
The Annals of Statistics
2013, Vol. 41, No. 5, 2462–2504
DOI: 10.1214/13-AOS1156
© Institute of Mathematical Statistics, 2013

ASYMPTOTIC EQUIVALENCE OF QUANTUM STATE
TOMOGRAPHY AND NOISY MATRIX COMPLETION

BY YAZHEN WANG1

University of Wisconsin–Madison

Matrix completion and quantum tomography are two unrelated research
areas with great current interest in many modern scientific studies. This pa-
per investigates the statistical relationship between trace regression in matrix
completion and quantum state tomography in quantum physics and quan-
tum information science. As quantum state tomography and trace regression
share the common goal of recovering an unknown matrix, it is nature to put
them in the Le Cam paradigm for statistical comparison. Regarding the two
types of matrix inference problems as two statistical experiments, we estab-
lish their asymptotic equivalence in terms of deficiency distance. The equiv-
alence study motivates us to introduce a new trace regression model. The
asymptotic equivalence provides a sound statistical foundation for applying
matrix completion methods to quantum state tomography. We investigate the
asymptotic equivalence for sparse density matrices and low rank density ma-
trices and demonstrate that sparsity and low rank are not necessarily helpful
for achieving the asymptotic equivalence of quantum state tomography and
trace regression. In particular, we show that popular Pauli measurements are
bad for establishing the asymptotic equivalence for sparse density matrices
and low rank density matrices.

1. Introduction. Compressed sensing and quantum tomography are two dis-
parate scientific fields. The fast developing field of compressed sensing provides
innovative data acquisition techniques and supplies efficient accurate reconstruc-
tion methods for recovering sparse signals and images from highly undersam-
pled observations [see Donoho (2006)]. Its wide range of applications include
signal processing, medical imaging and seismology. The problems to solve in
compressed sensing often involve large data sets with complex structures such
as data on many variables or features observed over a much smaller number of
subjects. As a result, the developed theory of compressed sensing can shed cru-
cial insights on high-dimensional statistics. Matrix completion, a current research
focus point in compressed sensing, is to reconstruct a low rank matrix based on
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under-sampled observations. Trace regression is often employed in noisy matrix
completion for low rank matrix estimation. Recently several methods were pro-
posed to estimate a low rank matrix by minimizing the squared residual sum plus
some penalty. The penalties used include nuclear-norm penalty [Candés and Plan
(2009, 2011), Koltchinskii, Lounici and Tsybakov (2011) and Negahban and Wain-
wright (2011)], rank penalty [Bunea, She and Wegkamp (2011) and Klopp (2011)],
the von Neumann entropy penalty [Koltchinskii (2011)], and the Schatten-p quasi-
norm penalty [Rohde and Tsybakov (2011)].

Contemporary scientific studies often rely on understanding and manipulating
quantum systems. Examples include quantum computation, quantum information
and quantum simulation [Nielsen and Chuang (2000) and Wang (2011, 2012)].
The studies particularly frontier research in quantum computation and quantum in-
formation stimulate great interest in and urgent demand on quantum tomography.
A quantum system is described by its state, and the state is often characterized by a
complex matrix on some Hilbert space. The matrix is called density matrix. A den-
sity matrix used to characterize a quantum state usually grows exponentially with
the size of the quantum system. For the study of a quantum system, it is important
but very difficult to know its state. If we do not know in advance the state of the
quantum system, we may deduce the quantum state by performing measurements
on the quantum system. In statistical terminology, we want to estimate the density
matrix based on measurements performed on a large number of quantum systems
which are identically prepared in the same quantum state. In the quantum litera-
ture, quantum state tomography refers to the reconstruction of the quantum state
based on measurements obtained from measuring identically prepared quantum
systems.

In this paper, we investigate statistical relationship between quantum state to-
mography and noisy matrix completion based on trace regression. Trace regression
is used to recover an unknown matrix from noisy observations on the trace of the
products of the unknown matrix and matrix input variables. Its connection with
quantum state tomography is through quantum probability on quantum measure-
ments. Consider a finite-dimensional quantum system with a density matrix. Ac-
cording to the theory of quantum physics, when we measure the quantum system
by performing measurements on observables which are Hermitian (or self-adjoint)
matrices, the measurement outcomes for each observable are real eigenvalues of
the observable, and the probability of observing a particular eigenvalue is equal
to the trace of the product of the density matrix and the projection matrix onto
the eigen-space corresponding to the eigenvalue, with the expected measurement
outcome equal to the trace of the product of the density matrix and the observable.
Taking advantage of the connection Gross et al. (2010) has applied matrix com-
pletion methods with nuclear norm penalization to quantum state tomography for
reconstructing low rank density matrices. As trace regression and quantum state
tomography share the common goal of recovering the same matrix parameter, we
naturally treat them as two statistical models in the Le Cam paradigm and study
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their asymptotic equivalence via Le Cam’s deficiency distance. Here equivalence
means that each statistical procedure for one model has a corresponding equal-
performance statistical procedure for another model. The equivalence study moti-
vates us to introduce a new fine scale trace regression model. We derive bounds
on the deficiency distances between trace regression and quantum state tomogra-
phy with summarized measurement data and between fine scale trace regression
and quantum state tomography with individual measurement data, and then under
suitable conditions we establish asymptotic equivalence of trace regression and
quantum state tomography for both cases. The established asymptotic equivalence
provides a sound statistical foundation for applying matrix completion procedures
to quantum state tomography under appropriate circumstances. We further ana-
lyze the asymptotic equivalence of trace regression and quantum state tomography
for sparse matrices and low rank matrices. The detailed analyses indicate that the
asymptotic equivalence does not require sparsity nor low rank on matrix param-
eters, and depending on the density matrix class as well as the set of observables
used for performing measurements, sparsity and low rank may or may not make the
asymptotic equivalence easier to achieve. In particular, we show that the Pauli ma-
trices as observables are bad for establishing the asymptotic equivalence for sparse
matrices and low rank matrices; and for certain class of sparse or low rank density
matrices, we can obtain the asymptotic equivalence of quantum state tomography
and trace regression in the ultra high dimension setting where the matrix size of
the density matrices is comparable to or even exceeds the number of the quantum
measurements on the observables.

The rest of paper proceeds as follows. Section 2 reviews trace regression and
quantum state tomography and states statistical models and data structures. We
consider only finite square matrices, since trace regression handles finite matrices,
and density matrices are square matrices. Section 3 frames trace regression and
quantum state tomography with summarized measurements as two statistical ex-
periments in Le Cam paradigm and studies their asymptotic equivalence. Section 4
introduces a fine scale trace regression model to match quantum state tomography
with individual measurements and investigates their asymptotic equivalence. We
illustrate the asymptotic equivalence for sparse density matrix class and low rank
density matrix class in Sections 5 and 6, respectively. We collect technical proofs
in Section 7, with additional proofs of technical lemmas in the Appendix.

2. Statistical models and data structures.

2.1. Trace regression in matrix completion. Suppose that we have n indepen-
dent random pairs (X1, Y1), . . . , (Xn, Yn) from the model

Yk = tr
(
X†

kρ
)+ εk, k = 1, . . . , n,(1)

where tr is matrix trace, † denotes conjugate transpose, ρ is an unknown d by
d matrix, εk are zero mean random errors, and Xk are matrix input variables of
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size d by d . We consider both fixed and random designs. For the random design
case, each Xk is randomly sampled from a set of matrices. In the fixed design case,
X1, . . . ,Xn are fixed matrices. Model (1) is called trace regression and employed in
matrix completion. Matrix input variables Xk are often sparse in a sense that each
Xk has a relatively small number of nonzero entries. Trace regression masks the
entries of ρ through X†

kρ, and each observation Yk is the trace of the masked ρ cor-
rupted by noise εk . The statistical problem is to estimate all the entries of ρ based
on observations (Xk, Yk), k = 1, . . . , n, which is often referred to as noisy matrix
completion. Model (1) and matrix completion are matrix generalizations of a linear
model and sparse signal estimation in compressed sensing. See Candés and Plan
(2009, 2011), Candès and Recht (2009), Candès and Tao (2010), Keshavan, Mon-
tanari and Oh (2010), Koltchinskii, Lounici and Tsybakov (2011), and Negahban
and Wainwright (2011), Koltchinskii (2011) and Rohde and Tsybakov (2011).

Matrix input variables Xk are selected from a matrix set B = {B1, . . . ,Bp},
where Bj are d by d matrices. Below we list some examples of such matrix sets
used in matrix completion.

(i) Let

B = {Bj = e�1e′
�2

, j = (�1 − 1)d + �2,
(2)

j = 1, . . . , p = d2, �1, �2 = 1, . . . , d
}
,

where e� is the canonical basis in Euclid space Rd . In this case, if ρ = (ρab), then
tr(Bjρ) = ρ�1�2 , and the observation Yk is equal to some entry of ρ plus noise εk .
More generally, instead of using single e�1e′

�2
, we may define Bj as the sum of

several e�1e′
�2

, and then tr(Bjρ) is equal to the sum of some entries of ρ.
(ii) Set

B = {Bj , j = 1, . . . , p = d2},(3)

where we identify j with (�1, �2), j = 1, . . . , p, �1, �2 = 1, . . . , d , Bj = e�1e′
�2

for
�1 = �2,

Bj = 1√
2

(
e�1e′

�2
+ e�2e′

�1

)
for �1 < �2

and

Bj =
√−1√

2

(
e�1e′

�2
− e�2e′

�1

)
for �1 > �2.

(iii) For d = 2 define

σ 0 =
(

1 0
0 1

)
, σ 1 =

(
0 1
1 0

)
,

σ 2 =
(

0 −√−1√−1 0

)
, σ 3 =

(
1 0
0 −1

)
,
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where σ 1, σ 2 and σ 3 are called the Pauli matrices. For d = 2b with integer b,
we may use b-fold tensor products of σ 0, σ 1, σ 2 and σ 3 to define general Pauli
matrices and obtain the Pauli matrix set

B = {σ �1 ⊗ σ �2 ⊗ · · · ⊗ σ �b
, (�1, �2, . . . , �b) ∈ {0,1,2,3}b},(4)

where ⊗ denotes tensor product. The Pauli matrices are widely used in quantum
physics and quantum information science.

Matrices in (2) are of rank 1 and have eigenvalues 1 and 0. For matrices in (3),
the diagonal matrices are of rank 1 and have eigenvalues 1 and 0, and the nondi-
agonal matrices are of rank 2 and have eigenvalues ±1 and 0. Pauli matrices in (4)
are of full rank, and except for the identity matrix all have eigenvalues ±1. Denote
by Cd×d the space of all d by d complex matrices and define an inner product
〈〈A1,A2〉〉 = tr(A†

2A1) for A1,A2 ∈ Cd×d . Then both (3) and (4) form orthogonal
bases for all complex Hermitian matrices, and the real matrices in (3) or (4) form
orthogonal bases for all real symmetric matrices.

For the random design case, with B = {Bj , j = 1, . . . , p}, we assume that ma-
trix input variables Xk are independent and sampled from B according to a distri-
bution �(j) on {1, . . . , p},

P(Xk = Bjk
) = �(jk), k = 1, . . . , n, jk ∈ {1, . . . , p}.(5)

The observations from (1) are (Xk, Yk), k = 1, . . . , n, with Xk sampled from
B according to the distribution �(·). For the fixed design case, matrix input
variables X1, . . . ,Xn form a fixed set of matrices, and we assume n = p and
B = {X1, . . . ,Xn} = {B1, . . . ,Bp}. The observations from (1) are (Xk, Yk), k =
1, . . . , n, with deterministic Xk .

2.2. Quantum state and measurements. For a finite-dimensional quantum sys-
tem, we describe its quantum state by a density matrix ρ on d-dimensional com-
plex space Cd , where density matrix ρ is a d by d complex matrix satisfying (1)
Hermitian, that is, ρ is equal to its conjugate transpose; (2) semi-positive definite;
(3) unit trace, that is, tr(ρ) = 1.

Experiments are conducted to perform measurements on the quantum system
and obtain data for studying the quantum system. Common quantum measure-
ments are on some observable M, which is defined as a Hermitian matrix on Cd .
Assume that the observable M has the following spectral decomposition:

M =
r∑

a=1

λaQa,(6)

where λa are r different real eigenvalues of M, and Qa are projections onto the
eigen-spaces corresponding to λa . For the quantum system prepared in a state ρ,
we need a probability space (�, F ,P ) to describe measurement outcomes when
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performing measurements on the observable M. Denote by R the measurement
outcome of M. According to the theory of quantum mechanics, R is a random
variable on (�, F ,P ) taking values in {λ1, λ2, . . . , λr}, with probability distribu-
tion given by

P(R = λa) = tr(Qaρ), a = 1,2, . . . , r, E(R) = tr(Mρ).(7)

See Holevo (1982), Sakurai and Napolitano (2010), Shankar (1994) and Wang
(2012).

Suppose that an experiment is conducted to perform measurements on M inde-
pendently for m quantum systems which are identically prepared in the same quan-
tum state ρ. From the experiment we obtain individual measurements R1, . . . ,Rm,
which are i.i.d. according to distribution (7), and denote their average by N =
(R1 + · · · + Rm)/m.

The following proposition provides a simple multinomial characterization for
the distributions of (R1, . . . ,Rm) and N .

PROPOSITION 2.1. As random variables R1, . . . ,Rm take eigenvalues
λ1, . . . , λr , we count the number of R1, . . . ,Rm taking λa and define the counts
by Ua =∑m

�=1 1(R� = λa), a = 1, . . . , r . Then the counts U1, . . . ,Ur jointly fol-
low the following multinomial distribution:

P(U1 = u1, . . . ,Ur = ur) =
(

m

u1, . . . , ur

)[
tr(Q1ρ)

]u1 · · · [tr(Qrρ)
]ur ,

(8)
r∑

a=1

ua = m

and

N = (R1 + · · · + Rm)/m = (λ1U1 + · · · + λaUa)/m.(9)

We note the difference between the observable M which is a Hermitian matrix
and its measurement result R which is a real-valued random variable. To illustrate
the connection between density matrix ρ and the measurements of M, we assume
that M has d different eigenvalues. As in Artiles, Gill and Guţă (2005), we use the
normalized eigenvectors of M to form an orthonormal basis, represent ρ under the
basis and denote the resulting matrix by (ρ�1�2). Then from (7) we obtain

P(R = λa) = tr(Qaρ) = ρaa, a = 1,2, . . . , d.

