Announcements

Next lecture will be a guest lecture given by Dr. Goetz Graefe from Google

Title: Sort-based query processing

Abstract: Since the mid-1980s, common wisdom has favored hash-based algorithms over sort-based algorithms for joins and for duplicate removal. This includes other binary operations, e.g., outer joins and intersection, and other unary operations, e.g., grouping and aggregation. Over the last few years, the presenter has convinced himself of the opposite. He will present some of his considerations and arguments.

Bio: Goetz has worked on database research and product development for many years. He is best known for query processing, which has been deployed in millions of Microsoft SQL Server deployments for over two decades and honored by ACM SIGMOD with the 2017 Edgar F. Codd Innovations Award, and for surveys on query execution, query optimization, sorting, b-tree indexes, concurrency control, logging, and recovery.
Transactions on GPU
• Pros: More parallelism; higher memory bandwidth; good for read-only transactions
• Cons: Limited memory; ACID over SIMT (e.g., logging latency, concurrency control scalability, etc.); scratchpad hard to use;

Overcome GPU problems:
• Avoiding PCIe bottleneck: better scheduler for data movement (only warm data in GPU, use GPU when results set if small); GPUDirect; compress data transfer;
• Handling limited GPU memory: virtual memory for GPU; HBM to CPU; compress data in GPU; multi-GPU; Hybrid CPU-GPU system;

Heterogeneous hardware
• Opportunities: Workload specific optimizations; minimize data transfer cost; massive parallelism
• Challenges: complex scheduling, load balancing; hard to program; difficult failure handling; complex coordination among devices with difference architecture;
Q100: The Architecture and Design of a Database Processing Unit

Lisa Wu Andrea Lottarini Timothy K. Paine Martha A. Kim Kenneth A. Ross
Columbia University, New York, NY
{lisa,lottarini,martha,kar}@cs.columbia.edu/tkp2108@columbia.edu

Abstract
In this paper, we propose Database Processing Units, or DPUs, a class of domain-specific database processors that can efficiently handle database applications. As a proof of concept, we present the instruction set architecture, microarchitecture, and hardware implementation of one DPU, called Q100. The Q100 has a collection of heterogeneous ASIC tiles that process relational tables and columns quickly and...

It goes on to describe big data analytics as not just important for business, but essential. The article emphasized that analyses must process large volumes of a wide variety, and at real-time or nearly real-time velocity. With the big data technology and services market forecast to grow from $3.2B in 2010 to $16.9B in 2015 [23], and 2.6 exabytes of data created each day [28], it is imperative for the research community to develop machines that can keep up with this data...
Today’s Agenda

Instruction set architecture

Microarchitecture

Evaluation
Domain-Specific Accelerators

Graphics workloads -> GPU (Graphics Processing Unit)
Artificial intelligence -> TPU (Tensor Processing Unit)

Database -> DPU (Database Processing Unit)
Accelerator for analytical queries (Not transactions)

Hardware support for relational operators
 • Join
 • Aggregation
 • Sort
 • Select

Processing data as streams

Combination of spatial and temporal instructions
Instruction Set Architecture
Example Query

SELECT S_SEASON,
 SUM(S_QUANTITY) as SUM_QTY
FROM SALES
WHERE S_SHIPDATE <= '1998-12-01' - INTERVAL '90' DAY
GROUP BY S_SEASON
ORDER BY S_SEASON
Spatial Instruction Plan

SELECT S_SEASON,
 SUM(S_QUANTITY) as SUM_QTY
FROM SALES
WHERE S_SHIPDATE <= '1998-12-01' – INTERVAL '90' DAY
GROUP BY S_SEASON
ORDER BY S_SEASON

Nodes = relational operators
Edges = data dependencies
Resource Profile

Main memory

4 ColSelect 2 ColFilter 2 BoolGen 1 Stitch 1 Part 2 Aggregator 2 Appender
Temporal Instructions
Temporal Instructions

SALES Table

Temporal Instruction #1

Temp column

Partitioned tables

Temporal Instruction #2

Temporal Instruction #3
Temporal Instructions

SALES Table

Temporal Instruction #1

Temp column
Partitioned tables

Temporal Instruction #2

Temporal Instruction #3
Temporal Instructions

SALES Table

Temporal Instruction #1

Temp column

Partitioned tables

Temporal Instruction #2

Temporal Instruction #3
Temporal Instructions

SALES Table

Temporal Instruction #1

Temp column

Partitioned tables

Temporal Instruction #2

Temporal Instruction #3
Microarchitecture
Functional Tiles

Functional
- Aggregator: both group_by and aggregate columns are sorted
- ALU
- BoolGen: compare two columns and generate bit vector
- ColFilter: select values from a column based on a bit vector
- Joiner: Inner-equijoin (hash or merge join?)
- Partitioner: range-partition input column
- Sorter: bitonic sort for 1024 records

