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Quantum Science and Quantum Technology
Yazhen Wang and Xinyu Song

Abstract. Quantum science and quantum technology are of great current
interest in multiple frontiers of many scientific fields ranging from computer
science to physics and chemistry, and from engineering to mathematics and
statistics. Their developments will likely lead to a new wave of scientific rev-
olutions and technological innovations in a wide range of scientific studies
and applications. This paper provides a brief review on quantum commu-
nication, quantum information, quantum computation, quantum simulation,
and quantum metrology. We present essential quantum properties, illustrate
relevant concepts of quantum science and quantum technology, and discuss
their scientific developments. We point out the need for statistical analysis in
their developments, as well as their potential applications to and impacts on
statistics and data science.
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quantum computation, quantum simulation, quantum annealing, quantum
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1. INTRODUCTION

Quantum science and quantum technology arise from a
synthesis of quantum mechanics, information theory, and
computing. They investigate the preparation and control
of the quantum states of physical systems to generate new
knowledge and technologies for information processing
and transmission, computation, measurement, and funda-
mental understanding in ways that classical approaches
can only do much less efficiently, or not at all. The fields
comprise quantum communication, quantum information,
quantum computation, quantum simulation, and quantum
metrology (also known as quantum sensing), where quan-
tum communication utilizes quantum means to transmit
data in a provably secure way; quantum information de-
scribes the information of the state of a quantum system
and the process of the information by quantum devices;
quantum computation uses quantum effects to speed up
certain calculations dramatically; quantum simulation re-
produces the behavior of hard accessible quantum sys-
tems by manipulating well-controlled quantum systems;
quantum metrology exploits the high sensitivity of coher-
ent quantum systems to external perturbations for enhanc-
ing the performance of measurements of physical quan-
tities. Quantum science and quantum technology differ
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from existing applications of quantum mechanics and in-
formation theory, such as lasers, transistors, MRI, and cur-
rently used classical computers and classical communica-
tion tools, in ways that we utilize distinct quantum phe-
nomena like quantum superposition, entanglement, and
tunneling, which do not have classical counterparts. In the
past two decades, we have made tremendous progress in
the study of quantum science and quantum technology for
harnessing quantum phenomena to advance information
processing and transmission, computation, and measure-
ment.

Quantum science not only establishes a foundation for
gaining a deeper understanding of nature, but also makes
it possible to invent new quantum technology for accom-
plishing tasks that are impossible to achieve by classical
techniques. Here quantum technology refers to technolo-
gies that explicitly deal with individual quantum states
and specifically exploit special quantum properties that
do not have classical analogue. They enable us to build
quantum devices for achieving faster computation, more
secure communication, and better physical measurements
than classical techniques. This article intends to present an
overview of such quantum aspects of science and technol-
ogy, particularly in quantum information, quantum com-
munication, and quantum computation.

The rest of the paper proceeds as follows. Section 2
briefly introduces quantum physics. Section 3 reviews ba-
sic quantum concepts used in quantum science and quan-
tum technology. Sections 4 and 5 discuss quantum com-
munication and quantum information, respectively. Sec-
tion 6 illustrates quantum computation. It covers univer-
sal quantum computing based on the gate (or circuit)
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model, adiabatic quantum computing based on quantum
annealing, and current development on building quan-
tum computers. This section also includes quantum algo-
rithms, quantum simulation, quantum machine learning,
and quantum computational supremacy. Section 7 pro-
vides a short description of quantum metrology. Section 8
features concluding remarks and points out potential ap-
plications of quantum science and quantum technology to
statistics and data science as well as the need of statis-
tics in the development of quantum science and quantum
technology.

2. QUANTUM PHYSICS AND ITS COMPUTATIONAL
POTENTIAL

2.1 Mathematical Concepts and Notations

Unlike the typical literature on quantum mechanics that
adopts technically more complicated concepts and nota-
tions such as operators with a continuous spectrum on
an infinite-dimensional Hilbert space, for simplicity we
choose to use relatively easy finite-dimensional linear al-
gebra for the purpose of discussing quantum science and
quantum technology. Since operators correspond to ma-
trices in the finite dimensional case, we need to deal
with only matrices and their operations such as eigen-
analysis. Denote by R and C, respectively, the sets of all
real numbers and all complex numbers. A simple vector
space is Cd comprising all d-tuples of complex numbers
(z1, . . . , zd). We use Dirac notations |·〉 (which is called
ket) and 〈·| (which is called bra) to show that the objects
are column vectors or row vectors in the vector space, re-
spectively. Denote by superscripts ∗, ′ and † the conjugate
of a complex number, the transpose of a vector or matrix,
and conjugate transpose operation, respectively. For |u〉
and |v〉 in the vector space, we denote their inner product
by 〈u|v〉, which induces a norm ‖u‖ = √〈u|u〉, and a dis-
tance ‖u − v‖ between |u〉 and |v〉. For example, Cd has
a natural inner product

〈u|v〉 =
d∑

j=1

u∗
j vj = (

u∗
1, . . . , u

∗
d

)
(v1, . . . , vd)′,

where 〈u| = (u1, . . . , ud) and |v〉 = (v1, . . . , vd)′. Given a
matrix A = (aij ), we say it is Hermitian if A = A†, and
denote its trace by tr(A) = ∑k

j=1 ajj . A matrix U is said

to be unitary if UU† = U†U = I. For two matrices A1 and
A2, define their commutator [A1,A2] = A1A2 − A2A1.
Denote by ⊗ the tensor product operation of vectors or
matrices. To analyze computer algorithms, we adopt a no-
tation O(h(m)) to denote that the asymptotic scaling of
an algorithm is upper-bounded by a function h(m) of the
input size m, with the notation Õ(h(m)) ignoring loga-
rithmic factors.

2.2 Quantum Physics

Quantum mechanics describes microscopic phenomena
such as the positions and momentums of individual par-
ticles like atoms or electrons, the spins of electrons, the
emissions and absorptions of light by atoms, and the de-
tections of light photons. Unlike classical mechanics that
can precisely measure physical entities like position and
momentum, quantum physics is intrinsically stochastic in
the sense that only a probabilistic prediction can be made
about the results of the measurements performed.

We may describe a quantum system by its state and
the dynamic evolution of the state. A quantum state is of-
ten characterized by a unit complex vector with dynamic
unitary evolution, where the unitary evolution means that
quantum states are connected by unitary matrices, and the
dynamic evolution is governed by a differential equation
called the Schrödinger equation. Specifically, let |ψ(t)〉
be the state of the quantum system at time t (also a wave
function at time t). The states |ψ(t)〉 and |ψ(t + s)〉 at
times t and t + s, respectively, are connected through
|ψ(t + s)〉 = U(s)|ψ(t)〉, where U(s) = exp(−√−1Hs)

is a unitary matrix, and H is a Hermitian matrix on
C

d , which is known as the Hamiltonian of the quan-
tum system. Differentiating both sides of |ψ(t + s)〉 =
exp(−√−1Hs)|ψ(t)〉 with respect to s and letting s go
to 0, we obtain the following Schrödinger equation for
governing the continuous time evolution of |ψ(t)〉:

(2.1)
√−1

∂|ψ(t)〉
∂t

= H
∣∣ψ(t)

〉
.