That is, with the representation under the eigen basis of M, measurements on single
observable M contain only information about the diagonal elements of (ρ�1�2). No
matter how many measurements we perform on M, we cannot draw any inference
about the off-diagonal elements of (ρ�1�2) based on the measurements on M. We
usually need to perform measurements on enough different observables in order
to estimate the whole density matrix (ρ�1�2). See Artiles, Gill and Guţă (2005),
Barndorff-Nielsen, Gill and Jupp (2003) and Butucea, Guţă and Artiles (2007).
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2.3. Quantum state tomography. In physics literature quantum state tomog-
raphy refers to the reconstruction of a quantum state based on measurements
obtained from quantum systems that are identically prepared under the state.
Statistically it is the problem of estimating the density matrix from the mea-
surements. Suppose that quantum systems are identically prepared in a state ρ,
B = {B1, . . . ,Bp} is a set of observables available to perform measurements, and
each Bj has a spectral decomposition

Bj =
rj∑

a=1

λjaQja,(10)

where λja are rj different real eigenvalues of Bj , and Qja are projections onto the
eigen-spaces corresponding to λja . We select an observable, say Bj ∈ B, and per-
form measurements on Bj for the quantum systems. According to the observable
selection we classify the quantum state tomography experiment as either a fixed
design or a random design. In a random design, we choose an observable at random
from B to perform measurements for the quantum systems, while a fixed design is
to perform measurements on every observable in B for the quantum systems.

Consider the random design case. We sample an observable Mk from B to per-
form measurements independently for m quantum systems, k = 1, . . . , n, where
observables M1, . . . ,Mn are independent and sampled from B according to a dis-
tribution �(j) on {1, . . . , p},

P(Mk = Bjk
) = �(jk), k = 1, . . . , n, jk ∈ {1, . . . , p}.(11)

Specifically we perform measurements on each observable Mk independently
for m quantum systems that are identically prepared under the state ρ, and de-
note by Rk1, . . . ,Rkm the m measurement outcomes and Nk the average of the
m measurement outcomes. The resulting individual measurements are the data
(Mk,Rk1, . . . ,Rkm), k = 1, . . . , n, and the summarized measurements are the pairs
(Mk,Nk), k = 1, . . . , n, where

Nk = (Rk1 + · · · + Rkm)/m,(12)

Rk�, k = 1, . . . , n, � = 1, . . . ,m, are independent, and given Mk = Bjk
for some

jk ∈ {1, . . . , p}, the conditional distributions of Rk1, . . . ,Rkm are given by

P(Rk� = λjka|Mk = Bjk
) = tr(Qjkaρ),

(13)
a = 1, . . . , rjk

, � = 1, . . . ,m, jk ∈ {1, . . . , p},
E(Rk�|Mk = Bjk

) = tr(Bjk
ρ),

(14)
Var(Rk�|Mk = Bjk

) = tr
(
B2

jk
ρ
)− [tr(Bjk

ρ)
]2

.

The statistical problem is to estimate ρ from the individual measurements
(Mk,Rk1, . . . ,Rkm), k = 1, . . . , n, or from the summarized measurements
(M1,N1), . . . , (Mn,Nn).
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For the fixed design case, we take p = n and B = {B1, . . . ,Bn}. We perform
measurements on every observable Mk = Bk ∈ B independently for m quantum
systems that are identically prepared under the state ρ, and denote by Rk1, . . . ,Rkm

the m measurement outcomes and Nk the average of the m measurement out-
comes. The resulting individual measurements are the data (Mk,Rk1, . . . ,Rkm),
k = 1, . . . , n, and the summarized measurements are the pairs (Mk,Nk), k =
1, . . . , n, where Nk is the same as in (12), Rk�, k = 1, . . . , n, � = 1, . . . ,m, are
independent, and the distributions of Rk1, . . . ,Rkm are given by

P(Rk� = λka) = tr(Qkaρ), a = 1, . . . , rk, � = 1, . . . ,m,(15)

E(Rk�) = tr(Mkρ), Var(Rk�) = tr
(
M2

kρ
)− [tr(Mkρ)

]2
.(16)

The statistical problem is to estimate ρ from the individual measurements
(Mk,Rk1, . . . ,Rkm), k = 1, . . . , n, or from the summarized measurements
(M1,N1), . . . , (Mn,Nn).

Because of convenient statistical procedures and fast implementation algo-
rithms, the summarized measurements instead of the individual measurements are
often employed in quantum state tomography [Gross et al. (2010), Koltchinskii
(2011), Nielsen and Chuang (2000)]. However, in Section 4 we will show that
quantum state tomography based on the summary measurements may suffer from
substantial loss of information, and we can develop more efficient statistical infer-
ence procedures by the individual measurements than by the summary measure-
ments.

In order to estimate all d2 − 1 free entries of ρ, we need the quantum state
tomography model identifiable. Suppose that all Bj have exact r distinct eigenval-
ues. The identifiability may require n ≥ (d2 − 1)/(r − 1) (which is at least d + 1)
and m ≥ r −1 for the individual measurements and n ≥ d2 −1 for the summarized
measurements. There is a trade-off between r and m in the individual measurement
case. For large r , we need less observables but more measurements on each ob-
servable, while for small r , we require more observables but less measurements
on each observable. In terms of the total number, mn, of measurement data, the
requirement becomes mn ≥ d2 − 1.

3. Asymptotic equivalence. Quantum state tomography and trace regression
share the common goal of estimating the same unknown matrix ρ, and it is nature
to put them in the Le Cam paradigm for statistical comparison. We compare trace
regression and quantum state tomography in either the fixed design case or the
random design case.

First, we consider the fixed design case. Trace regression (1) generates data
on dependent variables Yk with deterministic matrix input variables Xk , and we
denote by P1,n,ρ the joint distribution of Yk , k = 1, . . . , n. Quantum state tomogra-
phy performs measurements on a fixed set of observables Mk and obtains average
measurements Nk on Mk whose distributions are specified by (12) and (15)–(16),
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and we denote by P2,n,ρ the joint distribution of Nk , k = 1, . . . , n. Both P1,n,ρ and
P2,n,ρ are probability distributions on measurable space (Rn, F n

R), where FR is the
Borel σ -field on R.

Second we consider the random design case. Trace regression (1) generates data
on the pairs (Xk, Yk), k = 1, . . . , n, where matrix input variables Xk are sampled
from B according to the distribution �(j) given by (5). We denote by P1,n,ρ the
joint distribution of (Xk, Yk), k = 1, . . . , n, for the trace regression model. Quan-
tum state tomography yields observations in the form of observables Mk and av-
erage measurement results Nk on Mk , k = 1, . . . , n, where the distributions of
(Mk,Nk) are specified by (11)–(14). We denote by P2,n,ρ the joint distribution
of (Mk,Nk), k = 1, . . . , n, for the quantum state tomography model. Both P1,n,ρ

and P2,n,ρ are probability distributions on measurable space (Bn × Rn, F n
B × F n

R),
where F B consists of all subsets of B.

Denote by 
 a class of semi-positive Hermitian matrices with unit trace. For
trace regression and quantum state tomography, we define two statistical models

P1n = {(X1, G1,P1,n,ρ),ρ ∈ 

}
, P2n = {(X2, G2,P2,n,ρ),ρ ∈ 


}
,(17)

where measurable spaces (Xi , Gi), i = 1,2, are either (Bn × Rn, F n
B × F n

R) for
the random design case or (Rn, F n

R) for the fixed design case. Models P1n

and P2n are called statistical experiments in the Le Cam paradigm. We use Le
Cam’s deficiency distance between P1n and P2n to compare the two models.
Let A be a measurable action space, L: 
 × A → [0,∞) a loss function, and
‖L‖ = sup{L(ρ,a) :ρ ∈ 
,a ∈ A}. For model Pin, i = 1,2, denote by χi a de-
cision procedure and Ri(χi,L,ρ) the risk from using procedure χi when L is
the loss function and ρ is the true value of the parameter. We define deficiency
distance �(P1n, P2n) between P1n and P2n as the maximum of δ(P1n, P2n) and
δ(P2n, P1n), where

δ(P1n, P2n) = inf
χ1

sup
χ2

sup
ρ∈


sup
L:‖L‖=1

∣∣R1(χ1,L,ρ) − R2(χ2,L,ρ)
∣∣

is referred to as the deficiency of P1n with respect to P2n. If �(P1n, P2n) ≤ ε,
then every decision procedure in one of the two experiments P1n and P2n has a
corresponding procedure in another experiment that comes within ε of achieving
the same risk for any bounded loss. Two sequences of statistical experiments P1n

and P2n are called asymptotically equivalent if �(P1n, P2n) → 0, as n → ∞. For
two asymptotic equivalent experiments P1n and P2n, any sequence of procedures
χ1n in model P1n has a corresponding sequence of procedures χ2n in model P2n

with risk differences tending to zero uniformly over ρ ∈ 
 and all loss L with
‖L‖ = 1, and the procedures χ1n and χ2n are called asymptotically equivalent.
See Le Cam (1986), Le Cam and Yang (2000) and Wang (2002).

To establish the asymptotic equivalence of trace regression and quantum state
tomography, we need to lay down technical conditions and make some synchro-
nization arrangement between observables in quantum state tomography and ma-
trix input variables in trace regression.
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(C1) Assume that B = {B1, . . . ,Bp}, and each Bj is a Hermitian matrix with
at most κ distinct eigenvalues, where κ is a fixed integer. Matrix input vari-
ables Xk in trace regression and observables Mk in quantum state tomography are
taken from B. For the fixed design case, we assume p = n, and Xk = Mk = Bk ,
k = 1, . . . , n. For the random design case, Xk and Mk are independently sampled
from B according to distributions �(j) and �(j), respectively, and assume that as
n,p → ∞, nγp → 0, where

γp = max
1≤j≤p

[∣∣∣∣1 − �(j)

�(j)

∣∣∣∣+
∣∣∣∣1 − �(j)

�(j)

∣∣∣∣
]
.(18)

(C2) Suppose that two models P1n and P2n are identifiable. For trace regres-
sion, we assume that (X1, ε1), . . . , (Xn, εn) are independent, and given Xk , εk fol-
lows a normal distribution with mean zero and variance

Var(εk|Xk) = 1

m

{
tr
(
X2

kρ
)− [tr(Xkρ)

]2}
.(19)

(C3) For Bj ∈ B with spectral decomposition (10), j = 1, . . . , p, let

Ij (ρ) = {a : 0 < tr(Qjaρ) < 1,1 ≤ a ≤ rj
}
.(20)

Let c0 and c1 be two fixed constants with 0 < c0 ≤ c1 < 1. Assume for ρ ∈ 
,

c0 ≤ min
a∈Ij (ρ)

tr(Qjaρ) ≤ max
a∈Ij (ρ)

tr(Qjaρ) ≤ c1, j = 1, . . . , p.(21)

REMARK 1. Condition (C1) synchronizes matrices used as matrix input vari-
ables in trace regression and as observables in quantum state tomography so that
we can compare the two models. The synchronization is needed for applying ma-
trix completion methods to quantum state tomography [Gross et al. (2010)]. The
finiteness assumption on κ is due to the practical consideration. Observables in
quantum state tomography and matrix input variables in trace regression are often
of large size. Mathematically the numbers of their distinct eigenvalues could grow
with the size, however, in practice matrices with a few distinct eigenvalues are
usually chosen as observables to perform measurements in quantum state tomog-
raphy and as matrix input variables to mask the entries of ρ in matrix completion
[Candès and Recht (2009), Gross (2011), Gross et al. (2010), Koltchinskii (2011),
Koltchinskii, Lounici and Tsybakov (2011), Nielsen and Chuang (2000), Recht
(2011), Rohde and Tsybakov (2011)]. Condition (C2) is to match the variance of
Nk in quantum state tomography with the variance of random error εk in trace
regression in order to obtain the asymptotic equivalence, since Nk and Yk always
have the same mean. Regarding condition (C3), from (8)–(9) and (12)–(16) we
may see that each Nk is determined by the counts of random variables Rk� taking
eigenvalues λja , and the counts jointly follow a multinomial distribution with pa-
rameters of m trials and cell probabilities tr(Qjaρ), a = 1, . . . , rj . Condition (C3)
is to ensure that the multinomial distributions (with uniform perturbations) can be



2472 Y. WANG

well approximated by multivariate normal distributions so that we can calculate
the Hellinger distance between the distributions of Nk (with uniform perturba-
tions) in quantum state tomography and the distributions of εk in trace regression
and thus establish the asymptotic equivalence of quantum state tomography and
trace regression. Index Ij (ρ) in (20) is to exclude all the cases with tr(Qjaρ) = 0
or tr(Qjaρ) = 1, under which measurement results on Bj are certain, either never
yielding measurement results λja or always yielding results λja , and their contri-
butions to Nk are deterministic and can be completely separated out from Nk . See
further details in Remark 4 below and the proofs of Theorems 1 and 2 in Section 7.

The following theorem provides bounds on deficiency distance �(P1n, P2n)

and establishes the asymptotic equivalence of trace regression and quantum state
tomography under the fixed or random designs.

THEOREM 1. Assume that conditions (C1)–(C3) are satisfied.

(a) For the random design case, we have

�(P1n, P2n) ≤ nγp + C

(
nζp

m

)1/2
,(22)

where C is a generic constant depending only on (κ, c0, c1), integer κ and con-
stants (c0, c1) are, respectively, specified in conditions (C1) and (C3), γp is defined
in (18), and ζp is given by

ζp = max
ρ∈


{ p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
)
,

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ 1.(23)

In particular, if �(j) = �(j) = 1/p for j = 1, . . . , p, then

�(P1n, P2n) ≤ C

(
nζp

m

)1/2
,(24)

where now ζp can be simplified as

ζp = max
ρ∈


{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ 1.(25)

(b) For the fixed design case, we have

�(P1n, P2n) ≤ C

(
nζp

m

)1/2
,(26)

where C is the same as in (a), and ζp is given by (25).
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REMARK 2. Theorem 1 establishes bounds on the deficiency distance be-
tween trace regression and quantum state tomography. If the deficiency distance
bounds in (22), (24) and (26) go to zero, trace regression and quantum state tomog-
raphy are asymptotically equivalent under the corresponding cases. ζp defined in
(23) and (25) has an intuitive interpretation as follows. Proposition 2.1 shows that
each observable corresponds to a multinomial distribution in quantum state to-
mography. Of the p multinomial distributions in quantum state tomography, ζp is
the maximum of the average fraction of the nondegenerate multinomial distribu-
tions (i.e., with at least two cells). As we discussed in Remark 1, the multinomial
distributions have cell probabilities tr(Qjaρ), a = 1, . . . , rj . Since for each Bj ,
tr(Qjaρ) is the trace of the density matrix ρ restricted to the corresponding eigen-
space, and

∑rj
a=1 tr(Qjaρ) = tr(ρ) = 1, thus if |Ij (ρ)| ≥ 2, ρ cannot live on any

single eigen-space corresponding to one eigenvalue of Bj ; otherwise measurement
results on Bj are certain, and the corresponding multinomial and normal distribu-
tions are reduced to the same degenerate distribution and hence are always equiva-
lent. Therefore, to bound the deficiency distance between quantum state tomogra-
phy and trace regression we need to consider only the nondegenerate multinomial
distributions, and thus ζp appears in all the deficiency distance bounds. Since ζp is
always bounded by 1, from Theorem 1 we have that if n/m → 0, the two models
are asymptotically equivalent. As we will see in Sections 5 and 6, depending on
density matrix class 
 as well as the matrix set B, ζp may or may not go to zero,
and we will show that if it approaches to zero, we may have asymptotic equiva-
lence in ultra-high dimensions where d may be comparable to or exceed m.

