How Good is My HTAP System?

Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel, Xiangyao Yu

University of Wisconsin-Madison

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.

Hybrid Transactional & Analytical Processing

Hybrid Transactional & Analytical Processing

Hybrid Transactional & Analytical Processing

Fundamental Goals of HTAP

No interference between the transactional (*T*) and analytical (A) portions of the workload

Fundamental Goals of HTAP

No interference between the transactional (*T*) and analytical (*A*) portions of the workload

Analytical queries observe the latest transactional updates (fresh data)

Goal Define a *good* HTAP system & provide a systematic methodology to evaluate HTAP systems

Goal Define a *good* HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

• Provide a *performance metric* for HTAP systems

Goal Define a *good* HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

- Provide a *performance metric* for HTAP systems
- Quantify and measure *freshness* of analytical queries

Goal Define a *good* HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

- Provide a *performance metric* for HTAP systems
- Quantify and measure *freshness* of analytical queries
- New benchmark called **HATtrick** to measure performance and freshness

Goal Define a *good* HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

- Provide a *performance metric* for HTAP systems
- Quantify and measure *freshness* of analytical queries
- New benchmark called **HATtrick** to measure performance and freshness
- Use **HATtrick** to evaluate representative HTAP systems

<u>C1</u>: Measure performance of an HTAP system

Metric 1: Throughput Frontier

>Input: (τ, α) pairs

- **τ** transactional-clients
- α analytical-clients

Output: hybrid throughput (x_{τ}, x_{α})

>Input: (τ, α) pairs

- **τ** transactional-clients
- α analytical-clients

Output: hybrid throughput (x_{τ}, x_{α})

>Sample all possible (τ , α) mixes

• Map hybrid throughputs to 2D space

>Input: (τ, α) pairs

- **τ** transactional-clients
- α analytical-clients

Output: hybrid throughput (x_{τ}, x_{α})

>Sample all possible (τ , α) mixes

• Map hybrid throughputs to 2D space

➤Max hybrid throughput values → throughput frontier

- >Input: (τ, α) pairs
 - **τ** transactional-clients
 - α analytical-clients

Output: hybrid throughput (x_{τ}, x_{α})

>Sample all possible (τ , α) mixes

• Map hybrid throughputs to 2D space

> Max hybrid throughput values \rightarrow throughput frontier captures

- T and A throughput
- Interference between T & A portions of the workload

Sampling method: Accurate, but time-consuming

Sampling method: Accurate, but time-consuming

Saturation method: Systematic way

Saturation method: Systematic way

Saturation method: Systematic way

Saturation method: Systematic way

- Fixed-T lines: Fix the # of T clients and increase the # of A clients
- Fixed-A lines: Fix the # of the A clients and increase the # of the T clients

Patterns of Throughput Frontier

Proportional Line

--- Proportional line --- Bounding box — Throughput frontier

Bounding Box

Patterns of Throughput Frontier I

- Pattern 1: Close to the proportional line
 - Linear dependence between transactions and analytics
 - Transactions and analytics share resources

Patterns of Throughput Frontier II

- > Pattern 2: Above the proportional line, close to the bounding box
 - Independence between transactions and analytics
 - Performance isolation

Patterns of Throughput Frontier III

- > Pattern 3: Below the proportional line, close to the axes
 - Interference between transactions and analytics
 - Contention for resources

Patterns of Throughput Frontier

Patterns of Throughput Frontier

Quantifies absolute performance

- Quantifies absolute performance
- Isolation and interference between T and A workloads

- Quantifies absolute performance
- Isolation and interference between T and A workloads
- Diagnose performance issues

- Quantifies absolute performance
- Isolation and interference between T and A workloads
- Diagnose performance issues
- > Discover the **architecture design** of an HTAP system

<u>C2</u>: Quantify and measure freshness of an HTAP system

Metric 2: Freshness

Metric to extract the recency of the data snapshots used when an analytical query runs

Metric to extract the recency of the data snapshots used when an analytical query runs

Metric to extract the recency of the data snapshots used when an analytical query runs

Metric to extract the recency of the data snapshots used when an analytical query runs

Freshness of A_q : $f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$ $t_{A_q}^s$: start time of the A_q $t_{A_q}^{fns}$: commit time of first not seen by A_q

$$f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$$

$$f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$$

Challenge 1: No globally synchronized clock

$$f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$$

Challenge 1: No globally synchronized clock

➢ Solution: Collect time only on the client side

$$f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$$

Challenge 1: No globally synchronized clock

➢ Solution: Collect time only on the client side

Challenge 2: Hard to identify first-not-seen transaction

$$f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})$$

Challenge 1: No globally synchronized clock

➢ Solution: Collect time only on the client side

Challenge 2: Hard to identify first-not-seen transaction

Solution: Auxiliary tables storing monotonically increasing IDs

• Identify seen vs. not seen transactions by a query

<u>C3</u>: Design a new benchmark to measure performance and freshness

HATtrick

HATtrick Benchmark

Hybrid benchmark

- Analytical component: Star-Schema benchmark (SSB)
- Transactional component: Adapted version of TPC-C benchmark
- **Simpler** than previous HTAP benchmarks

>Throughput frontier & freshness can be added to every hybrid benchmark

Source code is available at https://github.com/UWHustle/HATtrick

Evaluation

Experimental Configuration

≻Systems

- **Postgres** (single-node and multi-node with streaming replication)
- **TiDB** (singe-node vs. distributed)
- System-X (single-node)
- Dataset Size
 - SF100 (~80GB)

Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds

Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds

Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds

Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds

Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds

More Experiments...

Throughput frontier and freshness

Throughput frontier and freshness

- Within system configuration, discover trade-offs
- Easier across systems comparison

Throughput frontier and freshness

- Within system configuration, discover trade-offs
- Easier across systems comparison
- ➤Lessons learned
 - Fresh analytics come with a **cost** in the *T* or/and A performance
 - *T*-throughput is **severely affected** by the increase of A clients

Throughput frontier and freshness

- Within system configuration, discover trade-offs
- Easier across systems comparison
- ➤Lessons learned
 - Fresh analytics come with a **cost** in the *T* or/and A performance
 - *T*-throughput is **severely affected** by the increase of A clients

>There is still room for improving current HTAP systems

Thank you

milkai@wisc.edu

®

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.