Note that although the Schrödinger equation is regarded
as somewhat mysterious when it is first encountered, for a
Markov chain in continuous time with a finite state space,
transition probability matrix Pt and Q-matrix Q, we use
exactly the same argument: from Ps+t = PsPt , by differ-
entiation we obtain the Kolmogorov equation ∂Pt

∂t
= QPt ,

which has the solution Pt = exp(Qt)P0.
As an alternative, we can describe a quantum system

by a so-called density matrix. For a d-dimensional quan-
tum system, its quantum state can be characterized by a
density matrix ρ on the d-dimensional complex space Cd ,
where ρ satisfies (1) Hermitian; (2) positive semi-definite;
(3) unit trace. We often classify a quantum state as a pure
state or an ensemble of pure states. A pure state corre-
sponds to a density matrix ρ = |ψ〉〈ψ |, where |ψ〉 is a
unit vector in Cd . An ensemble of pure states has a den-
sity matrix

(2.2) ρ =
J∑

j=1

pj |ψj 〉〈ψj |,

which corresponds to the scenario that the quantum sys-
tem is in one of states |ψj 〉, j = 1, . . . , J , with probability
pj being in the state |ψj 〉. The quantum evolution in the
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density matrix representation can be described as follows.
Let ρ t be the density matrix of the state of the quantum
system at time t . With the unitary matrix U(·) and Hamil-
tonian H introduced above, the density matrix evolution is
given by ρ t+s = U(t)ρsU†(t), with the Schrödinger equa-
tion in the form of

ρt = e−√−1Htρ0e
√−1Ht or equivalently

(2.3)√−1
∂ρt

∂t
= [H,ρt ].

See Sakurai and Napolitano (2017) and Shankar (2012)
for details.

As we will see in Section 3.1, the number of complex
numbers and the dimensionality of vectors and matrices
required to describe a quantum state and its evolution
usually increase exponentially in the system size, rather
than linearly in a classical system. As a result, a quan-
tum system can store and manage an exponential num-
ber of complex numbers and perform data manipulations
and calculations during the evolution of the system, while
classical computers find it difficult to cope with the quan-
tum system as it requires an exponential number of bits
of memory to store the quantum state. Unlike the clas-
sical case where we often need to consider some extra
structural assumptions or approximations when handling
high-dimensional objects, quantum systems have poten-
tial to deal with exponentially high-dimensional problems
without imposing additional constraints. Special quantum
phenomena are utilized to accomplish quantum commu-
nication and computational tasks, and subsequent sec-
tions will illustrate that the quantum phenomena are of-
ten strange, and counter-intuitive. For example, light can
be particles and waves (wave-particle duality); a cat can
be alive and dead at the same time (quantum superpo-
sition); information can transmit instantaneously over a
long distance without going through the intervening space
(quantum teleportation); without sufficient energy, quan-
tum particles can pass a barrier that is classically impos-
sible (quantum tunneling).

3. QUANTUM BITS AND QUANTUM PROPERTIES

3.1 Quantum Bit and Superposition

In classical information and computation, the most fun-
damental entity is the bit, and the information encoded in
a bit has two state values, 0 and 1. Classical bits can be
materialized in multiple means, for example, they may be
realized mechanically as switches or magnetically as hard
drives. An important fact of the classical bit is that its two
state values are mutually exclusive, namely, its state can
only be either 0 or 1. This fact leads to one thing in com-
mon for all of the realization means, that is, all classical
physical devices prevent the simultaneous occurrence of

the states, with an example of the switch being either on
or off.

In quantum science and quantum technology, the coun-
terpart of the classical bit is the quantum bit, which we
call qubit for short. Similar to a classical bit with two
state values 0 and 1, a qubit has states |0〉 and |1〉, where
we use the customary Dirac notation |·〉 to denote the
qubit state. However, one key difference exists between a
classical bit and a qubit. Specifically, the theory of quan-
tum physics allows the description of a quantum physical
system through probabilistic combinations of its states,
which is referred to as the superposition property. The
superposition of states can accommodate all predictions
for the outcomes of physical measurements, moreover,
it bears drastic consequences for the nature of the phys-
ical states ascribed to a system. In this regard, besides the
states |0〉 and |1〉, a qubit can be in superposition states
with the following form:

(3.1) |ψ〉 = α0|0〉 + α1|1〉,
where complex numbers α0 and α1 are called amplitudes
and satisfy |α0|2 + |α1|2 = 1. As a result, the states of a
qubit are unit vectors in a two-dimensional complex vec-
tor space C

2. The states |0〉 and |1〉 form an orthonormal
basis for the space and are often referred to as computa-
tional basis states. Unlike classical bits that have mutually
exclusive states, qubits can be one and zero simultane-
ously, which is known as the most fundamental aspects of
qubits. In other words, a superposition state is a state of
matter that can be viewed as simultaneous occurrence of
zero and one at the same time.

Qubits can be realized in various physical systems. Ex-
amples of qubits include the two states of an electron or-
biting a single atom, the two different polarizations of a
photon, the alignment of a nuclear spin in a uniform mag-
netic field, or the two directions of current flows in su-
perconducting circuits. Specifically, in the atom model,
|0〉 and |1〉 can be treated respectively, as the so-called
‘ground’ and ‘excited’ states of the electron; if the atom
is shined by light with appropriate energy and for a suit-
able amount of time, we may transfer the electron from
the |0〉 state to the |1〉 state and vice versa. Furthermore,
by adjusting the time length for shining the light on the
atom, the electron can be moved from the initial state
|0〉 into ‘halfway’ between |0〉 and |1〉, for example, into
state |+〉 = (|0〉+|1〉)/√2, or state |−〉 = (|0〉−|1〉)/√2,
where |+〉 and |−〉 form a qubit basis that is equiva-
lent to the computational qubit basis |0〉 and |1〉. Note
that the quantum state transformations are solutions of
the Schrödinger equation (2.1) for particular choices of
Hamiltonian H and time interval, and it is an interesting
exercise for readers to find the appropriate Hamiltonians.

It is easy to examine a classical bit to determine its state,
being 0 or 1, however, it is impossible to examine a qubit
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|ψ〉 to determine its state or find the values of its ampli-
tudes α0 and α1 defined in (3.1). Because of the stochastic
nature of quantum theory, performing measurements on
the qubit |ψ〉 will result in measurement outcome 0 with
probability |α0|2, or measurement outcome 1 with prob-
ability |α1|2. Moreover, performing measurements on the
qubit will change its state.

Like classic bits, we may define multiple qubits. The
states of one b-qubit are unit vectors in a 2b-dimensional
complex vector space. The quantum exponential com-
plexity is then shown in the exponential growth of dimen-
sionality 2b and the number of 2b amplitudes required to
specify superposition states. For the 2-qubit case, its su-
perposition states are unit vectors in a 4-dimensional com-
plex vector space, with the following form:

(3.2) |ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉,
where |00〉, |01〉, |10〉, and |11〉 are four computational
basis states, amplitudes αx are complex numbers satisfy-
ing |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. As in the single
qubit case, when measuring the 2-qubit, we obtain mea-
surement outcome x as one of 00,01,10,11, with a corre-
sponding probability |αx |2. Furthermore, we may perform
a measurement just on the first qubit of the 2-qubit sys-
tem and obtain either the measurement outcome 0, with
probability |α00|2 + |α01|2, or the outcome 1, with proba-
bility |α10|2 + |α11|2. As quantum measuring changes the
quantum state, depending on the measurement outcome
obtained for the first qubit, being either 0 or 1, the 2-qubit
system will be in the state

(3.3)
α00|00〉 + α01|01〉√

|α00|2 + |α01|2
or

α10|10〉 + α11|11〉√
|α10|2 + |α11|2

,

respectively. See Nielsen and Chuang (2010) and Wang
(2012) for details.