REMARK 3. The asymptotic equivalence results indicate that we may apply
matrix completion methods to quantum state tomography by substituting (Mk,Nk)

from quantum state tomography for (Xk, Yk) from trace regression. For example,
suppose that B is an orthonormal basis and ρ has an expansion ρ = ∑j αj Bj

with αj = tr(ρBj ). For trace regression, we may estimate αj by the average of
those Yk with corresponding Xk = Bj . Replacing (Xk, Yk) from trace regression
by (Mk,Nk) from quantum state tomography we construct an estimator of αj by
taking the average of those Nk with corresponding Mk = Bj . In fact, the resulting
estimator based on Nk can be naturally derived from quantum state tomography.
From (7), (14) and (16), we have αj = tr(ρBj ) = E(R), where R is the outcome
of measuring Bj , and hence it is natural to estimate αj by the average of quan-
tum measurements Rk� with corresponding Mk = Bj . As statistical procedures
and fast algorithms are available for trace regression, these statistical methods and
computational techniques can be easily used to implement quantum state tomogra-
phy based on the summarized measurements [Gross et al. (2010) and Koltchinskii
(2011)].

4. Fine scale trace regression. In Section 3 for quantum state tomography
we define P2,n,ρ and P2n in (17) based on the average measurements Nk , and the
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asymptotic equivalence results show that trace regression matches quantum state
tomography with the summarized measurements (Mk,Nk), k = 1, . . . , n. We may
use individual measurements Rk1, . . . ,Rkm instead of their averages Nk [see (12)–
(16) for their definitions and relationships], and replace P2,n,ρ in (17) by the joint
distribution, Q2,n,ρ , of (Mk,Rk1, . . . ,Rkm), k = 1, . . . , n, for the random design
case [or (Rk1, . . . ,Rkm), k = 1, . . . , n, for the fixed design case] to define a new
statistical experiment for quantum state tomography with the individual measure-
ments,

Q2n = {(X2, G2,Q2,n,ρ),ρ ∈ 

}
,(27)

where measurable space (X2, G2) is either (Bn × Rmn, F n
B × F mn

R ) for the random
design case or (Rmn, F mn

R ) for the fixed design case.
In general, P1n and Q2n may not be asymptotically equivalent. As individ-

ual measurements Rk1, . . . ,Rkm may contain more information than their aver-
age Nk , Q2n may be more informative than P2n, and hence δ(Q2n, P2n) = 0
but δ(P2n, Q2n) may be bounded away from zero. As a consequence, we may
have δ(Q2n, P1n) goes to zero but δ(P1n, Q2n) and �(P1n, Q2n) are bounded
away from zero. For the special case of κ = 2 where all Bj have at most
two distinct eigenvalues such as Pauli matrices in (4), Nk are sufficient statis-
tics for the distribution of (Rk1,Rk2), and hence P2n and Q2n are equivalent,
that is, �(P2n, Q2n) = 0, �(P1n, P2n) = �(P1n, Q2n), and P1n and Q2n can
still be asymptotically equivalent. In summary, generally trace regression can be
asymptotically equivalent to quantum state tomography with summarized mea-
surements but not with individual measurements. In fact, the individual measure-
ments (Rk1, . . . ,Rkm), k = 1, . . . , n, from quantum state tomography contain in-
formation about tr(Qjaρ), a = 1, . . . , rj , while observations Yk , k = 1, . . . , n,
from trace regression have information only about tr(Bjρ). From (10) we get
tr(Bjρ) = ∑rj

a=1 λja tr(Qjaρ), so the individual measurements (Rk1, . . . ,Rkm)

from quantum state tomography may be more informative than observations Yk

from trace regression for statistical inference of ρ. To match quantum state to-
mography with individual measurements, we may introduce a fine scale trace re-
gression model and treat trace regression (1) as a coarse scale model aggregated
from the fine scale model as follows. Suppose that matrix input variable Xk has
the following spectral decomposition:

Xk =
rX
k∑

a=1

λX
kaQX

ka,(28)

where λX
ka are rX

k real distinct eigenvalues of Xk , and QX
ka are the projections

onto the eigen-spaces corresponding to λX
ka . The fine scale trace regression model

assumes that observed random pairs (QX
ka, yka) obey

yka = tr
(
QX

kaρ
)+ zka, k = 1, . . . , n, a = 1, . . . , rX

k ,(29)
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where zka are random errors with mean zero.
Models (1) and (29) are trace regression at two different scales and connected

through (28) and the following aggregation relations:

Yk =
rX
k∑

a=1

λX
kayka, εk =

rX
k∑

a=1

λX
kazka, tr(Xkρ) =

rX
k∑

a=1

λX
ka tr
(
QX

kaρ
)
.(30)

The fine scale trace regression model specified by (29) matches quantum state
tomography with the individual measurements (Mk,Rk1, . . . ,Rkm), k = 1, . . . , n.
Indeed, as (28) indicates a one to one correspondence between Xk and {λX

ka,QX
ka ,

a = 1, . . . , rX
k }, we replace Yk by (yk1, . . . , ykrX

k
) and P1,n,ρ in (17) by the joint

distribution, Q1,n,ρ , of (Xk, yk1, . . . , ykrX
k
), k = 1, . . . , n, for the random design

case [or (yk1, . . . , ykrX
k
), k = 1, . . . , n, for the fixed design case], and define the

statistical experiment for fine scale trace regression (29) as follows:

Q1n = {(X1, G1,Q1,n,ρ),ρ ∈ 

}
,(31)

where measurable space (X1, G1) is either (Bn × Rmn, F n
B × F mn

R ) for the random
design case or (Rmn, F mn

R ) for the fixed design case.
To study the asymptotic equivalence of fine scale trace regression and quantum

state tomography with individual measurements, we need to replace condition (C2)
by a new condition for fine scale trace regression:

(C2∗) Suppose that two models Q1n and Q2n are identifiable. For fine scale
trace regression (29), random errors (zk1, . . . , zkrX

k
), k = 1, . . . , n, are independent,

and given Xk , (zk1, . . . , zkrX
k
)′ is a multivariate normal random vector with mean

zero and for a, b = 1, . . . , rX
k , a �= b,

Var(zka|Xk) = 1

m
tr
(
QX

kaρ
)[

1 − tr
(
QX

kaρ
)]

,

(32)

Cov(zka, zkb|Xk) = − 1

m
tr
(
QX

kaρ
)

tr
(
QX

kbρ
)
.

We provide bounds on �(Q1n, Q2n) and establish the asymptotic equivalence of
Q1n and Q2n in the following theorem.

THEOREM 2. Assume that conditions (C1), (C2∗) and (C3) are satisfied.

(a) For the random design case, we have

�(Q1n, Q2n) ≤ nγp + C

(
nζp

m

)1/2
,(33)

where as in Theorem 1, C is a generic constant depending only on (κ, c0, c1),
integer κ and constants (c0, c1) are, respectively, specified in conditions (C1)
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and (C3), and γp and ζp are given by (18) and (23), respectively. In particular,
if �(j) = �(j) = 1/p for j = 1, . . . , p, then

�(Q1n, Q2n) ≤ C

(
nζp

m

)1/2

,(34)

where ζp is given by (25).
(b) For the fixed design case, we have

�(Q1n, Q2n) ≤ C

(
nζp

m

)1/2

,(35)

where C is the same as in (a), and ζp is given by (25).

REMARK 4. For quantum state tomography we regard summarized measure-
ments and individual measurements as quantum measurements at coarse and fine
scales, respectively. Then Theorems 1 and 2 show that quantum state tomography
and trace regression are asymptotically equivalent at both coarse and fine scales.
Moreover, as measurements at the coarse scale are aggregated from measurements
at the fine scale for both quantum state tomography and trace regression, their
asymptotic equivalence at the coarse scale is a consequence of their asymptotic
equivalence at the fine scale. Specifically, the deficiency distance bounds in (33)–
(35) of Theorem 2 are derived essentially from the deficiency distance between
n independent multinomial distributions in quantum state tomography and their
corresponding multivariate normal distributions in fine scale trace regression, and
the deficiency distance bounds in (22), (24) and (26) of Theorem 1 are the conse-
quences of corresponding bounds in Theorem 2. Fine scale trace regression (29)
and condition (C2∗) indicate that for each k, (yk1, . . . , ykrX

k
) follows a multivariate

normal distribution. From (8) and (13)–(16) we see that given Mk , (Rk1, . . . ,Rkm)

is jointly determined by the counts of Rk1, . . . ,Rkm taking the eigenvalues of Mk ,
and the counts jointly follow a multinomial distribution, with mean and covari-
ance matching with those of m(yk1, . . . , ykrX

k
). To prove Theorems 1 and 2, we

need to derive the Hellinger distances of the multivariate normal distributions and
their corresponding multinomial distributions with uniform perturbations. Carter
(2002) has established a bound on deficiency distance between a multinomial dis-
tribution and its corresponding multivariate normal distribution through the total
variation distance between the multivariate normal distribution and the multino-
mial distribution with uniform perturbation. The main purpose of the multinomial
deficiency bound in Carter (2002) is the asymptotic equivalence study for density
estimation. Consequently, the multinomial distribution in Carter (2002) is allowed
to have a large number of cells, with bounded cell probability ratios, and his proof
techniques are geared up for managing such a multinomial distribution under to-
tal variation distance. Since quantum state tomography involves many indepen-
dent multinomial distributions all with a small number of cells, Carter’s result is
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not directly applicable for proving Theorems 1 and 2, nor his approach suitable
for the current model setting. To show Theorems 1 and 2, we deal with n inde-
pendent multinomial distributions in quantum state tomography by deriving the
Hellinger distances between the perturbed multinomial distributions and the cor-
responding multivariate normal distributions, and then we establish bounds on the
deficiency distance between quantum state tomography and trace regression at the
fine scale. Moreover, from (9), (12) and (30) we derive Nk from the counts of in-
dividual measurements Rk1, . . . ,Rkm for quantum state tomography and Yk from
fine scale observations yka for trace regression by the same aggregation relation-
ship, and (32) implies (19), so bounds on �(P1n, P2n) can be obtained from those
on �(Q1n, Q2n). Thus, Theorem 1 may be viewed as a consequence of Theorem 2.
For more details see the proofs of Theorems 1 and 2 in Section 7.

5. Sparse density matrices. Since all deficiency distance bounds in Theo-
rems 1 and 2 depend on ζp , we further investigate ζp for two special classes of
density matrices: sparse density matrices in this section and low rank density ma-
trices in Section 6.

COROLLARY 1. Denote by 
s a collection of density matrices with at most s

nonzero entries, where s is an integer. Assume that B is selected as basis (3), and
�(j) = �(j) = 1/p. Then

ζp = max
ρ∈
s

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ sd

d
,

where sd is the maximum number of nonzero diagonal entries of ρ over 
s . Fur-
thermore, if conditions (C1), (C2), (C2∗) and (C3) are satisfied, we have

�(P1n, P2n) ≤ C

(
nsd

md

)1/2

, �(Q1n, Q2n) ≤ C

(
nsd

md

)1/2

,

where C is the same generic constant as in Theorems 1 and 2.

REMARK 5. Since p = d2, sd ≤ s, and the deficiency distance bounds in
Corollary 1 are of order [nsd/(md)]1/2, if sd/d goes to zero as d → ∞, we may
have that as m,n,d → ∞, nsd/(md) → 0 and hence the asymptotic equivalence
of quantum state tomography and trace regression, while n/m may not necessarily
go to zero. Thus, even though sparsity is not required in the asymptotic equiva-
lence of quantum state tomography and trace regression, Corollary 1 shows that
with the sparsity the asymptotic equivalence is much easier to achieve. For exam-
ple, consider the case that sd is bounded, and n is of order d2 (suggested by the
bounded κ and the identifiability discussion at the end of Section 2.3). In this case
the deficiency distance bounds in Corollary 1 are of order (d/m)1/2, and we obtain
the asymptotic equivalence of quantum state tomography and trace regression, if
d/m → 0 with an example d = O(m/ logm).
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We illustrate below that the sparse density matrices studied in Corollary 1 have
a sparse representation under basis (3). In general, assume that B is an orthogonal
basis for complex Hermitian matrices. Then every density matrix ρ has a repre-
sentation under the basis B,

ρ =
p∑

j=1

αj Bj ,(36)

where αj are coefficients. We say a density matrix ρ is s-sparse under the basis B,
if the representation (36) of ρ under the basis B has at most s nonzero coeffi-
cients αj . The sparsity definition via representation (36) is in line with the vector
sparsity concept through orthogonal expansion in compressed sensing. It is easy to
see that a density matrix ρ with at most s nonzero entries is the same as that ρ is
s-sparse under basis (3). However, a s-sparse matrix under the Pauli basis (4) may
have more than s nonzero entries. In fact, it may have up to sd nonzero entries.
The following corollary exhibits the different behavior of ζp for sparse density
matrices under the Pauli basis.

COROLLARY 2. Denote by 

p
s the class of all density matrices that are s-

sparse under the Pauli basis, where s is an integer. Assume that B is selected as
the Pauli basis (4), and �(j) = �(j) = 1/p. Then

1 ≥ ζp = max
ρ∈


p
s

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≥ 1 − 1

p
.

Furthermore, if conditions (C1), (C2), (C2∗) and (C3) are satisfied, we have

�(P1n, P2n) ≤ C

(
n

m

)1/2

, �(Q1n, Q2n) ≤ C

(
n

m

)1/2

,

where C is the same generic constant as in Theorems 1 and 2.

