How Good is My HTAP System?

Elena Milkai, Yannis Chronis, Kevin P. Gaffney, Zhihan Guo, Jignesh M. Patel, Xiangyao Yu

University of Wisconsin-Madison

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.
Hybrid Transactional & Analytical Processing
Hybrid Transactional & Analytical Processing

No definition of a good HTAP system
Hybrid Transactional & Analytical Processing

No definition of a good HTAP system

Difficult to characterize and compare HTAP systems
Fundamental Goals of HTAP

Goal 1: Performance Isolation

No interference between the transactional (T) and analytical (A) portions of the workload
Fundamental Goals of HTAP

Goal 1 Performance Isolation
No interference between the transactional (T) and analytical (A) portions of the workload

Goal 2 Real-Time Analytics
Analytical queries observe the latest transactional updates (fresh data)
Our Goal & Contributions

Goal: Define a good HTAP system & provide a systematic methodology to evaluate HTAP systems
Our Goal & Contributions

Goal: Define a good HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions:
• Provide a performance metric for HTAP systems
Our Goal & Contributions

Goal: Define a good HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions:
- Provide a performance metric for HTAP systems
- Quantify and measure freshness of analytical queries
Our Goal & Contributions

Goal
Define a **good** HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

• Provide a *performance metric* for HTAP systems
• Quantify and measure *freshness* of analytical queries
• New benchmark called *HATtrick* to measure performance and freshness
Our Goal & Contributions

Goal
Define a good HTAP system & provide a systematic methodology to evaluate HTAP systems

Contributions

• Provide a performance metric for HTAP systems
• Quantify and measure freshness of analytical queries
• New benchmark called HATtrick to measure performance and freshness
• Use HATtrick to evaluate representative HTAP systems
C1: Measure performance of an HTAP system

Metric 1: Throughput Frontier
Throughput Frontier Definition

- **Input:** \((\tau, \alpha)\) pairs
 - \(\tau\) transactional-clients
 - \(\alpha\) analytical-clients

Output: hybrid throughput \((x_\tau, x_\alpha)\)
Throughput Frontier Definition

- Input: \((\tau, \alpha)\) pairs
 - \(\tau\) transactional-clients
 - \(\alpha\) analytical-clients

- Output: hybrid throughput \((x_\tau, x_\alpha)\)

- Sample all possible \((\tau, \alpha)\) mixes
 - Map hybrid throughputs to 2D space
Throughput Frontier Definition

- **Input:** \((\tau, \alpha)\) pairs
 - \(\tau\) transactional-clients
 - \(\alpha\) analytical-clients

- **Output:** hybrid throughput \((x_\tau, x_\alpha)\)

- Sample all possible \((\tau, \alpha)\) mixes
 - Map hybrid throughputs to 2D space

- **Max** hybrid throughput values \(\rightarrow\) throughput frontier
Throughput Frontier Definition

- **Input**: \((\tau, \alpha)\) pairs
 - \(\tau\) transactional-clients
 - \(\alpha\) analytical-clients

- **Output**: hybrid throughput \((x_\tau, x_\alpha)\)

- Sample all possible \((\tau, \alpha)\) mixes
 - Map hybrid throughputs to 2D space

- **Max** hybrid throughput values \(\rightarrow\) **throughput frontier** captures
 - \(T\) and \(A\) throughput
 - **Interference** between \(T\) & \(A\) portions of the workload
Calculate Throughput Frontier

➢ **Sampling method:** Accurate, but time-consuming
Calculate Throughput Frontier

- **Sampling method:** Accurate, but time-consuming

\[\text{A-Throughput (qps)} \]

\[\text{T-Throughput (tps)} \]
Calculate Throughput Frontier

- **Saturation method**: Systematic way
 - Constant number of steps
Calculate Throughput Frontier

- **Saturation method**: Systematic way
 - Constant number of steps

![Graph showing Throughput Frontier with saturation method](image)
Calculate Throughput Frontier

Saturation method: Systematic way
- Constant number of steps

- **Fixed-T lines**: Fix the # of T clients and increase the # of A clients
- **Fixed-A lines**: Fix the # of the A clients and increase the # of the T clients

\[
\begin{align*}
[0, \alpha_{\text{max}}] & & \alpha_{\text{max}} \\
0 & & X^A \\
\tau_{\text{max}} & & [0, \tau_{\text{max}}]
\end{align*}
\]
Calculate Throughput Frontier

- **Saturation method**: Systematic way
 - Constant number of steps

- **Fixed-T lines**: Fix the # of T clients and increase the # of A clients

- **Fixed-A lines**: Fix the # of the A clients and increase the # of the T clients
Patterns of Throughput Frontier

- Proportional line
- Bounding box
- Throughput frontier
Proportional Line
Bounding Box

--- Proportional line Bounding box Throughput frontier
Patterns of Throughput Frontier I

Pattern 1: Close to the proportional line
- Linear dependence between transactions and analytics
- Transactions and analytics share resources
Patterns of Throughput Frontier II