3.2 Quantum Entanglement

As one of the most mind-bending creatures known to
science, quantum entanglement is often cited as the phe-
nomenon that two particles that are connected by an in-
visible wave can share each other’s properties regardless
of the distance between them, just like a twin. It leads to
the fact that none of the particles involved in a quantum
system can be described by quantum states of individual
subsystems. In other words, all information content of an
entangled quantum system is fully entailed in the corre-
lations between the individual subsystems while none of
the subsystems on their own convey essential informa-
tion of the entangled quantum system. For a multi-qubit
system, its entangled states are superposition states that
are described by joint properties of the individual qubits
in the multi-qubit system. Consider an entangled 2-qubit
system, we obtain a completely random outcome when
performing measurements on only one of its entangled

qubits. The measurement outcome is absolutely random,
and it is impossible to gain information about the entan-
gled system from the obtained random measurement out-
come. As the entangled state involves two qubits, their
correlation must contain two bits of classical informa-
tion, and the classical information can only be gathered
by comparatively examining the outcomes of the individ-
ual measurements on the separate subsystems. We as well
point out an intriguing feature of entangled states: mea-
suring one of the entangled qubits instantaneously casts
the other one into the corresponding perfectly correlated
state, which immediately destroys the entanglement as
qubit measuring changes their quantum state. We take a
Bell state

(3.4) |ψ〉 = |01〉 − |10〉√
2

as an example to demonstrate entanglement, where α00 =
α11 = 0, α01 = 1/

√
2, and α10 = −1/

√
2 in the expres-

sion of (3.2). As described in Section 3.1, measuring the
first qubit of the Bell state |ψ〉, we obtain measurement
outcome 0 or 1 with probability |α00|2 +|α01|2 = 1/2 and
|α10|2 + |α11|2 = 1/2 respectively, which is completely
random. According to (3.3), if the measurement outcome
is 0 (or 1), then the state will be |01〉 (or |10〉, respec-
tively). This result means that if the first measurement
outcome is 0 (or 1), then the second qubit’s state must be
|1〉 (or |0〉, respectively) with measurement always being
1 (or 0, respectively), which indicates perfect correlation.
Quantum states like the Bell state in (3.4) that cannot be
expressed as products of some single qubits are called en-
tangled states, while product states refer to quantum states
that can be written in the product form of single qubits.
Over the past decades many physical experiments have
been designed and conducted to test quantum entangle-
ment through the so-called Bell inequality.

For the case of a 2-qubit system realized by the spins
of two particles, imagine that the two-particle system is
first prepared in an entangled state, then the two particles
are drifted far away from each other. We now have Alice
and Bob measure the first and second particles, respec-
tively, and sequentially. The perfect correlation suggests
that after Alice obtains her spin measurement result (i.e.,
+1 or −1) on the first particle, the system has its state
immediately plunged into the untangled state. As a re-
sult, the second particle now has a definite spin state, and
Bob’s spin measurement on the second particle always
provides a definite opposite result (i.e., −1 or +1, respec-
tively). This phenomenon of perfect correlation is referred
to as anti-correlation in entanglement experiments. We
will show that quantum properties such as superposition
and entanglement play key roles in quantum science and
quantum technology. See Horodecki et al. (2009), Nielsen
and Chuang (2010) and Wang (2012) for more details.
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4. QUANTUM INFORMATION

As its classical analog, quantum information targets
at determining the laws governing any information pro-
cess based on quantum theory. The core of classical
information theory is Shannon’s two coding theorems
on noiseless and noisy channels. The coding theorems
quantify classical bits by Shannon entropy for transmis-
sion over a noiseless channel and character the amount
of information transmitted over a noisy channel with
some error-correction scheme. On the other hand, the
quantum-based theory has been established to apprehend
quantum resources such as superposition, entanglement,
nonlocality, no-cloning, and quantum randomness. The
quantum counterparts of Shannon entropy and Shannon
noiseless coding theorem are von Neumann entropy and
Schumacher’s noiseless channel coding theorem, respec-
tively. Schumacher’s noiseless channel coding theorem
describes quantum information needed to compress quan-
tum states by von Neumann entropy (Schumacher, 1995).
The quantum analog of Shannon’s noisy channel coding
theorem is Holevo–Schumacher–Westmoreland theorem
employed to calculate the product quantum state capacity
for some noisy channels (Holevo, 1998, Schumacher and
Westmoreland, 1997).

Despite the resemblance, there exist inherent distinc-
tions between classical information and quantum infor-
mation. For example, while classical information such
as digital images can be distinguished and copied, quan-
tum superposition and no-cloning theorem imply that
unknown quantum states cannot be completely distin-
guished or exactly copied. Consider another example, be-
sides the computational basis |0〉 and |1〉 for the qubit
space, we have another basis |+〉 = (|0〉 + |1〉)/√2 and
|−〉 = (|0〉 − |1〉)/√2 given in Section 3.1, and quantum
information can be encoded under each of these bases.
Different ways of encoding quantum information are em-
ployed in quantum error-correction for reliable quantum
computation and quantum information processing. More-
over, the information encoded under one basis cannot be
extracted by performing measurement under another ba-
sis, which plays an important role in quantum cryptogra-
phy. For example, consider encoding one bit of informa-
tion in different bases by the polarization of light. Sup-
pose that the computational basis formed by |0〉 and |1〉
represents the horizontal and vertical basis (correspond-
ing to horizontally and vertically polarized photons). As
diagonally and anti-diagonally polarized photons can be
expressed in the horizontal and vertical basis as coher-
ent superpositions of horizontal and vertical parts, the ba-
sis formed by |+〉 and |−〉 corresponds to the diagonal
and anti-diagonal basis. We may encode a bit of informa-
tion in the |0〉 and |1〉 basis by treating 0 to be horizontal
polarization and 1 to be vertical polarization. For a pho-
ton encoded in either horizontal or vertical polarization, if

we measure it in the diagonal and anti-diagonal basis, its
information cannot be extracted. Indeed, as described in
Section 3.1, we have

|0〉 = 1√
2
|+〉 + 1√

2
|−〉, |1〉 = 1√

2
|+〉 − 1√

2
|−〉,

and thus, when measuring |0〉 or |1〉 in the basis |+〉 and
|−〉, we observe + and − with equal probability, that is,
we observe a diagonally polarized photon in 50% of the
cases and an anti-diagonally polarized photon in the other
50% of the cases.

Quantum physics provides new types of resources for
information processing and transmission such as quan-
tum teleportation, superdense coding, quantum key distri-
bution, and quantum error-correction. Also, quantum in-
formation ideas have effectively been employed in other
scientific studies such as many-body physics, quantum
gravity, high-energy physics, quantum chemistry, quan-
tum biology, and even for solving conjectures in the fields
of classical information and computation. See Hayashi
(2006), Krenn et al. (2017), Nielsen and Chuang (2010)
and Wang (2012) for more details.

5. QUANTUM COMMUNICATION

5.1 Quantum Teleportation

Quantum teleportation is a process through which we
transfer the state of a quantum system (or qubit) to another
distant quantum system (or qubit) without ever existing in
the intervening space in between. The phenomenon can
be illustrated by a three-step protocol of quantum telepor-
tation as follows. First, Alice (the sender) and Bob (the
receiver) together generated a special pair of entangled
qubits, and each took one qubit of the two shared qubits
when they split. Second, Alice was given a third qubit
whose state was undisclosed to her, and she would like
to teleport the unknown state. Third, Alice interacted the
third qubit with her qubit and performed a special mea-
surement on her original qubit so that, while the measure-
ment destroyed the entanglement and ruined any infor-
mation about the state of her qubit, it would make Bob’s
qubit instantaneously project onto a new state that Bob
could use to recover the original state of Alice’s qubit.
After the three steps, the state of Alice’s qubit was trans-
ported to that of Bob’s qubit. A key feature in the quan-
tum teleportation protocol is the special entanglement and
measurement, and the teleportation protocol only works
when Bob was informed by Alice about her measurement
outcome so that Bob could work accordingly to recover
Alice’s state. That is, a successful teleportation event re-
quires classical communication between Alice and Bob,
which necessarily restricts the speed of information trans-
fer in the teleportation protocol to the speed of the clas-
sical communication channel. See Nielsen and Chuang
(2010) and Wang (2012) for details.
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It is important to note from the entire three-step pro-
tocol of quantum teleportation that contrary to what is
usually mistakenly cited, quantum teleportation in prin-
ciple does not allow faster-than-light communication or
any transfer of matter or energy. Quantum teleportation
transfers only the state of Alice’s qubit to Bob’s qubit but
does not physically move Alice’s qubit (particle) to Bob.
Because it is required to send information via the classical
channel, quantum teleportation is not capable of transmit-
ting information faster than the speed of light. Otherwise,
if Bob can obtain a copy of Alice’s qubit (in the sense
to physically obtain her ‘qubit’), then Bob can make a
direct measurement on the copied qubit to obtain the in-
formation that was sent over via the classical communica-
tion between Alice and Bob. In this way, faster-than-light
communication becomes possible, however, the famous
no-cloning theorem prevents the teleportation from copy-
ing any qubit.