REMARK 6. Corollary 1 shows that for sparse matrices under basis (3), as
d → ∞, if sp/d → 0, ζp goes to zero, and hence the sparsity enables us to estab-
lish the asymptotic equivalence of quantum state tomography and trace regression
under weaker conditions on m and n. However, Corollary 2 demonstrates that ζp

does not go to zero for sparse matrices under the Pauli basis. Corollary 1 indicates
that for a density matrix with s nonzero entries, in order to have small sp/d , we
must make its nonzero diagonal entries as less as possible. The Pauli basis is the
worst in a sense that a sparse matrix under the Pauli basis has at least d nonzero en-
tries, and the Pauli basis tends to put many nonzero entries on the diagonal. From
Corollaries 1 and 2 we see that ζp depends on sparsity of the density matrix class,
but more importantly it is determined by how the sparsity is specified by B.
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6. Low rank density matrices. Consider the case of low rank density matri-
ces. Assume density matrix ρ has rank at most r , where r � d . Then ρ has at most
r nonzero eigenvalues, and thus its positive eigenvalues are sparse. The following
corollary derives the behavior of ζp for low rank density matrices and the Pauli
basis.

COROLLARY 3. Denote by 
r the collection of all density matrices ρ with
rank up to r � d . Assume that B is the Pauli basis (4), and �(j) = �(j) = 1/p.
Then

1 ≥ ζp = max
ρ∈
r

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≥ 1 − 1

p
.

Furthermore, if conditions (C1), (C2), (C2∗) and (C3) are satisfied, we have

�(P1n, P2n) ≤ C

(
n

m

)1/2

, �(Q1n, Q2n) ≤ C

(
n

m

)1/2

,

where C is the same generic constant as in Theorems 1 and 2.

We construct a low rank density matrix class and matrix set for which ζp goes
to zero in the following corollary.

COROLLARY 4. Suppose that g1, . . . ,gd form an orthonormal basis in Rd ,
and

B =
{

g�g′
�,

1√
2

(
g�1g′

�2
+ g�2g′

�1

)
,

√−1√
2

(
g�2g′

�1
− g�1g′

�2

)
,

�, �1, �2 = 1, . . . , d, �1 < �2

}
.

Assume that γ � d and r � d are integers. Denote by 
rγ a collection of density
matrices ρ with the form

ρ =
r∑

j=1

ξjUjU
†
j ,(37)

where ξj ≥ 0, ξ1 + · · · + ξr = 1, and Uj are unit vectors in Cd whose real and
imaginary parts are linear combinations of g�1, . . . ,g�k

, 1 ≤ �1, . . . , �k ≤ d and
1 ≤ k ≤ γ . Assume �(j) = �(j) = 1/p. Then

ζp = max
ρ∈
rγ

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ 2rγ (4γ + 1)

p
.

Furthermore, if conditions (C1), (C2), (C2∗) and (C3) are satisfied, we have

�(P1n, P2n) ≤ C

(
nrγ 2

mp

)1/2

, �(Q1n, Q2n) ≤ C

(
nrγ 2

mp

)1/2

,
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where C is the same generic constant as in Theorems 1 and 2.

REMARK 7. It is known that a density matrix of rank up to r has represen-
tation (37), and matrix ρ with representation (37) has rank at most r . Corollary 3
shows that for the class of density matrices with rank at most r , ζp does not go
to zero under the Pauli basis. Corollary 4 constructs a basis B and a subclass of
low rank density matrices, for which ζp can go to zero, and the deficiency distance
bounds are of order [nrγ 2/(mp)]1/2. Since r, γ � d and p = d2, rγ 2/p may go
to zero very fast as d → ∞. As m,n,d → ∞, if nrγ 2/(mp) → 0, we obtain the
asymptotic equivalence of quantum state tomography and trace regression. For ex-
ample, consider the case that r and γ are bounded, and n is of order d2 (suggested
by the bounded κ and the identifiability discussion at the end of Section 2.3). In
this case the deficiency distance bounds in Corollary 4 are of order m−1/2, and
we conclude that if m → ∞, the two models are asymptotically equivalent for any
(n, d) compatible with the model identifiability condition. A particular example is
that n = d2 and d grows exponentially faster than m.

REMARK 8. The low rank condition r � d on a density matrix indicates that
it has a relatively small number of positive eigenvalues, that is, its positive eigen-
values are sparse. We may also explain the condition on the eigenvectors Uj in (37)
via sparsity as follows. Since {g1, . . . ,gd} is an orthonormal basis in Rd , the real
part, Re(Uj ), and imaginary part, Im(Uj ), of Uj have the following expansions
under the basis:

Re(Uj ) =
d∑

�=1

α
j
1�g�, Im(Uj ) =

d∑
�=1

α
j
2�g�,(38)

where α
j
1� and α

j
2� are coefficients. Then a low rank density matrix with repre-

sentation (37) belongs to 
rγ , if for j = 1, . . . , r , {�,αj
1� �= 0} and {�,αj

2� �= 0}
have cardinality at most γ , that is, there are at most γ nonzero coefficients in
the expansions (38). As γ � d , the eigenvectors Uj have sparse representations.
Thus, the subclass 
rγ of density matrices imposes some sparsity conditions on
not only the eigenvalues but also the eigenvectors of its members. In fact, Witten,
Tibshirani and Hastie (2009) indicates that we need some sparsity on both eigen-
values and eigenvectors for estimating large matrices. An important class of quan-
tum states are pure states, which correspond to density matrices of rank one. In
order to have a pure state in 
rγ , its eigenvector U1 corresponding to eigen-
value 1 must be a liner combination of at most γ basis vectors g�. Such a re-
quirement can be met for a large class of pure states through the selection of
proper γ and suitable bases in Rd . It is interesting to see that matrices themselves
in 
rγ of Corollary 4 may not be sparse. For example, taking g1, . . . ,gd as the
Haar basis in Rd [see Vidakovic (1999)], we obtain that rank one matrix ρ =
(1,1, . . . ,1)′(1,1, . . . ,1)/d and rank two matrix ρ = 3(1,1, . . . ,1)′(1,1, . . . ,1)/
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(4d) + (1, . . . ,1,−1, . . . ,−1)′(1, . . . ,1,−1, . . . ,−1)/(4d), which are inside 
rγ

for (r, γ ) = (1,1) and (r, γ ) = (2,2), respectively, but not sparse.

REMARK 9. From Corollaries 1–4, we see that whether ζp goes to zero or
not is largely dictated by B used in the two models. As we discussed in Remarks
5 and 7, for certain classes of sparse or low rank density matrices, ζp goes to
zero, and we can achieve the asymptotic equivalence of quantum state tomogra-
phy and trace regression when d is comparable to or exceeds m. In particular for a
special subclass of low rank density matrices we can obtain the asymptotic equiv-
alence even when d grows exponentially faster than m. We should emphasize that
the claimed asymptotic equivalences in the ultra high dimension setting are under
some sparse circumstances for which ζp goes to zero, that is, of the p multinomial
distributions in the quantum state tomography model, a relatively small number
of multinomial distributions are nondegenerate, and similarly, the trace regression
model as the approximating normal experiment consists of the same small number
of corresponding nondegenerate normal distributions. In other words, the asymp-
totic equivalence in ultra high dimensions may be interpreted as the approximation
of a sparse quantum state tomography model by a sparse Gaussian trace regression
model. This is the first asymptotic equivalence result in ultra high dimensions. It
leads us to speculate that sparse Gaussian experiments may play an important role
in the study of asymptotic equivalence in the ultra high dimension setting.

7. Proofs.

7.1. Basic facts and technical lemmas. We need some basic results about the
Markov kernel method which are often used to bound δ(P2n, P1n) and prove
asymptotic equivalence of P1n and P2n [see Le Cam (1986) and Le Cam and
Yang (2000)]. A Markov kernel K(ω,A) is defined for ω ∈ X2 and A ∈ G1 such
that for a given ω ∈ X2, K(ω, ·) is a probability measure on the σ -field G1, and
for a fixed A ∈ G1, K(·,A) is a measurable function on X2. The Markov ker-
nel maps any P2,n,ρ ∈ P2n into another probability measure [K(P2,n,ρ)](A) =∫

K(ω,A)P2,n,ρ(dω) ∈ P1n. We have the following result:

δ(P2n, P1n) ≤ inf
K

sup
ρ∈


∥∥P1,n,ρ − K(P2,n,ρ)
∥∥

TV,(39)

where the infimum is over all Markov kernels, and ‖ · ‖TV is the total variation
norm.

We often use the Hellinger distance to bound total variation norm and handle
product probability measures. For two probability measures P and Q on a common
measurable space, we define the Hellinger distance

H 2(P,Q) =
∫ ∣∣∣∣
√

dP

dμ
−
√

dQ

dμ

∣∣∣∣
2

dμ,(40)
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where μ is any measure that dominates P and Q, and if P and Q are equivalent,

H 2(P,Q) = 2 − 2EP

[√
dQ

dP

]
,(41)

where EP denotes expectation under P . We have

‖P − Q‖TV ≤ H(P,Q),(42)

and for any event A,

H 2(P,Q) ≤ 2 − 2EP

[
1A

√
dQ

dP

]
= 2P

(
Ac)+ 2EP

[
1A

(
1 −
√

dQ

dP

)]
(43)

≤ 2P
(
Ac)+ EP

[
1A log

dP

dQ

]
,

where the last inequality is from the fact that x − 1 ≥ logx for any x > 0.
Carter (2002) has established an asymptotic equivalence of a multinomial dis-

tribution and its corresponding multivariate normal distribution through bounding
the total variation distance between the multivariate normal distribution and the
multinomial distribution with uniform perturbation. The approach in Carter (2002)
is to break dependence in the multinomial distribution and create independence by
successively conditioning on pairs and thus establish a bound on the total variation
distance of the perturbed multinomial distribution and the multivariate normal dis-
tribution. Carter (2002) works for the multinomial distribution with a large number
of cells, while quantum state tomography involves many independent multinomial
distributions all with a small number of cells. To handle the many small indepen-
dent multinomial distributions for quantum state tomography and prove Theorems
1 and 2, we need to derive the Hellinger distances between the perturbed multino-
mial distributions and multivariate normal distributions instead of total variation
distance. Carter’s approach is geared up for total variation distance and the re-
sult cannot be directly used to prove Theorems 1 and 2. Our approach to proving
Lemma 2 below is to directly decompose a multinomial distribution as products
of conditional distributions and then establish a bound on the Hellinger distance
between the perturbed multinomial distribution and its corresponding multivariate
normal distribution.

Denote by C a generic constant whose value may change from appearance to
appearance. The value of C may depends on fixed constants (κ, c0, c1) given by
conditions (C1) and (C3) but is free of (m,n, d,p) and individual ρ.

First, we describe a known result between binomial and normal distributions
[see Carter (2002), B2 of the Appendix].

LEMMA 1. Suppose that P is a binomial distribution Bin(m, θ) with θ ∈
(0,1), and Q is a normal distribution with mean mθ and variance mθ(1 − θ).
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Let P ∗ be the convolution distribution of P and an independent uniform distribu-
tion on (−1/2,1/2). Then

P ∗(Ac)≤ exp
(−Cm1/3), EP ∗

[
1(A) log

dP ∗

dQ

]
≤ C

mθ(1 − θ)
,

where A = {|U − mθ | ≤ m[θ(1 − θ)]2/3}, and random variable U has the distri-
bution P .

We give bounds on the Hellinger distances between the perturbed multinomial
distributions and their corresponding multivariate normal distributions in next two
lemmas whose proofs are collected in the Appendix.

LEMMA 2. Suppose that P is a multinomial distribution M(m, θ1, . . . , θr),
where r ≥ 2 is a fixed integer,

θ1 + · · · + θr = 1, c0 ≤ min(θ1, . . . , θr) ≤ max(θ1, . . . , θr) ≤ c1

and 0 < c0 ≤ c1 < 1 are two fixed constants. Denote by Q the multivariate nor-
mal distribution whose mean and covariance are the same as P . Let P ∗ be the
convolution of the distribution P and the distribution of (ψ1, . . . ,ψr), where
ψ1, . . . ,ψr−1 are independent and follow a uniform distribution on (−1/2,1/2),
and ψr = −ψ1 − · · · − ψr−1. Then

H
(
P ∗,Q

)≤ r2 exp
(−Cm1/3)+ Cr√

m
.

LEMMA 3. Suppose that for k = 1, . . . , n, Pk is a multinomial distribution
M(m, θk1, . . . , θkνk

), where νk ≤ κ , κ is a fixed integer, θk1 + · · · + θkνk
= 1, and

for constants c0 and c1,

0 < c0 ≤ min(θk1, . . . , θkνk
) ≤ max(θk1, . . . , θkνk

) ≤ c1 < 1.

Denote by Qk the multivariate normal distribution whose mean and covariance
are the same as Pk . If νk ≥ 2, following the same way as in Lemma 2 we define P ∗

k

as the convolution of Pk and an independent uniform distribution on (−1/2,1/2),
and if νk ≤ 1 let P ∗

k = Pk . Assume that Pk,P
∗
k ,Qk for different k are independent,

and define product probability measures

P =
n∏

k=1

Pk, P ∗ =
n∏

k=1

P ∗
k , Q =

n∏
k=1

Qk.

Then we have

H 2(P ∗,Q
)≤ Cκ2

m

n∑
k=1

1(νk ≥ 2).
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We need the following lemma on total variation distance of two joint distribu-
tions whose proof is in the Appendix.

LEMMA 4. Suppose that U1 and V1 are discrete random variables, and
random variables (U1,U2) and (V1,V2) have joint distributions F and G, re-
spectively. Let F(u1, u2) = F1(u1) × F2|1(u2|u1) and G(v1, v2) = G1(v1) ×
G2|1(v2|v1), where F1 and G1 are the respective marginal distributions of U1
and V1, and F2|1 and G2|1 are the conditional distributions of U2 given U1 and
V2 given V1, respectively. Then

‖F − G‖TV ≤ max
x

∣∣∣∣1 − P(U1 = x)

P (V1 = x)

∣∣∣∣
(44)

+ EF1

[∥∥F2|1(·|U1) − G2|1(·|V1)
∥∥

TV|U1 = V1
]
,

where EF1 denotes expectation under F1, ‖F2|1(·|U1)−G2|1(·|V1)‖TV denotes the
total variation norm of the difference of the two conditional distributions F2|1 and
G2|1, and the value of the second term on the right-hand side of (44) is clearly
specified as follows:

EF1

[∥∥F2|1(·|U1) − G2|1(·|V1)
∥∥

TV|U1 = V1
]

=∑
x

∥∥F2|1(·|x) − G2|1(·|x)
∥∥

TVP(U1 = x).

