes) with limited bandwidth (up to 100GB/s)
GPU: Small memory (up to 32 GB) with high bandwidth (up to 1.2 TB/s) 11

CPU vs. GPU — Overall Architecture

CPU

& ‘ 55 GB/s

Main Memory
(Terabytes)

GPU has immense computational power

PCle 12.8 GB/s

<

GPU memory has high bandwidth
GPU memory has small capacity

Loading data from main memory is slow

)

GPU

& ‘ 880 GB/s

GPU Memory
(32 GB)

12

GPU Database Operation Mode

Coprocessor mode: Every query loads data from CPU memory to
GPU

GPU-only mode: Store working set in GPU memory and run the entire
query on GPU

Key observation: With efficient implementations that can saturate
memory bandwidth

GPU-only > CPU-only > coprocessor

13

CPU-only vs. Coprocessor

MonetDB
B GPU Coprocessor
BN Hyper

£
Q
£ 200 -
|_
0
%
| | | Y e 9 @ o & &

Q
P

N\

400 -

Queries

14

Efficient Query Execution on GPUs

Tile-based Execution Model

Crystal Library

15

GPU Architecture

PCI Express 3.0 Host Interface

H

Memory Controller
Jeyonuo) Aowaey

Je|jonuo) Aowaew

s
g
€
S
(8]
P
8
E
]
=

Memory Controller
Jajonuog Lowaey

H

Memory Controller
Jejjo5u0) Lowew

8 . & 8 ™™ 4 ™ . s !
NVLink NVLink NVLink NVLink NVLink NVLink

84 streaming Multiprocessors

GPU Architecture — Streaming Multiprocessor

Each SM has 4 warps

INT INT FP32 FP32

INT INT FP32 FP32

—— e Each warp contains 32 threads

Each warp executes in a single
instruction multiple threads (SIMT)
model

INT INT FP32FP32 yENSOR TENSOR e ll | TENSOR TENSOR

T T FPazfpay CORE CORE FP64 INT INT 3 CORE CORE

INT INT FP32 FP32

128KB L1 Data Cache / Shared Memory

[1] V100 GPU Hardware Architecture In-Depth,

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf 17

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

GPU Architecture — Memory System

SM-1 SM-2 SM-N
Registers Registers Registers
A A F 3 . . . A
L1 SMEM L1 SMEM L1 SMEM
A A
!
L2 Cache T On chip
“““““““““““““““““““““““““ [Gt ohip

Global Memory

Data from global memory cached in L2/L1

Shared memory: a scratchpad controlled by the programmer

18

Sequential vs. Parallel

Q0: SELECT y FROM R WHERE y > Vv;
Goal: write the results in parallel into a contiguous output array

Sequential

cnt = 0
for i in R.size():
if R[i] > v

output[cnt++] = R[1]

19

Sequential vs. Parallel

Q0: SELECT y FROM R WHERE

y > V;

Goal: write the results in parallel into a contiguous output array

Sequential

Parallel

for start in partitions[thread id]

cnt = 0
for i in R.size():
if R[i] > v

output[cnt++] = R[1]

cnt = 0
for (i=start; i<start+1000; i++)
if R[i] > Vv
cnt ++
out offset = atom add(&out pos, cnt)
for (i=start; i<start+1000; i++)
if R[i] > Vv

output[out offset ++] = R[1]

20

Sequential vs. Parallel

Q0: SELECT y FROM R WHERE y > Vv;
Goal: write the results in parallel into a contiguous output array

Sequential Parallel

for start in partitions[thread id]

cnt = 0 Vector-based execution model

cnt = 0
for i in R.size():
if R[] > v for (i=start; i<start+1000; i++)
output[cnt++] = R[1] if R[i] > v
cnt ++
out offset = atom add(&out pos, cnt)
for (i=start; i<start+1000; i++)

if R[i] > v

output[out offset ++] = R[1] 21

Parallel on CPU vs. GPU

Q0: SELECT y FROM R WHERE y > v;

Goal: write the results in parallel into a contiguous output array

Parallel

for p start in partitions[thread id]
cnt = 0
for (i=p start; i<p_ start+1000; i++)
if R[i] > Vv

cnt ++

out offset = atom add(&out pos, cnt)

for (i=start; i<start+1000; i++)
if R[i] > Vv

output[out offset ++] = R[1]

In CPU, 10s of threads call atom_add()

In GPU, 1000s of threads call atom_add()
--> performance bottleneck

22

Current GPU Parallel Implementation

Q0: SELECT y FROM R WHERE y > v;

Kernel

| Read entries K1 |

I
N\

|
Evaluate predicate |

o and count matched :

Write count

' |
|
| \ i
| Write out matched entries '
! |
|

at appropriate offset

,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) Current

K1: Load from global memory

K3: Load from global memory

Issue 1: Input array read
from global memory twice

Issue 2: each thread

writes to a different
location in output array

23

Tile-Based Execution Model

00: SELECT y

FROM R WHERE y > v;

S —

Read entries K1

|
|
|
|
|
i
Evaluate predicate |
e and count matched i

|

|

|

Write count

|
|
Read entries, prefix sum (3 i
v :

Write out matched entries i
at appropriate offset :

(a) Current

Load tile of items K1

s

Generate Bitmap

threadblock

)

v

Compute Block-wide
Prefix Sum

R EEEEEw] Clems [aammammansns
Vector (~1000 elems) p't‘¢ e g

\A Atomic update

/ global counter (a) On CPU (b) On GPU

Block-wide shuffle

!