The no-cloning theorem is referred to the fact that quan-
tum mechanics prohibits the creation of identical copies
of a general quantum state. Specifically, cloning a quan-
tum state |ψ〉 means a procedure with the product state
|ψ〉|ψ〉 as an output. We begin by introducing an ancilla
quantum system whose state |ϕ〉 is not related to the state
|ψ〉 being cloned. The no-cloning theorem means that
there exists no unitary matrix U such that it evolves the
initial state |ψ〉|ϕ〉 to the desired output state |ψ〉|ψ〉, that
is,

(5.1) U
(|ψ〉|ϕ〉) = e

√−1θ(ψ,ϕ)|ψ〉|ψ〉,
where e

√−1θ(ψ,ϕ) stands for a phase factor, with phase
θ(ψ,ϕ) being some real number. Indeed, if such U exists,
it has a similar effect on any arbitrarily selected state |φ〉
since cloning should work for any state. For the pair of
states |ψ〉 and |φ〉 in Cd , we consider their inner product
together with the ancilla state |ϕ〉, and use (5.1) to obtain

〈ψ |φ〉 = 〈ψ |φ〉〈ϕ|ϕ〉
= 〈ψ |〈ϕ||φ〉|ϕ〉
= 〈ψ |〈ϕ|U†U|φ〉|ϕ〉
= e−√−1[θ(ψ,ϕ)−θ(φ,ϕ)]〈ψ |〈ψ ||φ〉|φ〉
= e−√−1[θ(ψ,ϕ)−θ(φ,ϕ)][〈ψ |φ〉]2

,

which indicates that |〈ψ |φ〉| = |〈ψ |φ〉|2, namely, |〈ψ |φ〉|
equals to 0 or 1. By the Cauchy–Schwarz inequality, we
conclude that |ψ〉 is either equal to |φ〉 (with a phase
factor) or orthogonal to |φ〉, which is not possible for
an arbitrary pair of states |ψ〉 and |φ〉. This shows the
nonexistence of such U and thus proves the no-cloning
theorem. Moreover, we may provide a simple illustra-
tion to show that no-cloning is a natural consequence of
quantum theory as follows. Consider qubits |0〉, |1〉, and

|+〉 = (|0〉 + |1〉)/√2, along with an ancilla qubit |a〉.
Cloning implies there exists a unitary matrix U such that

U
(|0〉|a〉) = |0〉|0〉, U

(|1〉|a〉) = |1〉|1〉,
(5.2)

U
(|+〉|a〉) = |+〉|+〉.

Using the first two equalities in (5.2) and linearity of U
we immediately obtain

U
(|+〉|a〉) = U

(
1√
2
|0〉|a〉 + 1√

2
|1〉|a〉

)

= 1√
2

U
(|0〉|a〉) + 1√

2
U

(|1〉|a〉)

= 1√
2
|0〉|0〉 + 1√

2
|1〉|1〉,

which is an entangled state. It is easy to see that the en-
tangled state cannot be written as product state

|+〉|+〉 =
(

1√
2
|0〉 + 1√

2
|1〉

)(
1√
2
|0〉 + 1√

2
|1〉

)

= 1

2

(|0〉|0〉 + |1〉|1〉 + |0〉|1〉 + |1〉|0〉).
Therefore, an inconsistency occurs in (5.2), and it is im-
possible to have all three equalities in (5.2). See Krenn
et al. (2017) and Nielsen and Chuang (2010) for more de-
tails.

5.2 Communication Components

The classical communication required in quantum tele-
portation does not carry complete information about the
qubit being teleported. Even if the information communi-
cated in the classical channel is intercepted by an eaves-
dropper who may have complete knowledge about what
Bob is required to do to recover the desired state, the in-
formation is futile if the eavesdropper cannot interact with
the entangled qubit held in Bob’s hands. Quantum physics
opens the door to various distinct quantum secret sharing
protocols such as quantum cryptography.

In quantum computation and quantum communication,
we need to link qubits in quantum networks and trans-
fer their states. As the no-cloning theorem forbids us to
perfectly clone a quantum state, we cannot use classical
methods like amplifiers to carry out any transfer of qubits’
states. The solution to this problem is a so-called quan-
tum repeater, which allows the end-to-end generation of
quantum entanglement in a way that every two connec-
tive particles of independent entangled pairs is combined
so that the entanglement is relayed onto the remaining
two particles. Thus, we are able to achieve the end-to-end
state transmission of qubits via quantum teleportation. A
quantum repeater is an important building block to inter-
connect different nodes in a quantum network, and quan-
tum teleportation is one crucial requirement for the quan-
tum repeater. This process is referred to as entanglement
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swapping and enables us to achieve long-distance quan-
tum communication. See Krenn et al. (2017), Nielsen and
Chuang (2010) and Sangouard et al. (2011) for more dis-
cussions.

5.3 Quantum Cryptography

Cryptography allows two parties, the sender Alice and
the receiver Bob, to exchange secret messages in their
private communications, while at the same time, keeps it
very hard for the third parties to ‘eavesdrop’ on the con-
tent of their communications. Applications of cryptog-
raphy include online bank transactions, electronic com-
merces, and military communications. We discuss two
cryptographic methods adopted in such communications.
The first method is a private key cryptosystem, which
calls for the two parties to share a secret key. Specifically,
Alice employs the key to encrypt a message and obtain
the cipher while the cipher can only be understood if the
key is known. Alice sends the cipher to Bob who utilizes
the key to decrypt the received cipher and read her mes-
sage. The challenge for the private key cryptosystem lies
in guarding the secret key against eavesdropping.

The alternative method is a public key cryptosystem in-
vented in the 1970s that does not require the sharing of a
secret key. This method is based on the complexity of hard
computational problems such as finding the prime factors
of very large numbers. Specifically, Bob first generates a
pair of keys, a public one and a private one. He then an-
nounces his ‘public key’ to the general public, everyone
including Alice can use the public key to encrypt mes-
sages and send him the encrypted messages. The real trick
is that the encryption transformation generated by Bob’s
keys is specially designed such that with only the public
key, it is extraordinarily hard, though not impossible, to
reverse the encryption transformation. When announcing
the public key, Bob retains a corresponding secret key for
simple inversion of the encryption transformation and de-
cryption of the received messages. A case in point is the
RSA cryptosystem (Rivest, Shamir and Adleman, 1978),
one of the most widely used cryptographic protocols.
RSA is built on the extreme difficulty of finding prime
factors for large composite numbers. Note the mathemat-
ical asymmetry of factoring: it is easy to compute a com-
posite number from its prime factors by multiplying the
primes, no matter how large they are; however, the reverse
process can be very hard, in fact, it is extremely difficult
to find the prime factors of some very large composite
numbers. RSA encryption retains the large primes as a se-
cret key and makes use of their product to design a ‘public
key’. Since the best known classical factoring algorithms
have exponential complexity, and massive computational
attempts to break the RSA system so far have led to no
success, it is widely believed that the RSA system is se-
cure against any classical computer-based attacks.