7.2. Proofs of Theorems 1 and 2.

PROOF OF THEOREM 1. Denote by Pk
1,n,ρ the distribution of (Xk, Yk) and

Pk
2,n,ρ the distribution of (Mk,Nk), k = 1, . . . , n. For different k, (Xk, Yk) from

trace regression are independent, and (Mk,Nk) from quantum state tomography
are independent, so Pk

1,n,ρ and Pk
2,n,ρ for different k are independent, and

P1,n,ρ =
n∏

k=1

Pk
1,n,ρ, P2,n,ρ =

n∏
k=1

Pk
2,n,ρ,(45)

where P1,n,ρ and P2,n,ρ are given in (17).
Suppose that Mk has νk different eigenvalues, and let Uka = ∑m

�=1 1(Rk� =
λka), a = 1, . . . , νk , and Uk = (Uk1, . . . ,Ukνk

)′. Denote by Qk
2,n,ρ the distribution

of (Mk,Uk). If νk ≥ 2, we let Qk∗
2,n,ρ be the distribution of (Mk,U∗

k), where U∗
k =

(U∗
k1, . . . ,U

∗
kνk

)′, U∗
ka is equal to Uka plus an independent uniform random variable

on (−1/2,1/2), a = 1, . . . , νk − 1 and U∗
kνk

= m − U∗
k1 − · · · − U∗

k,νk−1. Note that

Pk
2,n,ρ is the distribution of (Mk,Nk), and

Nk = (Rk1 + · · · + Rkm)/m = (λk1Uk1 + · · · + λkνk
Ukνk

)/m.(46)
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Analog to the expression (46) of Nk in terms of Uk = (Uk1, . . . ,Ukm)′, we define

N∗
k = (λk1U

∗
k1 + · · · + λkνk

U∗
kνk

)
/m,(47)

and denote by Pk∗
2,n,ρ the distribution of (Mk,N

∗
k ). If νk ≤ 1, let Qk∗

2,n,ρ = Qk
2,n,ρ

and Pk∗
2,n,ρ = Pk

2,n,ρ . As Qk
2,n,ρ , Qk∗

2,n,ρ , and Pk∗
2,n,ρ for different k are independent,

define their product probability measures

Q2,n,ρ =
n∏

k=1

Qk
2,n,ρ, Q∗

2,n,ρ =
n∏

k=1

Qk∗
2,n,ρ, P∗

2,n,ρ =
n∏

k=1

Pk∗
2,n,ρ .(48)

Note that, since Uk and (Rk1, . . . ,Rkm) have a one to one correspondence, and
the two statistical experiments formed by the distribution of (Mk,Uk) and the dis-
tribution of (Mk,Rk1, . . . ,Rkm) have zero deficiency distance, without confusion
we abuse the notation Q2,n,ρ by using it here for the joint distribution of (Mk,Uk),
k = 1, . . . , n, as well as in (27) for the joint distribution of (Mk,Rk1, . . . ,Rkm),
k = 1, . . . , n.

Given Mk = Bjk
, let νk = rjk

, and Uk = (Uk1, . . . ,Ukrjk
)′ follows a multinomial

distribution M(m, tr(Qjk1ρ), . . . , tr(Qjkrjk
ρ)), where rj and Qja are defined in

(10), and

E(Uka|Mk = Bjk
) = m tr(Qjkaρ),

Var(Uka|Mk = Bjk
) = m tr(Qjkaρ)

[
1 − tr(Qjkaρ)

]
,

Cov(Uka,Ukb|Mk = Bjk
) = −m tr(Qjkaρ) tr(Qjkbρ),

a �= b, a, b = 1, . . . , rjk
.

Then

E(Nk|Mk = Bjk
) =

rjk∑
a=1

λjka tr(Qjkaρ) = tr(Bjk
ρ) = tr(Mkρ),

Var(Nk|Mk = Bjk
) = 1

m

rjk∑
a=1

λ2
jka

tr(Qjkaρ)
[
1 − tr(Qjkaρ)

]

− 2

m

rjk∑
a=1

rjk∑
b=a+1

λjkaλjkb tr(Qjkaρ) tr(Qjkbρ)

= 1

m

{
tr
(
B2

jk
ρ
)− [tr(Bjk

ρ)
]2}

= 1

m

{
tr
(
M2

kρ
)− [tr(Mkρ)

]2}
.

From (28) and (29), we have that given Xk = Bjk
, rX

k = rjk
, and multivariate

normal random vector Vk = (Vk1, . . . , Vkrjk
)′ = m(yk1, . . . , ykrjk

)′ has conditional
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mean and conditional covariance matching those of Uk = (Uk1, . . . ,Ukrjk
)′. With

Xk = Bjk
we may rewrite (29) and (30) as follows:

Vka = m tr(Qjkaρ) + mzka, a = 1, . . . , rjk
,

(49)

Yk = 1

m

rjk∑
a=1

λkaVka, εk =
rjk∑
a=1

λkazka.

Denote by Qk
1,n,ρ the distribution of (Xk,Vk). Then Qk

1,n,ρ for different k are in-
dependent, and

Q1,n,ρ =
n∏

k=1

Qk
1,n,ρ,(50)

where Q1,n,ρ is the joint distribution of (Xk,Vk1, . . . , VkrX
k
), k = 1, . . . , n. Note

that, since Vk = (Vk1, . . . , Vkrjk
)′ = m(yk1, . . . , ykrjk

)′, and the two statistical ex-
periments formed by the distribution of (Xk,Vk1, . . . , Vkrjk

) and the distribution of
(Xk, yk1, . . . , ykrjk

) have zero deficiency distance, without confusion we abuse the
notation Q1,n,ρ by using it here for the joint distribution of (Xk,Vk1, . . . , VkrX

k
),

k = 1, . . . , n, as well as in (31) for the joint distribution of (Xk, yk1, . . . , ykrX
k
),

k = 1, . . . , n.
Conditional on Mk = Bjk

, for k = 1, . . . , n, if |Ijk
(ρ)| ≤ 1, Qk

1,n,ρ and Qk
2,n,ρ

are the same degenerate distribution; if |Ijk
(ρ)| ≥ 2, Qk

2,n,ρ is a multinomial dis-

tribution with Qk∗
2,n,ρ its uniform perturbation, and Qk

1,n,ρ is a multivariate normal

distribution with mean and covariance matching those of Qk
2,n,ρ . Thus applying

Lemma 3, we obtain that given (X1, . . . ,Xn) = (M1, . . . ,Mn) = (Bj1, . . . ,Bjn),

∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥2
TV ≤ H 2(Q1,n,ρ,Q∗

2,n,ρ

)≤ Cκ2

m

n∑
k=1

1
(∣∣Ijk

(ρ)
∣∣≥ 2
)
,(51)

where the first inequality is due to (42). As (47) and (49) imply that N∗
k and Yk are

the same weighted averages of components of U∗
k and Vk , respectively, P1,n,ρ and

P∗
2,n,ρ are the same respective marginal probability measures of Q1,n,ρ and Q∗

2,n,ρ .
Hence, conditional on (X1, . . . ,Xn) = (M1, . . . ,Mn),∥∥P1,n,ρ − P∗

2,n,ρ

∥∥
TV ≤ ∥∥Q1,n,ρ − Q∗

2,n,ρ

∥∥
TV.(52)

With Xk and Mk are sampled from B according to distributions � and �, respec-
tively, we have∥∥P1,n,ρ − P∗

2,n,ρ

∥∥
TV

≤ max
1≤j≤p

∣∣∣∣1 − �n(j)

�n(j)

∣∣∣∣
+ E�

(
E�

[∥∥P1,n,ρ − P∗
2,n,ρ

∥∥
TV|X1 = M1, . . . ,Xn = Mn

])
(53)
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≤ n max
1≤j≤p

∣∣∣∣1 − �(j)

�(j)

∣∣∣∣
+ E�

(
E�

[∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥
TV|X1 = M1, . . . ,Xn = Mn

])

≤ nγp + Cκ√
m

E�

([
n∑

k=1

1
(∣∣Ijk

(ρ)
∣∣≥ 2
)]1/2)

≤ nγp + Cκ√
m

(
n∑

k=1

E�

[
1
(∣∣Ijk

(ρ)
∣∣≥ 2
)])1/2

≤ nγp + Cκ√
m

(
n∑

k=1

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
))1/2

= nγp + Cκ√
m

(
n

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
))1/2

≤ nγp + Cκ

(
nζp

m

)1/2

,

where the first three inequalities are, respectively, from Lemma 4, (52) and (51),
the fourth inequality is applying Hölder’s inequality, and the fifth inequality is due
the fact that Xk and Mk are the i.i.d. sample from B. Combining (39) and (53), we
obtain

δ(P2n, P1n) ≤ inf
K

sup
ρ∈


∥∥P1,n,ρ − K(P2,n,ρ)
∥∥

TV

≤ sup
ρ∈


∥∥P1,n,ρ − P∗
2,n,ρ

∥∥
TV(54)

≤ nγp + Cκ

(
nζp

m

)1/2

.

To bound δ(P1n, P2n), we employ a round-off procedure to invert the uniform
perturbation used to obtain Q∗

2,n,ρ and P∗
2,n,ρ in (48) [also see Carter (2002),

Section 5]. Specifically let V∗
k = (V ∗

k1, . . . , V
∗
kνk

)′, where V ∗
ka is a random vec-

tor obtained by rounding Vka off to the nearest integer, a = 1, . . . , νk − 1, and
V ∗

kνk
= m−V ∗

k1 −· · ·−V ∗
k,νk−1. Denote by Qk∗

1,n,ρ the distribution of (Xk,V∗
k) and

Pk∗
1,n,ρ the distribution of (Xk, (λk1V

∗
k1 + · · · + λkνk

V ∗
kνk

)/m), and let

Q∗
1,n,ρ =

n∏
k=1

Qk∗
1,n,ρ, P∗

1,n,ρ =
n∏

k=1

Pk∗
1,n,ρ .(55)

It is easy to see that for any integer-valued random variable W ,

round-off of
[
W + uniform(−1/2,1/2)

]= W,
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and thus the round-off procedure inverts the uniform perturbation procedure. De-
note by K0 and K1 the uniform perturbation and the round-off procedure, respec-
tively. Then from (48), (50) and (55) we have

K1(Q1,n,ρ) = Q∗
1,n,ρ, K0(Q2,n,ρ) = Q∗

2,n,ρ,
(56)

K1
[
K0(Q2,n,ρ)

]= K1
[
Q∗

2,n,ρ

]= Q2,n,ρ .

From (56), we show that conditional on (X1, . . . ,Xn) = (M1, . . . ,Mn),∥∥Q∗
1,n,ρ − Q2,n,ρ

∥∥
TV = ∥∥K1(Q1,n,ρ) − K1

[
K0(Q2,n,ρ)

]∥∥
TV

= ∥∥K1
[
Q1,n,ρ − K0(Q2,n,ρ)

]∥∥
TV

(57)
≤ ∥∥Q1,n,ρ − K0(Q2,n,ρ)

∥∥
TV

= ∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥
TV,

which is bounded by (51). Using the same arguments for showing (52) and (53)
we derive from (51) and (57) the following result:∥∥P∗

1,n,ρ − P2,n,ρ

∥∥
TV

≤ n max
1≤j≤p

∣∣∣∣1 − �(j)

�(j)

∣∣∣∣+ Cκ√
m

(
n

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
))1/2

(58)

≤ nδp + Cκ

(
nζp

m

)1/2

,

and applying (39) we conclude

δ(P1n, P2n) ≤ inf
K

sup
ρ∈


∥∥K(P1,n,ρ) − P2,n,ρ

∥∥
TV

≤ sup
ρ∈


∥∥P∗
1,n,ρ − P2,n,ρ

∥∥
TV(59)

≤ nδp + Cκ

(
nζp

m

)1/2

.

Collecting together the deficiency bounds in (54) and (59) we establish (22) to
bound the deficiency distance �(P1n, P2n) for the random design case. For the
special case of �(j) = �(j) = 1/p, γp = 0 and

ζp = max

{ p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
)
,

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
)}

= 1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)
.



QUANTUM STATE TOMOGRAPHY AND NOISY MATRIX COMPLETION 2489

The result (24) follows. �

For the fixed design case, the arguments for proving (26) are the same except
for now we simply combine (51), (52) and (57) but no need for (53) and (58).

PROOF OF THEOREM 2. The proof of Theorem 1 has essentially established
Theorem 2. All we need is to modify the arguments as follows. As in the derivation
of (53) we apply Lemma 4 directly to Q1,n,ρ and Q∗

2,n,ρ and use (51) to get∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥
TV

≤ max
1≤j≤p

∣∣∣∣1 − �n(j)

�n(j)

∣∣∣∣
+ E�

(
E�

[∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥
TV|X1 = M1, . . . ,Xn = Mn

])

≤ nγp + Cκ

(
nζp

m

)1/2

,

and then we obtain, instead of (54), the following result:

δ(Q2n, Q1n) ≤ inf
K

sup
ρ∈


∥∥Q1,n,ρ − K(Q2,n,ρ)
∥∥

TV

≤ sup
ρ∈


∥∥Q1,n,ρ − Q∗
2,n,ρ

∥∥
TV(60)

≤ nγp + Cκ

(
nζp

m

)1/2

.

As in the derivation of (58), we apply Lemma 4 to Q∗
1,n,ρ and Q2,n,ρ and use (51)

and (57) to get∥∥Q∗
1,n,ρ − Q2,n,ρ

∥∥
TV ≤ n max

1≤j≤p

∣∣∣∣1 − �(j)

�(j)

∣∣∣∣
+ Cκ√

m

(
n

p∑
j=1

�(j)1
(∣∣Ij (ρ)

∣∣≥ 2
))1/2

≤ nδp + Cκ

(
nζp

m

)1/2

,

and then we obtain, instead of (59), the following result:

δ(Q1n, Q2n) ≤ inf
K

sup
ρ∈


∥∥K(Q1,n,ρ) − Q2,n,ρ

∥∥
TV

≤ sup
ρ∈


∥∥Q∗
1,n,ρ − Q2,n,ρ

∥∥
TV(61)

≤ nδp + Cκ

(
nζp

m

)1/2

.
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Putting together the deficiency bounds in (60) and (61) we establish (33) to bound
the deficiency distance �(Q1n, Q2n) for the random design case. �

7.3. Proofs of corollaries. To prove corollaries, from Theorems 1 and 2 we
need to show the given bounds on ζp and then substitute them into (24) and (34).
Below we will derive ζp for each case.