- Pattern 2: **Above the proportional line, close to the bounding box**
 - Independence between transactions and analytics
 - Performance isolation
Patterns of Throughput Frontier III

- **Pattern 3**: Below the proportional line, close to the axes
 - Interference between transactions and analytics
 - Contention for resources
Patterns of Throughput Frontier

- Proportional line
- Bounding box
- Throughput frontier
Patterns of Throughput Frontier

Proportional line
Bounding box
Throughput frontier
Frontier Interpretation

- Quantifies **absolute performance**
Frontier Interpretation

- Quantifies \textit{absolute performance}
- \textit{Isolation} and \textit{interference} between T and A workloads
Frontier Interpretation

- Quantifies absolute performance
- Isolation and interference between T and A workloads
- Diagnose performance issues
Frontier Interpretation

- Quantifies absolute performance
- Isolation and interference between T and A workloads
- Diagnose performance issues
- Discover the architecture design of an HTAP system
C2: Quantify and measure freshness of an HTAP system

Metric 2: *Freshness*
Freshness Definition

- **Metric** to extract the *recency* of the data snapshots used when an analytical query runs
Freshness Definition

- **Metric** to extract the **recency** of the data snapshots used when an analytical query runs.

\[f_{A_1} = t_{s1} - t_{c2} \]
Freshness Definition

- **Metric** to extract the **recency** of the data snapshots used when an analytical query runs

\[f_A = t_s - t_c \]

- For the first not seen:
 \[f_{A_1} = t_{s_1} - t_{c_2} \]

- For seen cases:
 \[f_{A_1} = 0 \]
Freshness Definition

- **Metric** to extract the **recency** of the data snapshots used when an analytical query runs

Freshness of A_q:

\[
f_{A_q} = \max(0, t_{A_q}^s - t_{A_q}^{fns})
\]

- $t_{A_q}^s$: start time of the A_q
- $t_{A_q}^{fns}$: commit time of first not seen by A_q
Challenges in Measuring Freshness

\[f_{Aq} = \max(0, t_{Aq}^s - t_{Aq}^{fns}) \]
Challenges in Measuring Freshness

Challenge 1: No globally synchronized clock

$$f_{Aq} = \max(0, t_{Aq}^s - t_{Aq}^{fns})$$
Challenges in Measuring Freshness

\[f_{Aq} = \max(0, t_{Aq}^s - t_{Aq}^{fns}) \]

- **Challenge 1**: No globally synchronized clock
- **Solution**: Collect time only on the client side
Challenges in Measuring Freshness

$f_{Aq} = \max(0, t_{Aq}^s - t_{Aq}^{fns})$

- **Challenge 1: No globally synchronized clock**
- **Solution:** Collect time only on the client side

- **Challenge 2: Hard to identify first-not-seen transaction**
Challenges in Measuring Freshness

- **Challenge 1:** No globally synchronized clock
 - **Solution:** Collect time only on the client side

- **Challenge 2:** Hard to identify first-not-seen transaction
 - **Solution:** Auxiliary tables storing monotonically increasing IDs
 - Identify seen vs. not seen transactions by a query

\[f_A = \max(0, t^s_A - t^{fns}_A) \]
C3: Design a new benchmark to measure performance and freshness

HATtrick
HATtrick Benchmark

- **Hybrid** benchmark
 - Analytical component: *Star-Schema benchmark* (SSB)
 - Transactional component: *Adapted* version of TPC-C benchmark
 - *Simpler* than previous HTAP benchmarks

- Throughput frontier & freshness can be added to every hybrid benchmark

- Source code is available at https://github.com/UWHustle/HATtrick
Evaluation
Experimental Configuration

- **Systems**
 - **Postgres** (single-node and multi-node with streaming replication)
 - **TiDB** (single-node vs. distributed)
 - **System-X** (single-node)

- **Dataset Size**
 - SF100 (~80GB)
Fig.1: Throughput frontiers and 99th-percentile freshness scores \(f \) for the client mix 50:50 in seconds
Fig. 1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds.
Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds.
Fig.1: Throughput frontiers and 99th-percentile freshness scores (f) for the client mix 50:50 in seconds
Fig. 1: Throughput frontiers and 99th-percentile freshness scores \((f)\) for the client mix 50:50 in seconds
More Experiments…
Conclusions

- Throughput frontier and freshness
Conclusions

- Throughput frontier and freshness
 - Within system configuration, discover trade-offs
 - Easier across systems comparison
Conclusions

- **Throughput frontier and freshness**
 - Within system configuration, discover trade-offs
 - Easier across systems comparison

- Lessons learned
 - Fresh analytics come with a cost in the T or/and A performance
 - T-throughput is severely affected by the increase of A clients
Conclusions

- **Throughput frontier and freshness**
 - Within system configuration, discover trade-offs
 - Easier across systems comparison

- Lessons learned
 - Fresh analytics come with a cost in the T or/and A performance
 - T-throughput is severely affected by the increase of A clients

- There is still room for improving current HTAP systems
Thank you

milkai@wisc.edu

This work was supported in part by the Semiconductor Research Corporation (SRC) and DARPA.