On the other hand, Peter Shor in 1994 discovered the
so-called Shor’s quantum factoring algorithm that can
solve the factoring problem exponentially faster than the
best known classical algorithms, thus quantum computers
may be able to break the RSA system easily (Shor, 1994).
That is, as quantum computers can factor prime numbers
significantly faster than classical computers, an eaves-
dropper equipped with a quantum computer can decipher
the encrypted text and read the secret message, with only
the public information distributed by RSA. An approach
to circumventing this difficulty is a quantum procedure
known as quantum cryptography or quantum key distri-
bution so that communication security cannot be under-
mined. The security of the quantum key distribution is
based on the quantum principle that observing or measur-
ing an unknown quantum system will disturb the system
that is being monitored. When an eavesdropper listens to
the transmission of the quantum key between Alice and
Bob, the quantum communication channel employed to
set up the key will be disturbed by the eavesdropping, and
the disturbance will make eavesdropping noticeable. As a
result, Alice and Bob are able to discard the compromised
key and retain only the secured key for their communica-
tion.

Specifically, quantum key distribution enables two au-
thorized parties to create a secret key at a distance in
two stages. In the first stage, the two communicating par-
ties, Alice and Bob, obtain a preliminary key by exchang-
ing quantum signals over the quantum channel and per-
forming measurements. The obtained key is preliminary
in the sense that it has two strongly correlated, but non-
identical, and only partly secret strings. In the second
stage, Alice and Bob utilize the classical channel to carry
out an interactive post-processing protocol. The protocol
permits them to refine the preliminary key and extract
two identical and absolutely secret (known only to them-
selves) strings as two identical copies of the created se-
cret key. During the two-stage process, the quantum chan-
nel is open to any possible maneuver from a third person.
However, the classical channel communication needs the
following authentication: while Alice and Bob recognize
themselves, a third person may listen to their exchange,
but cannot engage in it. In particular, the mission of Al-
ice and Bob is to guarantee security against an adver-
sarial eavesdropper, whom we call Eve, engaging in the
conversation over the classical channel and tapping on
the quantum channel. Here we use ‘security’ to convey
precisely that the authorized parties never use a nonse-
cret key, namely, either they can actually generate a se-
cret key, or the protocol is aborted. Hence after transmit-
ting the quantum signals, Alice and Bob need to evalu-
ate the possible amount of information about the prelimi-
nary keys may have leaked out to Eve. This is the crucial
advantage of quantum communication where information
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leakage in a quantum channel is quantitatively linked to a
degradation of the communication. Such degradation and
evaluation are not possible in classical communication.
For example, when classical communication channels are
tapped, such as phone conversations are bugged, the com-
munication proceeds without any change, as nothing hap-
pens.

Besides taking advantage of quantum property that ob-
serving a quantum channel disturbs the quantum commu-
nication, we may employ quantum entanglement to fur-
ther enhance the security of quantum key distribution by
creating an entanglement-based quantum key distribution.
The quantum entanglement property offers secure advan-
tages for designing and implementing the protocol of the
entanglement-based quantum key distribution. Let us con-
sider the case where Alice and Bob share an entangled
state of a qubit (or particle) pair. When they perform mea-
surements on the qubits, the obtained random measure-
ments will always be opposite due to the perfect correla-
tion between entangled qubits. Alice and Bob then need
to communicate over a classical channel regarding how
the measurements are performed and obtained in order to
sift through the results and obtain a secret key.

The security foundation of quantum key distribution
can be established by the core principles of quantum
physics such as superposition and no-cloning. When Eve
is tapping on a quantum communication channel to ex-
tract some information, her act is some kind of measure-
ment performing on the state of the quantum communica-
tion system, and the measurement will generally alter the
state of the system. On the other hand, if Eve wants a cor-
rect copy of the state that Alice conveys to Bob, she will
not be successful as the no-cloning theorem shows that
an unknown quantum state cannot be duplicated without
being altered.

To be specific, the essential idea behind quantum key
distribution is that Eve cannot obtain any information
from the qubits, whose state is transmitted from Alice to
Bob, without disturbing their state. Our proof arguments
are as follows. First, the no-cloning theorem described
in Section 5.1 prevents Eve from copying Alice’s qubit.
Second, information gain implies disturbance in the sense
that for any try to differentiate between two nonorthog-
onal quantum states, gaining information is only possible
at the cost of bringing in disturbance to the signal. Indeed,
suppose that |ψ〉 and |φ〉 are two nonorthogonal quantum
states. Eve attempts to gain information about |ψ〉 and
|φ〉 by unitarily interacting the states |ψ〉 or |φ〉 with an
ancilla quantum system prepared in a state |u〉. If Eve’s
attempt does not disturb the states, we obtain two unitary
matrices U1 and U2 such that

U1
(|ψ〉|u〉) = |ψ〉|v1〉, U2

(|φ〉|u〉) = |φ〉|v2〉,
where |v1〉 and |v2〉 are different states so that Eve can
gain information about the identity of the states |ψ〉 and

|φ〉. However, since unitary transformations preserve in-
ner products, it must be that

〈v1|〈ψ ||φ〉|v2〉 = 〈u|〈ψ |U†
1U2|φ〉|u〉 = 〈u|〈ψ ||φ〉|u〉,

that is, 〈v1|v2〉〈ψ |φ〉 = 〈u|u〉〈ψ |φ〉. As |ψ〉 and |φ〉 are
nonorthogonal, 〈ψ |φ〉 	= 0, and thus we obtain

〈v1|v2〉 = 〈u|u〉 = 1,

which indicates that |v1〉 and |v2〉 have to be equal. This
leads to a contradiction, as |v1〉 	= |v2〉. Therefore, distin-
guishing between |ψ〉 and |φ〉 must disturb at least one
of the states, and we can make secure quantum communi-
cation by transmitting nonorthogonal qubit states between
Alice and Bob and checking for disturbance in their trans-
mitted states.

Furthermore, the quantum key generation relies on the
same quantum physical principles that quantum computa-
tion is based on. Unlike classical cryptography, the quan-
tum key distribution does not merely depend on the com-
putational difficulty of solving mathematical problems
such as the factoring problem. Hence, it cannot be bro-
ken even by quantum computers. In a nutshell, the funda-
mental quantum physical principles allow for the uncon-
ditional security of quantum key distribution, namely, the
possibility of guaranteeing security without setting any
power limitation on the eavesdropper. See Bennett and
Brassard (2014), Bernstein and Lange (2017), Buhrman
et al. (2010), Krenn et al. (2017), and Nielsen and Chuang
(2010) for more details.

Quantum physics was established to describe nature at
the microscopic domain, but many ongoing research en-
deavors seek answers to what extent the quantum physical
laws are relevant to the macroscopic realm. In particular,
research efforts in quantum science and quantum technol-
ogy aim to increase the distance between entangled quan-
tum particles, and search for any possible fundamental re-
strictions to quantum entanglement, as well as to investi-
gate if it is viable to create a global-scale quantum com-
munication network in the future. Physical experiments
on quantum key distribution have been successfully con-
ducted in a long distance with current records of over a
hundred kilometers on earth (Krenn et al., 2017) and over
a thousand kilometers in space (Yin et al., 2017).

6. QUANTUM COMPUTATION

In contrast to classical computation where transistors
are used to crunch the ones and zeroes individually,
the new quantum resources such as quantum superpo-
sition and entanglement can allow quantum computa-
tion to manage both one and zero at the same time
and do the trick of performing simultaneous calculations.
Thus, quantum computers may outperform classical com-
puters for solving certain computational problems. See
Browne (2014), Campbell, Terhal and Vuillot (2017),
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Chong, Franklin and Martonosi (2017), Deutsch (1985),
Mohseni et al. (2017), Nielsen and Chuang (2010) and
Wang (2012).