PROOF OF COROLLARY 1. We first analyze the eigen-structures of basis ma-
trices given by (3). For diagonal basis matrix Bj with 1 on (�, �) entry and 0 else-
where, its eigenvalues are 1 and 0. Corresponding to eigenvalue 1, the eigenvector
is e�, and corresponding to eigenvalue 0, the eigen-space is the orthogonal com-
plement of span{e�}. Denote by Qj0 and Qj1 the projections on the eigen-spaces
corresponding to eigenvalues 0 and 1, respectively.

For real symmetric nondiagonal Bj with 1/
√

2 on (�1, �2) and (�2, �1) entries
and 0 elsewhere, the eigenvalues are 1, −1 and 0. Corresponding to eigenval-
ues ±1, the eigenvectors are (e�1 ± e�2)/

√
2, respectively, and corresponding to

eigenvalue 0, the eigen-space is the orthogonal complement of span{e�1 ± e�2}.
Denote by Qj0, Qj1 and Qj,−1 the projections on the eigen-spaces corresponding
to eigenvalues 0, 1 and −1, respectively.

For imaginary Hermitian Bj with −√−1/
√

2 on (�1, �2) entry,
√−1/

√
2 on

(�2, �1) entry and 0 elsewhere, the eigenvalues are 1, −1 and 0. Correspond-
ing to eigenvalues ±1, the eigenvector are (e�1 ± √−1e�2)/

√
2, respectively, and

corresponding to eigenvalue 0, the eigen-space is the orthogonal complement of
span{e�1 ± √−1e�2}. Denote by Qj0, Qj1 and Qj,−1 the projections on the eigen-
spaces corresponding to eigenvalues 0, 1 and −1, respectively.

For diagonal Bj with 1 on (�, �) entry, it is a binomial case,

tr(ρQj0) = 1 − tr(ρQj1), tr(ρQj1) = e′
�ρe� = ρ��

and ∣∣Ij (ρ)
∣∣= 2 · 1

(
0 < tr(ρQj1) < 1

)+ 1
(
tr(ρQj1) = 1

)+ 1
(
tr(ρQj1) = 0

)
.

In order to have |Ij (ρ)| ≥ 2, we need tr(ρQj1) = ρ�� ∈ (0,1). Since ρ has at most
sd nonzero diagonal entries, among all the d diagonal matrices Bj there are at most
sd of diagonal matrices Bj for which it is possible to have tr(ρQj1) ∈ (0,1) and
thus |Ij (ρ)| ≥ 2.

For nondiagonal Bj , it is a trinomial case,

tr(ρQj0) = 1 − tr(ρQj1) − tr(ρQj,−1),

and tr(ρQj±1) depend on whether Bj is real or complex.
For real symmetric nondiagonal Bj with 1/

√
2 on (�1, �2) and (�2, �1) entries,

tr(ρQj±1) = (e�1 ± e�2)
′ρ(e�1 ± e�2)/2

= (ρ�1�1 + ρ�2�2 ± ρ�1�2 ± ρ�2�1)/2

= 1

2
(1,±1)

(
ρ�1�1 ρ�1�2

ρ�2�1 ρ�2�2

)(
1

±1

)
;
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and for imaginary Hermitian nondiagonal Bj with −√−1/
√

2 on (�1, �2) entry
and

√−1/
√

2 on (�2, �1) entry,

tr(ρQj±1) = (e�1 ± √−1e�2)
†ρ(e�1 ± √−1e�2)/2

= (ρ�1�1 + ρ�2�2 ± √−1ρ�1�2 ∓ √−1ρ�2�1)/2

= 1

2
(1,∓√−1)

(
ρ�1�1 ρ�1�2

ρ�2�1 ρ�2�2

)(
1

±√−1

)
.

As ρ is semi-positive with trace 1, matrix(
ρ�1�1 ρ�1�2

ρ�2�1 ρ�2�2

)

must be semi-positive with trace no more than 1. Of ρ�1�1 and ρ�2�2 , if one of them
is zero, the semi-positiveness implies ρ�1�2 = ρ�2�1 = 0. Thus, the 2 by 2 matrix
has four scenarios:(

ρ�1�1 ρ�1�2

ρ�2�1 ρ�2�2

)
or
(

ρ�1�1 0
0 0

)
or
(

0 0
0 ρ�2�2

)
or
(

0 0
0 0

)
.

For the last three scenarios under both real symmetric and imaginary Hermitian
cases, we obtain

tr(ρQj1) = tr(ρQj,−1) = ρ�1�1/2 or ρ�2�2/2 or 0.

For both real symmetric and imaginary Hermitian cases, in order to have
|Ij (ρ)| ≥ 2 possible, at lease one of ρ�1�1 and ρ�2�2 needs to be nonzero. Since
ρ has at most sd nonzero diagonal entries, among (d2 − d)/2 real symmetric non-
diagonal matrices Bj [or (d2 − d)/2 imaginary Hermitian nondiagonal matrices
Bj ], there are at most dsd − sd(sd + 1)/2 of real symmetric nondiagonal Bj (or
imaginary Hermitian nondiagonal matrices Bj ) for which it is possible to have
tr(ρQj1) ∈ (0,1) or tr(ρQj,−1) ∈ (0,1) and thus |Ij (ρ)| ≥ 2.

Finally, for ρ ∈ 
s , putting together the results on the number of Bj for which
it is possible to have |Ij (ρ)| ≥ 2 in the diagonal, real symmetric and imaginary
Hermitian cases, we conclude

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)≤ dsd − sd(sd + 1) + sd ≤ dsd

and

ζp = max
ρ∈
s

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ sd

d
.

�

PROOF OF COROLLARY 2. The Pauli basis (4) has p = d2 matrices with
d = 2b. We identify index j = 1, . . . , p with (�1, �2, . . . , �b) ∈ {0,1,2,3}b, j = 1
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corresponds to �1 = · · · = �b = 0, and B1 = Id . In two dimensions, Pauli ma-
trices satisfy tr(σ0) = 2, and tr(σ1) = tr(σ2) = tr(σ3) = 0. Consider Bj = σ �1 ⊗
σ �2 ⊗ · · · ⊗ σ �b

. tr(Bj ) = tr(σ �1) tr(σ �2) · · · tr(σ �b
); tr(B1) = d; for j �= 1 [or

(�1, . . . , �b) �= (0, . . . ,0)], tr(Bj ) = 0 and Bj has eigenvalues ±1. Denote by Qj±
the projections onto the eigen-spaces corresponding to eigenvalues ±1, respec-
tively. Then for j �= 1,

Bj = Qj+ − Qj−, B2
j = Qj+ + Qj− = Id, Bj Qj± = ±Q2

j± = ±Qj±,

0 = tr(Bj ) = tr(Qj+) − tr(Qj−), d = tr(Id) = tr(Qj+) + tr(Qj−),

and solving the equations we get

tr(Qj±) = d/2, tr(Bj Qj±) = ± tr(Qj±) = ±d/2, j �= 1.(62)

For j �= j ′, Bj and Bj ′ are orthogonal,

0 = tr(Bj ′Bj ) = tr(Bj ′Qj+) − tr(Bj ′Qj−)

and further if j, j ′ �= 1,

Bj ′Qj+ + Bj ′Qj− = Bj ′(Qj+ + Qj−) = Bj ′,

tr(Bj ′Qj+) + tr(Bj ′Qj−) = tr(Bj ′) = 0,

which imply

tr(Bj ′Qj±) = 0, j �= j ′, j, j ′ �= 1.(63)

For any density matrix ρ with representation (36) under the Pauli basis (4), we
have 1 = tr(ρ) = α1 tr(B1) = dα1 and hence α1 = 1/d . Consider special density
matrices ρ ∈ 
s with expression

ρ = 1

d
Id + β

d
Bj∗,(64)

where β is a real number with |β| < 1, and index j∗ �= 1.
To check if |Ij (ρ)| ≥ 2, we need to evaluate tr(ρQj±) for ρ given by (64),

j = 1, . . . , p.
For j = 1, B1 = Q1+ = Id , and since tr(Bj∗) = 0, we have

tr(ρQ1+) = 1

d
tr(Id) + β

d
tr(Bj∗) = 1.(65)

For j = j∗, from (62) we have tr(Qj∗±) = d/2 and tr(Bj∗Qj∗±) = ±d/2, and thus

tr(ρQj∗±) = 1

d
tr(Qj∗±) + β

d
tr(Bj∗Qj∗±) = 1 ± β

2
∈ (0,1).(66)

For j �= j∗ or 1 [i.e., (�1, . . . , �b) �= (�∗
1, . . . , �

∗
b) or (0, . . . ,0)], from (63) we have

tr(Bj∗Qj±) = 0, and thus

tr(ρQj±) = 1

d
tr(Qj±) + β

d
tr(Bj∗Qj±) = 1

d
tr(Qj±) = 1

2
.(67)
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Equations (65)–(67) immediately show that for ρ given by (64) and j �= 1,
tr(ρQj±) ∈ [(1 − |β|)/2, (1 + |β|)/2], |Ij (ρ)| = 2, and

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)= p − 1,

which implies

max
ρ∈


p
s

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≥ 1 − 1

p
.

�

PROOF OF COROLLARY 3. We use the notation and facts about the Pauli basis
(4) in the proof of Corollary 2: p = d2, d = 2b, and we identify index j = 1, . . . , p

with (�1, �2, . . . , �b) ∈ {0,1,2,3}b. Consider Bj = σ �1 ⊗σ �2 ⊗· · ·⊗σ �b
. For j =

1 [or �1 = · · · = �b = 0], B1 = Id , and for j �= 1 [or (�1, . . . , �b) �= (0, . . . ,0)], Bj

has eigenvalues ±1, Qj± are the projections onto the eigen-spaces corresponding
to eigenvalues ±1, respectively, Bj = Qj+ − Qj−, and Id = Qj+ + Qj−.

Let

e =
√

2/7
[
(
√

3/2,1/2)′ + (
√

3/2,
√−1/2)′

]= (
√

6/7,
√

1/14 +
√

−1/14)′.

Then for � = 0,1,2,3, �� = e†σ �e is equal to 1, 2
√

3/7, 2
√

3/7 and 5/7, respec-
tively. Let U = e⊗b and ρ = UU†. Then ρ is a rank one density matrix, and

tr(ρQj+) + tr(ρQj−) = tr(ρ) = 1,

tr(ρQj+) − tr(ρQj−) = tr(ρBj ) = U†BjU = (e†σ �1e
)× · · · × (e†σ �b

e
)

= ��1 · · ·��b
.

Solving the two equations we obtain tr(ρQj±) = (1 ± ��1 · · ·��b
)/2.

For j �= 1 [or (�1, . . . , �b) �= (0, . . . ,0)], (��1, . . . ,��b
) �= (1, . . . ,1), and 0 ≤

��1 · · ·��b
≤ 5/7, and thus tr(ρQj+) ≥ 1/2 and tr(ρQj−) ≥ 1/7, which immedi-

ately shows that for the given rank one density matrix ρ and j �= 1, |Ij (ρ)| = 2,
and

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)= p − 1,

which implies

max
ρ∈
r

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≥ 1 − 1

p
.

�

PROOF OF COROLLARY 4. Since under g1, . . . ,gd , basis matrices Bj defined
in the corollary have the same behavior as matrix basis (3) under e1, . . . , ed , from
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the proof of Corollary 1 on the eigen-structures of matrix basis (3) we see that
under g1, . . . ,gd , Bj has possible eigenvalues 0 and 1 for diagonal Bj and eigen-
values 0, 1 and −1 for nondiagonal Bj . For the diagonal case, corresponding to
eigenvalue 1, the eigenvector is g�; for the real symmetric nondiagonal case, cor-
responding to eigenvalues ±1, the eigenvectors are (g�1 ± g�2)/

√
2, respectively;

and for the complex Hermitian nondiagonal case, corresponding to eigenvalue ±1,
the eigenvectors are (g�1 ± √−1g�2)/

√
2, respectively. Denote by Qj0, Qj1 and

Qj,−1 the projections on the eigen-spaces corresponding to eigenvalues 0, 1 and
−1, respectively.

For diagonal Bj with j corresponding to (�, �), it is a binomial case,

tr(ρQj0) = 1 − tr(ρQj1), tr(ρQj1) = g′
�ρg� =

r∑
a=1

ξa

∣∣U†
a g�

∣∣2
and ∣∣Ij (ρ)

∣∣= 2 · 1
(
0 < tr(ρQj1) < 1

)+ 1
(
tr(ρQj1) = 1

)
+ 1
(
tr(ρQj1) = 0

)
.

In order to have |Ij (ρ)| ≥ 2 possible, we need tr(ρQj1) ∈ (0,1). Since ρ is gen-
erated by at most r vectors Ua , and for each Ua there are at most 2γ of g� with
U†

a g� �= 0, among all the d diagonal matrices Bj there are at most 2rγ of diagonal
matrices Bj for which it is possible to have tr(ρQj1) ∈ (0,1) and thus |Ij (ρ)| ≥ 2.

For nondiagonal Bj , it is a trinomial case,

tr(ρQj0) = 1 − tr(ρQj1) − tr(ρQj,−1),

and tr(ρQj±1) depend on whether Bj is real or complex.
For real symmetric nondiagonal Bj with j corresponding to (�1, �2),

tr(ρQj±1) = (g�1 ± g�2)
′ρ(g�1 ± g�2)/2 =

r∑
a=1

ξa

∣∣U†
a (g�1 ± g�2)

∣∣2/2;

and for imaginary Hermitian nondiagonal Bj with j corresponding to (�1, �2),

tr(ρQj±1) = (g�1 ± √−1g�2)
†ρ(g�1 ± √−1g�2)/2

=
r∑

a=1

ξa

∣∣U†
a (g�1 ± √−1g�2)

∣∣2/2.