Coalesced Write

(b) With Tile-based processing

<+— numberofthreads—+»

Tile
(~ 1000 elems)

24

Tile-Based Execution Model — Example

Q0: SELECT y FROM R WHERE y > 5;

I global memory |:| shared memory X accesses by thread 0
I — |nput column

3 1 12 8] 9 15 | 10 1 4 7 2 11 5 16 | 13 Load tile

0 o 1 1 1 1 1 1 0 o 1 o 1 o 1 1 Generate b|tmap

global counter 2 1 4 3 Compute histogram
0 2 3 7 11 Generate prefix sum
7
157 |16 8 | 10 13 Gen shuffled tile

— Result Array

thread

elems?

Vector (~1000 elems) pL. v

(a) On CPU

threadblock

S

<+— numberofthreads—»

(b) On GPU

Tile
(~ 1000 elems)

25

Crystal Library

Block-wide function: takes in a set of tiles as input, performs a
specific task, and outputs a set of tiles

Primitive Description

BlockLoad Copies a tile of items from global memory to shared memory. Uses vector instructions to load full tiles.
BlockLoadSel Selectively load a tile of items from global memory to shared memory based on a bitmap.

BlockStore Copies a tile of items in shared memory to device memory.

BlockPred Applies a predicate to a tile of items and stores the result in a bitmap array.

BlockScan Co-operatively computes prefix sum across the block. Also returns sum of all entries.

BlockShuffle Uses the thread offsets along with a bitmap to locally rearrange a tile to create a contiguous

BlockLookup
BlockAggregate

array of matched entries. Returns matching entries from a hash table for a tile of keys.

Uses hierarchical reduction to compute local aggregate for a tile of items.

26

Operators — Project

Ql: SELECT axl + bx2 FROM R;
Q2: SELECT o(axl + bx2) FROM R;

400 4 CPU-Opt:
CPU Model 2824 Non-temporal writes

9250 - GPU Model « SIMD
— s CPU
5200- W CPU-Opt o . _
< = GPU Efficient CPU/GPU implementations
£ 150 can saturate DRAM bandwidth
|_
£ 100 - 90.5
|_

50 -

3.9
0- 39)

27

Operators — Select

Q3: SELECT y FROM R WHERE y < v;

== CPU If == GPU If
for Y in R: for y in R: 1207 —— EES :Irl\jldDPred glsg :alr::el
if y < V output[i] =Yy 104 —— CPY Modd
output[cnt++] = v cnt += (y>v) 0
£ 80
(a) With branching (a) With predication .
E
. 40/
20 -
0

0.2 0.4 0.6
Selectivity

e
=}

Operators — Hash Join

Q4: SELECT SUM(A.v + B.v) AS checksum

FROM A,B WHERE A.k = B.Kk

Build phase: populate the hash table using
tuples in one relation (typically the smaller
relation)

Probe phase: use tuples in the other relation to
probe the hash table

Time Taken (in ms)

400

-8 CPU SIMD
500 § —#— CPU Prefetch

300

200 A

100 A

0

CPU Scalar

=== CPU Model
—&— GPU
GPU Model

-e--2-¢--3-¢-3-&-%

Latency-bound

_—-——————-——J

PR

—
——

8KB

32KB 128KB

512KB 2MB 8MB
Hash Table Size

32MB 128MB 512MB

29

Star-Schema Benchmark

Platform CPU GPU
Model Intel i7-6900 Nvidia V100
Cores 8 (16 with SMT) | 5000
Memory Capacity | 64 GB 32GB
L1 Size 32KB/Core 16KB/SM
L2 Size 256KB/Core 6MB (Total)
L3 Size 20MB (Total) -
Read Bandwidth | 53GBps 880GBps Crystal-based implementations always
Write Bandwidth | 55GBps 880GBps :
i) 107 Bos saturate GPU memory bandwidth
L2 Bandwidth - 2.2TBps
L3 Bandwidth | 157GBps - GPU is on average 25X faster than CPU
10° 5
Hyper (CPU)
| W Standalone (CPU)
— B Omnisci (GPU)
E 102-: B Standalone (GPU)
&
- l l
F]
10°
ql.l ql.2 ql.3 q2.1 q2.2 q2.3 q3.1 q3.2 q3.3 q3.4 q4.1 q4.2 q4.3 mean

Queries

Cost Analysis

Purchase Cost

Renting Cost (AWS)

CPU

$2-5K

$0.504 per hour

GPU

$CPU + 8.5K

$3.06 per hour

GPU is 25X faster than CPU

GPU is 6X more expensive than CPU

GPU is 4X more cost effective than CPU

31

Future Work

Distributed GPUs + hybrid GPU/CPU
Data compression

Supporting string and array data type in GPU

32

Summary

CPU

i ‘ 55 GB/s

Main Memory
(Terabytes)

PCle 12.8 GB/s

GPU

<

> @880 GB/s

GPU Memory
(32 GB)

Performance: GPU-only > CPU-only > coprocessor

Crystal: Tile-based execution model

GPUs are 25X faster and 4X more cost effective

33

GPU Database — Q/A

Does NVLink solve the PCle bottleneck?
Will open-source the code soon

Overhead of loading data to GPU and transferring results back to CPU

What about updates/transactions?

34

Group Discussion

What is the advantages and disadvantages of executing transactions
on GPUs?

Can you think of any solutions (either software or hardware) to
overcome the problems of (1) limited PCle bandwidth between CPU
and GPU and (2) limited GPU memory capacity?

What are the main opportunities and challenges of deploying a
database on heterogeneous hardware?

35

Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
* Deadline: Wednesday 11:59pm

Submit review for
* Q100: The Architecture and Design of a Database Processing Unit

36

https://wisc-cs839-ngdb20.hotcrp.com/