6.1 Quantum Computers

Classical computers are constructed from electrical cir-
cuits containing wires for carrying information around the
circuits and logic gates for executing simple computa-
tional tasks. Similarly, quantum computers are built from
quantum circuits with quantum gates to carry out quantum
computation and process quantum information. In spite
of the similarity, quantum computers are built on the uni-
tary evolution of b logical qubits operating on a compu-
tational state space of 2b dimensions, and the new quan-
tum resources make it possible for quantum computers
to outperform classical computers for certain tough tasks.
Quantum information and quantum computation investi-
gate how to harness the enormous information hidden in
the quantum systems and how to make use of the immense
potential computational power of quantum particles to
perform computation and to process information. Inten-
sive efforts are underway around the world to explore
a number of physical systems and fabrication technolo-
gies for constructing quantum computers, where viable
constructions must meet a set of requirements known as
the DiVincenzo criteria (DiVincenzo, 1995). Major sys-
tems and technologies include superconducting circuits,
ion traps, quantum dots, and other electronic semicon-
ductor circuits, impurity spins, and linear optics (Nielsen
and Chuang, 2010). Quantum computers of small scale
have been built to demonstrate numerous simple exam-
ples of quantum algorithms and protocols. Over the years
there are steadily increasing efforts by academics, govern-
ment labs, large companies, and startups to reach the chal-
lenging goal of large scale quantum computation (DiCarlo
et al., 2009, Johnson et al., 2011, Mariantoni et al., 2011,
Sayrin et al., 2011).

As mentioned above, the physical equipment for the
quantum computer fabrication must meet the DiVincenzo
criteria including requirements that a quantum system re-
alized qubits has to be well isolated to maintain its quan-
tum properties and at the same time, the quantum system
needs to be accessible so that the qubits can be operated
to carry out computations and perform output measure-
ments. In reality, there always exists some coupling of
a quantum system to its environment, and the coupling
leads to quantum decoherence, where decoherence refers
to the loss of coherence between the components of the
quantum system or quantum superposition from the in-
teraction of the quantum system with its external entities.
Therefore, the coupling strength dictates the two oppos-
ing requirements stated above. It is very challenging but
critical to manage a quantum system of qubits for con-
trolling the coupling strength and rectifying the effects of

decoherence in quantum technology. Given the significant
difficulties to build large-scale quantum computers with
present technology, it is very important to have scalable
architectures for building quantum computers with about
100 well-behaved logical qubits in the near future. Such
architectures may enable us to demonstrate the so-called
quantum (computational) supremacy that is actively pur-
sued by academic labs and companies like Google and
IBM, where quantum supremacy refers to any major mile-
stone achievement in the quest for outperforming classical
computers on some tough computational tasks (Aaronson
and Chen, 2017, Boixo et al., 2018, Harrow and Monta-
naro, 2017).

The quantum computing approach discussed so far is
logic-gate based that has its purpose in developing a quan-
tum version of classic logic gate operations and con-
structing a universal (or general purpose) quantum com-
puters. Since significant technological difficulties present
in the implementation of the gate (or circuit) model for
building universal quantum computers, alternative quan-
tum computing architectures, such as adiabatic quantum
computing, are actively being explored to build special-
purpose quantum computers for solving specific com-
putational problems, though subjected to different chal-
lenges (Aharonov and Ta-Shma, 2003, Aharonov et al.,
2008, Albash and Lidar, 2018). Examples of special-
purpose quantum computers include quantum annealers
and quantum simulators for solving tough simulation and
optimization problems. Next, two Sections 6.2 and 6.3
will present detailed discussions on quantum annealers
and quantum simulators, respectively. Quantum anneal-
ers mean physical hardware implementations of quantum
annealing. Quantum simulators refer to quantum devices
utilized for simulating one quantum system by using an-
other more controllable one, with the aim to solve spe-
cial simulation problems that are computationally too de-
manding on classical computers.

6.2 Quantum Annealers

Quantum annealing may be considered as adiabatic
quantum computing that is based on the quantum adia-
batic theorem for building special-purpose quantum com-
puters, called quantum annealers, to solve combinatorial
optimization problems. Quantum annealing is the quan-
tum analog of classical annealing, with thermodynamics
replaced by quantum dynamics. Quantum annealers are
physical hardware devices to implement quantum anneal-
ing. See Albash and Lidar (2018), McGeoch (2014), and
Wang, Wu and Zou (2016).

Given an optimization problem, we identify its objec-
tive function to be minimized with the energy of a phys-
ical system and assign the physical system a temperature
that serves as an artificially-introduced control parameter.
Classical annealing like simulated annealing takes into ac-
count the relative configuration energies and a fictitious
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time-dependent temperature when exploring the immense
search space probabilistically. By decreasing the temper-
ature slowly from a high value to zero, with certain proba-
bility we move the system toward the state with the lowest
value of the energy and hence arrive at the solution of the
optimization problem.

Specifically, consider a classical Ising model character-
ized by a graph G = (V(G),E(G)), where V(G) and E(G)

represent the vertex and edge sets of G, respectively. Each
vertex has a random variable whose value is +1 or −1,
and each edge corresponds to the coupling (or interaction)
between two vertex variables linked by the edge. Define a
configuration s to be a set of values assigned to all vertex
variables sj , j ∈ V(G), that is, s = {sj , j ∈ V(G)}. Ver-
tices and vertex variables also refer to sites and spins in
physics, respectively, where the values +1 and −1 of a
spin stand for spin up and spin down, respectively. A case
in point is a 2-dimensional lattice considered as a sim-
ple graph, with a magnet put at each lattice site pointing
either up or down. Denote by b the total number of the lat-
tice sites. At site j = 1, . . . , b, let sj be a binary random
variable representing the position of the magnet, where
sj = ±1 means that the j th magnet points up or down,
respectively. The classical Ising model has the following
Hamiltonian:

(6.1) Hc
I ≡ Hc

I (s) = − ∑
(i,j)∈E(G)

δij sisj − ∑
j∈V(G)

γj sj ,

where (i, j) denotes the edge between the sites i and j ,
the first sum takes over all pairs of vertices with edge
(i, j) ∈ E(G), δij represents the interaction (or coupling)
between sites i and j associated with edge (i, j) ∈ E(G),
and γj stands for an external magnetic field on vertex
j ∈ V(G). We refer to a set of fixed values {δij , γj } as
one instance of the Ising model. Hc

I (s) is also called the
energy of the Ising model at configuration s. The probabil-
ity of a specific configuration s is given by the following
Boltzmann distribution:

(6.2) PT (s) = e−Hc
I (s)/T

ZT

, ZT = ∑
s

e−Hc
I (s)/T ,

here T serves as the fundamental temperature of the sys-
tem with units of energy. The configuration probability
PT (s) describes the probability that the physical system
is in a state with configuration s in equilibrium.

When using the Ising model to represent a combina-
torial optimization problem, the goal is to find a ground
state of the Ising model, that is, we need to find a con-
figuration that can minimize the energy function Hc

I (s).
If the Ising model contains b sites, then the configura-
tion space is {−1,+1}b and the total number of possi-
ble configurations is equal to 2b. We note that the system
complexity increases exponentially in b (the number of
sites), and thus, it is very difficult to find a ground state

and solve the minimization problem numerically when b

is large. In fact, the search space that grows exponentially
prohibits us to solve the minimization problem with de-
terministic exhaustive search algorithms. Instead, anneal-
ing methods such as simulated annealing are employed
to search the space probabilistically. To find a config-
uration with minimal energy, simulated annealing uses
Markov chain Monte Carlo (MCMC) methods such as the
Metropolitan–Hastings algorithm to generate configura-
tion samples from the Boltzmann distribution PT (s) while
decreasing the temperature T slowly. See Bertsimas and
Tsitsiklis (19932), Kirkpatrick, Gelatt and Vecchi (1983),
and Wang, Wu and Zou (2016).