In order to have |Ij (ρ)| ≥ 2 possible, we need tr(ρQj1) ∈ (0,1) or tr(ρQj−1) ∈
(0,1). Since ρ is generated by at most r vectors Ua , and for each Ua there are at
most 2γ number of g� with U†

a g� �= 0, among (d2 − d)/2 real symmetric nondiag-
onal matrices Bj [or (d2 − d)/2 imaginary Hermitian nondiagonal matrices Bj ],
there are at most 4rγ 2 of real symmetric nondiagonal Bj (or imaginary Hermi-
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tian nondiagonal matrices Bj ) for which it is possible to have tr(ρQj1) ∈ (0,1) or
tr(ρQj,−1) ∈ (0,1) and thus |Ij (ρ)| ≥ 2.

Finally, for ρ ∈ 
rγ , combining the results on the number of Bj for which
it is possible to have |Ij (ρ)| ≥ 2 in the diagonal, real symmetric and imaginary
Hermitian cases, we conclude

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)≤ 8rγ 2 + 2rγ,

and

ζp = max
ρ∈
rγ

{
1

p

p∑
j=1

1
(∣∣Ij (ρ)

∣∣≥ 2
)}≤ 2rγ (4γ + 1)

p
.

�

APPENDIX: PROOFS OF LEMMAS 2–4

PROOF OF LEMMA 2. For r = 2, it is the binomial case, and the lemma is a
consequence of (43) and Lemma 1.

For r = 3, write (U1,U2,U3) ∼ P and (V1,V2,V3) ∼ Q. Add independent uni-
forms on (−1/2,1/2) to U1 and U2, denote the resulting random variables by U∗

1
and U∗

2 , respectively, and let U∗
3 = m − U∗

1 − U∗
2 . Then (U∗

1 ,U∗
2 ,U∗

3 ) ∼ P ∗. Note
that U1 + U2 + U3 = U∗

1 + U∗
2 + U∗

3 = V1 + V2 + V3 = m, and U1 and U2 are
equal to the round-offs, [U∗

1 ] and [U∗
2 ], of U∗

1 and U∗
2 , respectively, here round-off

[x] means rounding x off to the nearest integer.
For trinomial random variable (U1,U2,U3) ∼ M(m, θ1, θ2, θ3), we have U1 ∼

Bin(m,β1) = P1, the conditional distribution of U2 given U1: U2|U1 ∼ Bin(m −
U1, β2) = P2, and U3 = m − U1 − U2, where β1 = θ1, β2 = θ2/(θ2 + θ3), β3 =
θ3/(θ2 + θ3). Since θj are between c0 and c1, β2 and β3 are between c0/(c0 + c1)

and c1/(c0 + c1). We have decomposition P = P1P2.
Denote by P ∗

1 the distribution of U∗
1 and P ∗

2 the conditional distribution of U∗
2

given U∗
1 . Then P ∗

1 is the convolution of P1 and an independent uniform distribu-
tion on (−1/2,1/2). Since the added uniforms are independent of Uj , and Uj is
the round-off of U∗

j , the conditional distribution of U∗
2 given U∗

1 is equal to the
conditional distribution of U∗

2 given U1 = [U∗
1 ], which in turn is equal to the con-

volution of P2 and an independent uniform distribution on (−1/2,1/2). We have
decomposition P ∗ = P ∗

1 P ∗
2 .

For trivariate normal random variable (V1,V2,V3) ∼ Q, we have V1 ∼ N(mβ1,

mβ1(1 − β1)) = Q1, the conditional distribution of V2 given V1: V2|V1 ∼ N((m −
V1)β2,m(1 − β1)β2β3) = Q2, and V3 = m − V1 − V2. We have decomposition
Q = Q1Q2.
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As there is a difference in conditional variance between P2 and Q2, we define
V ′

2 ∼ Q′
2 = N((m−V1)β2, (m−V1)β2β3) to match the conditional variance of P2,

and V ′
3 = m − V1 − V ′

2. Simple direct calculations show that given V1,

H 2(Q2,Q
′
2
)≤ 3

2

(
1 − m − V1

m(1 − β1)

)2

.(68)

Note that P ∗ = P ∗
1 P ∗

2 and Q = Q1Q2 are probability measures on {(x1, x2, x3) :
x1 +x2 +x3 = m}. Define probability measures Q1Q

′
2 and P ∗

1 Q′
2 on {(x1, x2, x3) :

x1 + x2 + x3 = m}, where Q1 and P ∗
1 are their respective marginal distributions

of the first component, and Q′
2 is their conditional distribution of the second com-

ponent given the first component. We use Q1Q
′
2 and P ∗

1 Q′
2 to bridge between

P ∗ = P ∗
1 P ∗

2 and Q = Q1Q2. Applying triangle inequality we obtain

H
(
P ∗,Q

)≤ H
(
P ∗,Q1Q

′
2
)+ H

(
Q1Q

′
2,Q
)

≤ H
(
P ∗

1 P ∗
2 ,P ∗

1 Q′
2
)+ H

(
P ∗

1 Q′
2,Q1Q

′
2
)

(69)

+ H
(
Q1Q

′
2,Q1Q2

)
.

Using (40), (43), Lemma 1 and (68) we evaluate the Hellinger distances on the
right-hand side of (69) as follows:

H 2(Q1Q
′
2,Q1Q2

)= ∫ ∣∣∣∣
√

dQ1

dx1

dQ2

dx2
−
√

dQ1

dx1

dQ′
2

dx2

∣∣∣∣
2

dx1 dx2

=
∫

dQ1

∫ ∣∣∣∣
√

dQ2

dx2
−
√

dQ′
2

dx2

∣∣∣∣
2

dx2

= EQ1

[
H 2(Q2,Q

′
2
)]

(70)

≤ EQ1

[
3

2

(
1 − m − V1

m(1 − β1)

)2]

= 3β1

2m(1 − β1)
≤ 3θ1

2m(θ2 + θ3)
≤ C

m
,

where (68) is used to bound H 2(Q2,Q
′
2) and obtain the first inequality

H 2(P ∗
1 Q′

2,Q1Q
′
2
)= ∫ ∣∣∣∣

√
dP ∗

1

dx1
−
√

dQ1

dx1

∣∣∣∣
2

dx1

∫
dQ′

2

=
∫ ∣∣∣∣
√

dP ∗
1

dx1
−
√

dQ1

dx1

∣∣∣∣
2

dx1 = H 2(P ∗
1 ,Q1

)
(71)

≤ exp
(−Cm1/3)+ C

mθ1(1 − θ1)
≤ C

m
,
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where Lemma 1 and (43) are used to bound H 2(P ∗
1 ,Q1) and obtain the first in-

equality

H 2(P ∗
1 P ∗

2 ,P ∗
1 Q′

2
)= ∫ dP ∗

1

∫ ∣∣∣∣
√

dP ∗
2

dx2
−
√

dQ′
2

dx2

∣∣∣∣
2

dx2

= EP ∗
1

[
H 2(P ∗

2 ,Q′
2
)]

(72)

≤ 2 − 2EP ∗
1

{
EP ∗

2

[
1A

√
dP ∗

2

dQ′
2

∣∣∣U1

]}

≤ 2P ∗(Ac)+ EP ∗
1

{
1A1EP ∗

2

[
1A2 log

dP ∗
2

dQ′
2

∣∣∣U1

]}
,

where we use (43) to bound H 2(P ∗
2 ,Q′

2) and obtain the last two inequalities, A =
A1 ∩ A2, and

A1 = {|U1 − mβ1| ≤ [mβ1(1 − β1)
]2/3}

,

A2 = {∣∣U2 − (m − U1)β2
∣∣≤ [(m − U1)β2(1 − β2)

]2/3}
.

We evaluate P ∗(Ac) as follows:

P ∗(Ac)= P
(
Ac

1 ∪ [Ac
2 ∩ A1

])= P
(
Ac

1
)+ P

(
Ac

2 ∩ A1
)

= P1
(
Ac

1
)+ EP

[
1A1P

(
Ac

2|U1
)]

≤ exp
(−Cm1/3)+ EP

[
1A1 exp

(−C{m − U1}1/3)](73)

≤ exp
(−Cm1/3)+ exp

(−C
{
m − mβ1 − [mβ1(1 − β1)

]2/3}1/3)
≤ 2 exp

(−Cm1/3),
where we utilize Lemma 1 to derive P1(A

c
1) and P(Ac

2|U1), and bound m−U1 by
using the fact that on A1, U1 ≤ mβ1 +[mβ1(1−β1)]2/3. Again we apply Lemma 1

to bound EP ∗
2
[1A2 log

dP ∗
2

dQ′
2
|U1] and obtain

EP ∗
1

{
1A1EP ∗

2

[
1A2 log

dP ∗
2

dQ′
2

∣∣∣U1

]}

≤ EP ∗
1

{
1A1

C

(m − U1)β2(1 − β2)

}
(74)

≤ C

(m − mβ1 − [mβ1(1 − β1)]2/3)β2(1 − β2)
≤ C

m
,

where to bound 1/(m − U1) we use the fact that on A1, U1 ≤ mβ1 + [mβ1(1 −
β1)]2/3.

Substituting (73) and (74) into (72) and then combining it with (69)–(71) we
prove that the lemma is true for r = 3.
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Consider the r + 1 case. Write (U1, . . . ,Ur,Ur+1) ∼ P , U1 + · · · + Ur+1 =
m, and decompose P = P1P2 · · ·Pr−1Pr , where U1 ∼ P1 = Bin(m,β1), Pj =
Bin(m − Tj−1, βj ) is the conditional distribution of Uj given U1, . . . ,Uj−1,
Tj = U1 + · · ·+Uj , β1 = θ1, βj = θj /(1 − θ1 − · · ·− θj−1). Since θj are between
c0 and c1, all βj are between c0/(c0 + rc1) and c1/(c0 +c1) that are bounded away
from 0 and 1.

Similarly write (V1, . . . , Vr,Vr+1) ∼ Q, V1 + · · · + Vr+1 = m, and decom-
pose Q = Q1Q2 · · ·Qr−1Qr , where V1 ∼ Q1 = N(mβ1,mβ1(1 −β1)), and Qj =
N((m − Sj−1)βj ,m(θj + · · · + θr+1)βj (1 − βj )) is the conditional distribution of
Vj given V1, . . . , Vj−1, where Sj = V1 + · · · + Vj .

As there are differences in conditional variance between Pj and Qj , we handle
the differences by introducing Q′

j · · ·Q′
r as follows. Given V1, . . . , Vj−1 we define

(V ′
j , . . . , V

′
r , V

′
r+1) ∼ Q′

j · · ·Q′
r , where the conditional distribution of V ′

� given
V1, . . . , Vj−1,V

′
j , . . . , V

′
�−1 is Q′

� = N((m − S′
�−1)β�, (m − S′

�−1)β�(1 − β�)) for
� = j, . . . , r , V ′

r+1 = m − V1 − · · · − Vj−1 − V ′
j − · · · − V ′

r , and S′
� = V1 + · · · +

Vj−1 + V ′
j + · · · + V ′

� . Then given V1, . . . , Vj−1,

H 2(Qj,Q
′
j

)≤ 3

2

(
1 − m − Sj−1

m(θj + · · · + θr+1)

)2

.(75)

Add independent uniforms on (−1/2,1/2) to U1, . . . ,Ur , denote the resulting cor-
responding random variables by U∗

j , and let U∗
r+1 = m − U∗

1 − · · · − U∗
r . Then

(U∗
1 , . . . ,U∗

r+1) ∼ P ∗. Note that U1 +· · ·+Ur+1 = U∗
1 +· · ·+U∗

r+1 = V1 +· · ·+
Vr+1 = m, and Uj is equal to the round-off of U∗

j . Let P ∗ = P ∗
1 P ∗

2 · · ·P ∗
r−1P

∗
r ,

where we denote by P ∗
1 the distribution of U∗

1 and P ∗
j the conditional distribu-

tion of U∗
j given U∗

1 , . . . ,U∗
j−1. Then P ∗

1 is the convolution of P1 and an in-
dependent uniform distribution on (−1/2,1/2). Since the added uniforms are
independent of Uj , and Uj is the round-off of U∗

j , the conditional distribution
of U∗

j given U∗
1 , . . . ,U∗

j−1 is equal to the conditional distribution of U∗
j given

U1 = [U∗
1 ], . . . ,Uj−1 = [U∗

j−1], which in turn is equal to the convolution of Pj

and an independent uniform distribution on (−1/2,1/2).
Note that P ∗ = P ∗

1 · · ·P ∗
r and Q = Q1 · · ·Qr are probability measures on

{(x1, . . . , xr , xr+1) :x1 + · · · + xr+1 = m}. We define probability measures Q1 · · ·
QjQ

′
j+1 · · ·Q′

r and P ∗
1 · · ·P ∗

j−1Q
′
j · · ·Q′

r on {(x1, . . . , xr , xr+1) :x1 + · · · +
xr+1 = m}, j = 2, . . . , r , and use them to bridge between P ∗ and Q. Applying
triangle inequality, we have

H
(
P ∗,Q

)≤ H
(
P ∗,Q1 · · ·Qr−1Q

′
r

)+ H
(
Q1 · · ·Qr−1Q

′
r ,Q
)

≤ H
(
P ∗,Q1 · · ·Qr−2Q

′
r−1Q

′
r

)
+ H
(
Q1 · · ·Qr−2Q

′
r−1Q

′
r ,Q1 · · ·Qr−1Q

′
r

)
+ H
(
Q1 · · ·Qr−1Q

′
r ,Q
)≤ · · ·(76)
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≤ H
(
P ∗,Q1Q

′
2 · · ·Q′

r

)
+

r∑
j=2

H
(
Q1 · · ·Qj−1Q

′
j · · ·Q′

r ,Q1 · · ·QjQ
′
j+1 · · ·Q′

r

)

and

H
(
P ∗,Q1Q

′
2 · · ·Q′

r

)
≤ H
(
P ∗,P ∗

1 · · ·P ∗
r−1Q

′
r

)+ H
(
P ∗

1 · · ·P ∗
r−1Q

′
r ,Q1Q

′
2 · · ·Q′

r

)
≤ H
(
P ∗,P ∗

1 · · ·P ∗
r−1Q

′
r

)+ H
(
P ∗

1 · · ·P ∗
r−1Q

′
r ,P

∗
1 · · ·P ∗

r−2Q
′
r−1Q

′
r

)
(77)

+ H
(
P ∗

1 · · ·P ∗
r−2Q

′
r−1Q

′
r ,Q1Q

′
2 · · ·Q′

r

)
≤ · · · ≤

r∑
j=1

H
(
P ∗

1 · · ·P ∗
j Q′

j+1 · · ·Q′
r ,P

∗
1 · · ·P ∗

j−1Q
′
j · · ·Q′

r

)
.