Auxiliary
- Apend: Append two tables with the same schema
- ColSelect: extract column from table
- Concat: concatenate two columns
- Stitch: produce a table based on multiple input columns
Functional Tiles – E.g., Aggregator
Functional Tiles

Functional

• Aggregator: both group_by and aggregate columns are sorted
• ALU
• BoolGen: compare two columns and generate bit vector
• ColFilter: select values from a column based on a bit vector
• Joiner: Inner-equijoin (hash or merge join?)
• Partitioner: range-partition input column
• Sorter: bitonic sort for 1024 records

Auxiliary

• Apend: Append two tables with the same schema
• ColSelect: extract column from table
• Concat: concatenate two columns
• Stitch: produce a table based on multiple input columns
Functional Tiles – E.g., Boolean Generator

WHERE s_shipdate >= '2013-01-01'
Functional Tiles

Functional
- Aggregator: both group_by and aggregate columns are sorted
- ALU
- BoolGen: compare two columns and generate bit vector
- ColFilter: select values from a column based on a bit vector
- Joiner: Inner-equijoin (hash or merge join?)
- Partitioner: range-partition input column
- Sorter: bitonic sort for 1024 records

Auxiliary
- Apend: Append two tables with the same schema
- ColSelect: extract column from table
- Concat: concatenate two columns
- Stitch: produce a table based on multiple input columns
Tile Characterization

Tile Characterization

Area (mm²)

Power (mW)

Critical Path (ns)

Max Freq 315 MHz
Tile Count Sensitivity

How many tiles do we need?
Bounded Design Space

<table>
<thead>
<tr>
<th>Module</th>
<th>Design Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGREGATOR</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>ALU</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>BOOLEAN GENERATOR</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>COLUMN FILTER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>JOINER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>PARTITIONER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>SORTER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>TABLE APPENDER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>COLUMN SELECTOR</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>COLUMN CONCATENATOR</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
<tr>
<td>COLUMN STITCHER</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12...</td>
</tr>
</tbody>
</table>

2.9 Million Designs!!
Bounded Design Space

Explore tiles that consume >= 5mW

150 Designs
Designs for Further Evaluation

The diagram illustrates the trade-off between TPC-H Runtime (milliseconds) and Power (Watts) for different designs. Two main categories are shown:

- **Low Power** designs with fewer components:
 - 1 ALU
 - 1 Partitioner
 - 1 Sorter

- **High Perf** designs with more components:
 - 5 ALUs
 - 3 Partitioners
 - 6 Sorters

The Pareto front highlights the optimal balance between performance and power efficiency, indicating the best compromise for each category.
Network on Chip (NoC) Bandwidth

Performance sensitivity to NoC bandwidth
NoC limit @ 6.3 GB/s (scaled down from Intel TeraFlop)
Memory Bandwidth

- Low Power
 - Read
 - Write

- Pareto
 - Read
 - Write

- High Perf
 - Read
 - Write

Bandwidth (GB/s)

BW Read Limit @ 20 or 30 GB/s

BW Write Limit @ 10 GB/s
Evaluation
Methodology

<table>
<thead>
<tr>
<th>System Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Memory</td>
</tr>
<tr>
<td>Max Memory BW</td>
</tr>
<tr>
<td>Max TDP</td>
</tr>
<tr>
<td>Lithography</td>
</tr>
</tbody>
</table>

• Used in-house simulator to model the performance and energy consumption of Q100
Q100 vs. MonetDB – Runtime

37X – 70X performance improvement over single-threaded MonetDB
Q100 vs. MonetDB – Energy

691X – 983X energy efficiency improvement over single-threaded MonetDB
Summary

Q100 is an efficient domain-specific accelerator for analytical database workloads

ISA exploits parallelism and streaming efficiencies

At < 15% area and power of a Xeon core, a Q100 device gets exceptional performance and energy efficiency
Accelerators – Q/A

Why is Q100 more energy efficient?

What’s the state-of-the-art in this space? Is Q100 commercially available?

Why not explore all possible software solutions first?
Group Discussion

From the hardware perspective, what are the key ideas that lead to the speedup of Q100 over MonetDB? In your opinion, how would Q100 compare to an optimized CPU-based database?

What are the limitations of Q100?

Based on this lecture (Q100) and last lecture (GPU), to build a high performance database accelerator, what are the most important optimization goals? (e.g., computation power, DRAM bandwidth, etc)
Before Next Lecture

Submit discussion summary to https://wisc-cs839-ngdb20.hotcrp.com
• Deadline: Wednesday 11:59pm

Submit review for
• [optional] New algorithms for join and grouping operations
• [optional] Modern B-tree techniques