Quantum annealing utilizes the physical process of a
quantum system whose lowest energy, or equivalently,
a ground state of the system, renders a solution to the
posed optimization problem. It begins by creating a sim-
ple quantum system initialized in its ground state and then
drives the simple system slowly to the target complex sys-
tem. The quantum adiabatic theorem (Farhi et al., 2000,
2001, Farhi, Goldstone and Gutmann, 2002, Kadowaki
and Nishimori, 1998) implies that, as the system gradu-
ally evolves, it likely stays in a ground state, and therefore
with some probability, we can find a solution to the orig-
inal optimization problem by measuring the state of the
final system. In other words, by replacing thermal fluctu-
ations in simulated annealing by quantum fluctuations via
quantum tunneling, quantum annealing manages to keep
the system close to its instantaneous ground state dur-
ing the quantum annealing evolution, similar to a quasi-
equilibrium state to be maintained during the time evolu-
tion of simulated annealing

As in the classical annealing case, graph G is used to
describe the quantum Ising model, where the vertex set
V(G) stands for the quantum spins, and the edge set E(G)

denotes the couplings (or interactions) between two quan-
tum spins. As qubits can be realized by quantum spins,
each vertex is occupied by a qubit. Suppose that G has b

vertices. The quantum system is described by vector space
C

d (d = 2b), with its quantum state described by a unit
vector in C

d , and its dynamic evolution governed by the
Schrödinger equation (2.1) via a quantum Hamiltonian,
which is a Hermitian matrix of size d . The energies of the
quantum system are represented by the eigenvalues of the
quantum Hamiltonian, and the ground states are given by
the eigenvectors corresponding to the smallest eigenvalue.
Since quantum mechanics is based on mathematics of ma-
trices with dimensionality equal to d = 2b (the number of
possible configurations), we substitute the classical spins
(or bits) in (6.1) with quantum spins (or qubits) to obtain
the quantum Hamiltonian. To be specific, define

Ij =
(

1 0
0 1

)
, σ x

j =
(

0 1
1 0

)
,

σ z
j =

(
1 0
0 −1

)
, j = 1, . . . , b,
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where σ x
j and σ z

j are Pauli matrices in x and z axes, re-
spectively. For the quantum system, each classical vertex
variable sj = ±1 in (6.1) is replaced by σ z

j for the j th
quantum spin (or qubit). The two eigenvalues ±1 of the
Pauli matrix σ z

j correspond to the eigenstates |+1〉 and
|−1〉 which further represent the spin up state |↑〉 and spin
down state |↓〉, respectively. In total, there are 2b possible
quantum configurations formed by selecting b eigenstates
from the 2b eigenstates of the Pauli matrices {σ z

j }bj=1 and
then putting them in the form | ± 1, . . . ,±1〉.

We replace sj in the classical Ising Hamiltonian Hc
I (s)

by σ z
j to obtain the quantum Hamiltonian,

(6.3) Hq
I = − ∑

(i,j)∈E(G)

δijσ
z
i σ

z
j − ∑

j∈V(G)

γjσ
z
j ,

where δij stands for the Ising coupling along the edge
(i, j) ∈ E(G), and γj represents the local field on the ver-
tex j ∈ V(G). Here we adopt the convention in quantum
literature that σ z

j and σ z
i σ

z
j in (6.3) stand for their tensor

products along with identical matrices as follows:

σ z
j ≡ I1 ⊗ · · · ⊗ Ij−1

vertex j︷ ︸︸ ︷
⊗σ z

j⊗ Ij+1 ⊗ · · · ⊗ Ib,(6.4)

σ z
i σ

z
j ≡ I1 ⊗ · · · ⊗ Ii−1

⊗
vertices i and j︷ ︸︸ ︷

σ z
i ⊗ Ii+1 ⊗ · · · ⊗ Ij−1 ⊗ σ z

j(6.5)

⊗ Ij+1 ⊗ · · · ⊗ Ib.

All elements in (6.4) are identity matrices except for the
j th element being a Pauli matrix σ z

j , and σ z
i σ

z
j in (6.5)

is simply an ordinary matrix multiplication of matrices
σ z

i and σ z
j treated as tensor products of b matrices in the

sense of (6.4). Each qubit in (6.4) and (6.5) is operated by
one matrix, either a Pauli matrix σ z

i or an identity matrix
Ii . The quantum convention singles out the qubits with
Pauli matrices for actual actions but leaves out the iden-
tity matrices and tensor product signs. To generate quan-
tum Hamiltonian Hq

I we in fact replace sj in (6.1) by these
2b × 2b matrices, with scalars γj and δij unchanged. Fur-
thermore, since each term in (6.3) is a tensor product of b

diagonal matrices of size two, quantum Hamiltonian Hq
I

is a 2b × 2b diagonal matrix constructed so that its diago-
nal elements are completely in agreement with all values
of classical Hamiltonian Hc

I in (6.1) corresponding to the
2b configurations ordered lexicographically.

As a diagonal matrix Hq
I has eigenvalues equal to its

diagonal entries, which in turn are the 2b possible values
of classical Hamiltonian Hc

I , thus finding the minimal en-
ergy of the classical Ising Hamiltonian Hc

I is equivalent to
finding the minimal energy of the quantum Ising Hamilto-
nian Hq

I . That is, we need to find a quantum spin configu-
ration with the minimal energy, namely, a ground state of
quantum Hamiltonian Hq

I . Although we have formulated

the original optimization problem in the quantum frame-
work, up to now the computational task for solving the
optimization problem is still the same as in the classical
case.

To carry out quantum annealing for solving the opti-
mization problem, it is essential to engineer a transverse
magnetic field that is orthogonal to the Ising axis and
obtain the corresponding Hamiltonian in the transverse
field. The transverse field represents kinetic energy that
does not commute with the potential energy Hq

I , there-
fore, it induces transitions between the up and down states
of every single spin, and converts the system behavior
from classical to quantum. Define the following quantum
Hamiltonian governing the transverse magnetic field

(6.6) HX = − ∑
j∈V(G)

σ x
j ,

where again following the quantum convention we denote
by σ x

j the tensor products of b matrices of size 2 as fol-
lows:

(6.7) σ x
j ≡ I1 ⊗ · · · ⊗ Ij−1

vertex j︷ ︸︸ ︷
⊗σ x

j⊗ Ij+1 ⊗ · · · ⊗ Ib.

Furthermore, σ x
j does not commute with σ z

j in Hq
I , and

HX is a nondiagonal matrix of size 2b that does not com-
mute with diagonal matrix Hq

I . We note that Pauli matrix
σ x

j has two eigenvalues +1 and −1 associated with the
eigenvectors |uj,+1〉 = (1,1)′ and |uj,−1〉 = (1,−1)′. As
a result, the eigenvector corresponds to the smallest eigen-
value of HX is |u+〉 = |u1,+1〉 ⊗ |u2,+1〉 ⊗ · · · ⊗ |ub,+1〉,
that is, |u+〉 is the ground state of HX .

We start the quantum annealing procedure with a quan-
tum system that is driven by the transverse magnetic field
HX and initialized in its ground state |u+〉. The system
then slowly moves from the initial Hamiltonian HX to its
final target Hamiltonian Hq

I . During the Hamiltonian evo-
lution, according to the adiabatic quantum theorem, the
system has a tendency to stay in the ground states of the
instantaneous Hamiltonian via quantum tunneling (Farhi
et al., 2000, 2001, Farhi, Goldstone and Gutmann, 2002,
McGeoch, 2014). At the end of the annealing procedure,
if the quantum system stays in a ground state of the final
Hamiltonian Hq

I , we can measure the quantum system to
obtain a solution of the optimization problem. In specific,
quantum annealing is accomplished by the following in-
stantaneous Hamiltonian for the Ising model in the trans-
verse field:

(6.8) HD(t) = A(t)HX + B(t)Hq
I , t ∈ [0, tf ],

where A(t) and B(t) are smooth functions that depend
on time t and control the annealing schedules, and tf is
the total annealing time. To drive the system from HX to
Hq

I , we take A(tf ) = B(0) = 0 where A(t) is decreas-
ing and B(t) is increasing. It follows that when t = 0,
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HD(0) = A(0)HX and when t = tf , HD(tf ) = B(tf )Hq
I .