Substitute (77) into (76) to get

H
(
P ∗,Q

)≤ r∑
j=1

H
(
P ∗

1 · · ·P ∗
j Q′

j+1 · · ·Q′
r ,P

∗
1 · · ·P ∗

j−1Q
′
j · · ·Q′

r

)
(78)

+
r∑

j=2

H
(
Q1 · · ·Qj−1Q

′
j · · ·Q′

r ,Q1 · · ·QjQ
′
j+1 · · ·Q′

r

)
.

Using (40), (43), Lemma 1 and (75) we evaluate the Hellinger distances on the
right-hand side of (78) as follows:

H 2(Q1 · · ·Qj−1Q
′
j · · ·Q′

r ,Q1 · · ·QjQ
′
j+1 · · ·Q′

r

)

=
∫

dQ1 · · ·dQj−1

∫ ∣∣∣∣
√

dQj

dxj

−
√√√√dQ′

j

dxj

∣∣∣∣
2

dxj

∫
dQ′

j+1 · · ·dQ′
r

=
∫

dQ1 · · ·dQj−1

∫ ∣∣∣∣
√

dQj

dxj

−
√√√√dQ′

j

dxj

∣∣∣∣
2

dxj

= EQ1···Qj−1

[
H 2(Qj,Q

′
j

)]
(79)

≤ EQ1···Qj−1

[
3

2

(
1 − m − Sj−1

m(θj + · · · + θr+1)

)2]

= 3(1 − θj − · · · − θr+1)

2m(θj + · · · + θr+1)
≤ 3θ1

2m(θr + θr+1)

≤ C

m
,
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where we use (75) to bound the Hellinger distance H 2(Qj ,Q
′
j ) and obtain the

first inequality

H 2(P ∗
1 · · ·P ∗

j Q′
j+1 · · ·Q′

r ,P
∗
1 · · ·P ∗

j−1Q
′
j · · ·Q′

r

)

=
∫

dP ∗
1 · · ·dP ∗

j−1

∫ ∣∣∣∣
√√√√dP ∗

j

dxj

−
√√√√dQ′

j

dxj

∣∣∣∣
2

dxj

∫
dQ′

j+1 · · ·dQ′
r

=
∫

dP ∗
1 · · ·dP ∗

j−1

∫ ∣∣∣∣
√√√√dP ∗

j

dxj

−
√√√√dQ′

j

dxj

∣∣∣∣
2

dxj

= EP ∗
1 ···P ∗

j−1

[
H 2(P ∗

j ,Q′
j

)]
≤ EP ∗

1 ···P ∗
j−1

(
2P ∗

j

(
Ac

1 ∪ · · · ∪ Ac
j |U1, . . . ,Uj−1

)
(80)

+ 1A1···Aj−1EP ∗
j

[
1Aj

log
P ∗

j

Q′
j

∣∣∣U1, . . . ,Uj−1

])

= 2P ∗(Ac
1 ∪ · · · ∪ Ac

j

)

+ EP ∗
1 ···P ∗

j−1

(
1A1···Aj−1EP ∗

j

[
1Aj

log
P ∗

j

Q′
j

∣∣∣U1, . . . ,Uj−1

])

≤ 2P ∗(Ac
1 ∪ · · · ∪ Ac

j

)+ EP ∗
1 ···P ∗

j−1

(
1A1···Aj−1

C

(m − Tj−1)βj (1 − βj )

)
,

where we use (43) to bound the Hellinger distance H 2(P ∗
j ,Q′

j ) and obtain the first

inequality, we employ Lemma 1 to bound EP ∗
j
[1Aj

log
dP ∗

j

dQ′
j
|U1, . . . ,Uj−1] and get

the last inequality, and for � = 1, . . . , j ,

A� = {∣∣U� − (m−U1 −· · ·−U�−1)β�

∣∣≤ [(m−U1 −· · ·−U�−1)β�(1 −β�)
]2/3}

.

Note that on Aj−1, Uj−1 ≤ (m − Tj−2)βj−1 + [mβj−1(1 − βj−1)]2/3. Then for
j = 1, . . . , r we have on A1 · · ·Aj−1,

m − Tj−1

= m − Tj−2 − Uj−1

≥ (m − Tj−2)(1 − βj−1) − [mβj−1(1 − βj−1)
]2/3

≥ (m − Tj−3)(1 − βj−2)(1 − βj−1)

− (1 − βj−1)
[
mβj−2(1 − βj−2)

]2/3 − [mβj−1(1 − βj−1)
]2/3 ≥ · · ·

≥ m(1 − β1) · · · (1 − βj−1)(81)
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− m2/3
j−1∑
�=1

[
β�(1 − β�)

]2/3
(1 − β�) · · · (1 − βj−1)

≥ Cm

and thus

EP ∗
1 ···P ∗

j−1

(
1A1···Aj−1

C

(m − Tj−1)βj (1 − βj )

)
≤ C

m
.(82)

We evaluate P ∗(Ac
1 ∪ · · · ∪ Ac

j ) as follows:

j⋃
�=1

Ac
� =

j⋃
�=1

(
Ac

�A�−1 · · ·A1
)
,

P ∗
( j⋃

�=1

Ac
�

)
=

j∑
�=1

P ∗(Ac
�A�−1 · · ·A1

)

= P ∗(Ac
1
)+ j∑

�=2

EP ∗
[
1A1···A�−1P

∗(Ac
�|U1, . . . ,U�−1

)]
(83)

≤ exp
[−Cm1/3]+ j∑

�=2

EP ∗
(
1A1···A�−1 exp

[−C(m − T�−1)
1/3])

≤
j∑

�=1

exp
[−Cm1/3]≤ j exp

[−Cm1/3],
where Lemma 1 is employed to bound P ∗(Ac

1) and P ∗(Ac
�|U1, . . . ,U�−1), and we

use (81) to bound m − T�−1.
Plugging (82) and (83) into (80) and combining it together with (78) and (79),

we obtain

H
(
P ∗,Q

)≤ C(r − 1)√
m

+
r∑

j=1

{
2j exp

[−Cm1/3]+ C

m

}1/2

≤ Cr√
m

+ r2 exp
[−Cm1/3],

which proves the lemma for the r + 1 case. �

PROOF OF LEMMA 3. Since Pk,P
∗
k ,Qk for different k are independent, an

application of the Hellinger distance property for product probability measures
[Le Cam and Yang (2000)] leads to

H 2(P ∗,Q
)≤ n∑

k=1

H 2(P ∗
k ,Qk

)
.
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We note that if νk ≤ 1, both Pk and Qk are point mass at m and thus H(Pk,Qk) =
0. Hence,

H 2(P ∗,Q
)≤ n∑

k=1

H 2(P ∗
k ,Qk

)
1(νk ≥ 2).

Applying Lemma 2, we obtain

H 2(P ∗,Q
)≤ n∑

k=1

[
κ4 exp

(−Cm1/3)+ Cκ2

m

]
1(νk ≥ 2).

For m exceeding certain integer m0,

Cκ2

m
≥ κ4 exp

(−Cm1/3)
and hence for m > m0,

H 2(P ∗,Q
)≤ Cκ4

m

n∑
k=1

1(νk ≥ 2).

For m ≤ m0, we may adjust constant C to make the above inequality still holds for
m ≤ m0. �

PROOF OF LEMMA 4.

‖F − G‖TV = ∥∥F1(x) × F2|1(y|x) − G1(x) × G2|1(y|x)
∥∥

TV

≤ ∥∥F1(x) × F2|1(y|x) − F1(x) × G2|1(y|x)
∥∥

TV

+ ∥∥F1(x) × G2|1(y|x) − G1(x) × G2|1(y|x)
∥∥

TV

= ∥∥F1(x)
[
F2|1(y|x) − G2|1(y|x)

]∥∥
TV

+ ∥∥F1(x)G(x, y)/G2(x) − G(x,y)
∥∥

TV,

where ∥∥F1(x)
[
F2|1(y|x) − G2|1(y|x)

]∥∥
TV

= EF1

[∥∥F2|1(·|U1) − G2|1(·|V1)
∥∥

TV|U1 = V1
]
,∥∥F1(x)G(x, y)/G2(x) − G(x,y)

∥∥
TV

= ∥∥[F1(x)/G1(x) − 1
]
G(x,y)

∥∥
TV

≤ max
x

{∣∣∣∣P(U1 = x)

P (V1 = x)
− 1
∣∣∣∣∥∥G(x,y)

∥∥
TV

}
= max

x

∣∣∣∣P(U1 = x)

P (V1 = x)
− 1
∣∣∣∣. �
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BUTUCEA, C., GUŢĂ, M. and ARTILES, L. (2007). Minimax and adaptive estimation of the
Wigner function in quantum homodyne tomography with noisy data. Ann. Statist. 35 465–494.
MR2336856

CANDÈS, E. J. and PLAN, Y. (2009). Matrix completion with noise. Proceedings of the IEEE 98
925–936.

CANDÈS, E. J. and PLAN, Y. (2011). Tight oracle inequalities for low-rank matrix recovery from
a minimal number of noisy random measurements. IEEE Trans. Inform. Theory 57 2342–2359.
MR2809094

CANDÈS, E. J. and RECHT, B. (2009). Exact matrix completion via convex optimization. Found.
Comput. Math. 9 717–772. MR2565240

CANDÈS, E. J. and TAO, T. (2010). The power of convex relaxation: Near-optimal matrix comple-
tion. IEEE Trans. Inform. Theory 56 2053–2080. MR2723472

CARTER, A. V. (2002). Deficiency distance between multinomial and multivariate normal experi-
ments. Ann. Statist. 30 708–730. MR1922539

DONOHO, D. L. (2006). Compressed sensing. IEEE Trans. Inform. Theory 52 1289–1306.
MR2241189

GROSS, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans.
Inform. Theory 57 1548–1566. MR2815834

GROSS, D., LIU, Y.-K., FLAMMIA, S. T., BECKER, S. and EISERT, J. (2010). Quantum state
tomography via compressed sensing. Phys. Rev. Lett. 105 150401.

HOLEVO, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland
Series in Statistics and Probability 1. North-Holland, Amsterdam. MR0681693

KESHAVAN, R. H., MONTANARI, A. and OH, S. (2010). Matrix completion from noisy entries.
J. Mach. Learn. Res. 11 2057–2078. MR2678022

KLOPP, O. (2011). Rank penalized estimators for high-dimensional matrices. Electron. J. Stat. 5
1161–1183. MR2842903

KOLTCHINSKII, V. (2011). Von Neumann entropy penalization and low-rank matrix estimation. Ann.
Statist. 39 2936–2973. MR3012397

KOLTCHINSKII, V., LOUNICI, K. and TSYBAKOV, A. B. (2011). Nuclear-norm penalization and
optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302–2329. MR2906869

LE CAM, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York.
MR0856411

LE CAM, L. and YANG, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts, 2nd ed.
Springer, New York. MR1784901

NEGAHBAN, S. and WAINWRIGHT, M. J. (2011). Estimation of (near) low-rank matrices with noise
and high-dimensional scaling. Ann. Statist. 39 1069–1097. MR2816348

NIELSEN, M. A. and CHUANG, I. L. (2000). Quantum Computation and Quantum Information.
Cambridge Univ. Press, Cambridge. MR1796805

RECHT, B. (2011). A simpler approach to matrix completion. J. Mach. Learn. Res. 12 3413–3430.
MR2877360

ROHDE, A. and TSYBAKOV, A. B. (2011). Estimation of high-dimensional low-rank matrices. Ann.
Statist. 39 887–930. MR2816342

http://www.ams.org/mathscinet-getitem?mr=2136642
http://www.ams.org/mathscinet-getitem?mr=2017871
http://www.ams.org/mathscinet-getitem?mr=2816355
http://www.ams.org/mathscinet-getitem?mr=2336856
http://www.ams.org/mathscinet-getitem?mr=2809094
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=2723472
http://www.ams.org/mathscinet-getitem?mr=1922539
http://www.ams.org/mathscinet-getitem?mr=2241189
http://www.ams.org/mathscinet-getitem?mr=2815834
http://www.ams.org/mathscinet-getitem?mr=0681693
http://www.ams.org/mathscinet-getitem?mr=2678022
http://www.ams.org/mathscinet-getitem?mr=2842903
http://www.ams.org/mathscinet-getitem?mr=3012397
http://www.ams.org/mathscinet-getitem?mr=2906869
http://www.ams.org/mathscinet-getitem?mr=0856411
http://www.ams.org/mathscinet-getitem?mr=1784901
http://www.ams.org/mathscinet-getitem?mr=2816348
http://www.ams.org/mathscinet-getitem?mr=1796805
http://www.ams.org/mathscinet-getitem?mr=2877360
http://www.ams.org/mathscinet-getitem?mr=2816342


2504 Y. WANG

SAKURAI, J. J. and NAPOLITANO, J. (2010). Modern Quantum Mechanics, 2nd ed. Addison-
Wesley, Reading, MA.

SHANKAR, R. (1994). Principles of Quantum Mechanics, 2nd ed. Plenum, New York. MR1343488
VIDAKOVIC, B. (1999). Statistical Modeling by Wavelets. Wiley, New York. MR1681904
WANG, Y. (2002). Asymptotic nonequivalence of Garch models and diffusions. Ann. Statist. 30 754–

783. MR1922541
WANG, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 669–683. MR2840170
WANG, Y. (2012). Quantum computation and quantum information. Statist. Sci. 27 373–394.

MR3012432
WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with

applications to sparse principal components and canonical correlation analysis. Biostatistics 10
515–534.

DEPARTMENT OF STATISTICS

UNIVERSITY OF WISCONSIN–MADISON

1300 UNIVERSITY AVENUE

MADISON, WISCONSIN 53706
USA
E-MAIL: yzwang@stat.wisc.edu

http://www.ams.org/mathscinet-getitem?mr=1343488
http://www.ams.org/mathscinet-getitem?mr=1681904
http://www.ams.org/mathscinet-getitem?mr=1922541
http://www.ams.org/mathscinet-getitem?mr=2840170
http://www.ams.org/mathscinet-getitem?mr=3012432
mailto:yzwang@stat.wisc.edu

	Introduction
	Statistical models and data structures
	Trace regression in matrix completion
	Quantum state and measurements
	Quantum state tomography

	Asymptotic equivalence
	Fine scale trace regression
	Sparse density matrices
	Low rank density matrices
	Proofs
	Basic facts and technical lemmas
	Proofs of Theorems 1 and 2
	Proofs of corollaries

	Appendix: Proofs of Lemmas 2-4
	References
	Author's Addresses