Since A(0) and B(tf ) are known scalars, HD(t) has the
same eigenvectors as HX at the initial time t = 0 and
as Hq

I at the final time t = tf , where the corresponding
eigenvalues differ by factors of A(0) and B(tf ), respec-
tively. Therefore, HD(t) moves the system from HX ini-
tialized in its ground state to the final target Hq

I . When
the control functions A(t) and B(t) are chosen appropri-
ately, the quantum adiabatic theorem indicates that the an-
nealing procedure driven by (6.8) will have a sufficiently
high probability in finding the global minimum of Hc

I (s)
and solving the minimization problem at the final anneal-
ing time tf . See Brooke, Bitko and Aeppli (1999), Isakov
et al. (2016), Jörg et al. (2010), and Wang, Wu and Zou
(2016) for details.

While classical annealing depends on thermal fluctua-
tions to drive the system to hop from state to state over
intermediate energy barriers and find a desired lowest-
energy state, quantum annealing substitutes thermal hop-
ping by quantum-mechanical fluctuations to search for
a ground state. We realize the quantum fluctuations in
quantum annealing by quantum tunneling that enables
the annealing process to explore different states by cross-
ing directly through energy barriers, rather than climbing
over them thermally. Here quantum tunneling refers to the
quantum phenomenon where particles tunnel through a
barrier in the situation that is classically infeasible. We
cannot directly observe the tunneling process nor use clas-
sical physics to explain it satisfactorily. Quantum tun-
neling is generally described by the Heisenberg uncer-
tainty principle and the wave-particle duality of matter
in quantum physics (Crosson and Harrow, 2016, Das and
Chakrabarti, 2005, 2008, Denchev et al., 2016, Wang, Wu
and Zou, 2016).

Quantum annealing devices are actively pursued by a
number of academic labs and companies such as Google
and D-Wave Systems, with uncertain quantum speedup.
In particular, the D-Wave quantum computer is a commer-
cially available hardware device that is designed and built
to physically implement quantum annealing. It is an ana-
log computing device based on superconducting qubits
to process quantum annealing and solve certain combi-
natorial optimization problems. Also although it is ex-
tremely difficult to simulate quantum annealing by classi-
cal computers, classical Markov chain Monte Carlo sim-
ulations have been developed to approximate quantum
annealing by path-integral formulation and mean field
approximation. See Albash et al. (2015), Boixo et al.
(2014, 2016, 2018), Brady and van Dam (2016), Rønnow
et al. (2014), and Wang, Wu and Zou (2016) for more dis-
cussions.

6.3 Quantum Simulators

Quantum simulation is to intentionally and artificially
mimic interacting quantum systems, which are hard to

access and analyze, by employing other precisely con-
trollable quantum systems that are easy to manipulate
and investigate. Since the dimensionality of the space de-
scribing a quantum system scales exponentially with the
system size, the classical simulation of quantum systems
demands exponentially increasing resources. Likewise, it
takes exponentially large resources to solve certain classi-
cal optimization problems particularly the NP-hard prob-
lems, such as finding the ground-state energy of a classi-
cal spin glass and solving the traveling salesman’s prob-
lem. Quantum simulation may provide scientific means
to simulate complex biological, chemical or physical sys-
tems in order to study and understand certain scien-
tific phenomena and solve the related hard computational
problems. Experimental platforms for quantum simula-
tion consist of ultra-cold atomic and molecular quantum
gases, ultra-cold trapped ions, polariton condensates in
semiconductor nanostructures, circuit-based cavity quan-
tum electrodynamics, arrays of quantum dots, photonic
quantum technology, and superconducting qubits with
commercial applications in quantum annealers (Aspuru-
Guzik and Walther, 2012, Blatt and Roos, 2012, Bloch,
Dalibard and Nascimbene, 2012, Boghosian and Taylor,
1998, Houck, Türeci and Koch, 2012, Jané et al., 2003,
Johnson et al., 2011, Nielsen and Chuang, 2010, Wang,
Wu and Zou, 2016).

The essential of quantum simulation is to understand
the dynamic evolution of a quantum system governed by
the Schrodinger equation (2.1). That is, quantum simula-
tion needs to describe and solve the Schrodinger equation
(2.1) by either digital quantum computers or analog quan-
tum machines. The solution of (2.1) has expression

(6.9)
∣∣ψ(t)

〉 = e−iHt
∣∣ψ(0)

〉
, i = √−1,

and we need to evaluate e−iHt numerically. It is extremely
difficult to exponentiate the Hamiltonian H because its
size increases exponentially in the system size. Common
numerical approach often uses the first-order linear ex-
pansion 1− iHδ to approximate e−iH(t+δ) −e−iHt , which
often yields unsatisfactory numerical solutions. Math-
ematically, quantum simulation is to explore whether
higher order approximations are available to provide ef-
ficient methods for the evaluation of e−iHt . For exam-
ple, consider a system with α particles in a d-dimensional
space that has the following Hamiltonian:

H =
L∑


=1

H
,

where L is a polynomial in α + d , and each H
 acts on
a small subsystem of finite size free from α and d . Note
that it is easy to evaluate e−iH
δ numerically, but very
difficult to compute e−iHδ . Because H
 and Hk are non-
commutable, e−iHδ = e−∑L


=1 iH
δ 	= e−iH1δ · · · e−iHLδ .
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By the Trotter formula (Proposition 3.1 in Wang (2011)),
we obtain

e−iHδ = {
e−iH1δ/2 · · · e−iHLδ/2}

(6.10)
× {

e−iHLδ/2 · · · e−iH1δ/2} +O
(
δ2)

.

Thus, we obtain a second order approximation of e−iHδ

by the first term on the right-hand side of (6.10), which
only needs us to evaluate each e−iH
δ , 
 = 1, . . . ,L.

Introduced by Feynman (1981/82), quantum simulation
itself has been developed into a core field within quan-
tum computation. A quantum simulator can be any phys-
ical quantum system precisely prepared or manipulated
in a way targeting at studying interesting features of an
interacting complex quantum system, which is compu-
tationally intractable or difficult to simulate on classical
computers. A quantum simulator can be a digital quan-
tum simulator so that the controllable quantum system
is implemented on a universal quantum computer, or an
analog quantum simulator so that the controllable quan-
tum system is a quantum physical device to reconstruct
the time evolution of an interacting quantum system un-
der precisely controlled conditions. Like universal quan-
tum computers, digital quantum simulators face signifi-
cant challenges in scaling architectures. However, analog
quantum simulators can be addressed and experimented
in a relatively large scale with currently available tech-
nology, and thus may provide new tools for us to inves-
tigate interacting many-particle quantum systems and at-
tack optimization problems beyond the reach of classical
computers. See Childs et al. (2018), Jiang et al. (2017),
Kassal et al. (2008, 2011), Lanyon et al. (2010), Nielsen
and Chuang (2010), and Wang (2011, 2012).

It is likely that the first practical application of quantum
computation is quantum simulation since even moderate
quantum simulation devices have the potential to carry
out simulations infeasible by classical computers. For ex-
ample, in quantum chemistry, molecular energies can be
computed by digital quantum simulation devices of size
100 to 150 logical qubits with excellent precision and ac-
curacy that considerably exceed the limitations of classi-
cal computers. In particular, in the near to medium term,
analog quantum simulators may offer us a novel tool to
study complicated quantum systems and hard optimiza-
tion problems that are unreachable by classical comput-
ers. Again a computational advantage of quantum simula-
tors over classical ones may clearly demonstrate quantum
supremacy (given in Section 6.1) in realistic applications.
In the long run, the importance of quantum simulation
may lie in the applications of large-scale quantum sim-
ulations to solve fundamental problems in physics, mate-
rials science and quantum chemistry (Abrams and Lloyd,
1997, Aspuru-Guzik et al., 2005, Boghosian and Taylor,
1998, Cirac and Zoller, 2012, Kassal et al., 2011, Lloyd,
1996).

6.4 Quantum Algorithms

Quantum algorithms are algorithms that run on quan-
tum computation models, such as the most commonly
used quantum gate or circuit model, by taking input qubits
and producing output measurements for the solutions of
specific computational tasks. While a classical algorithm
takes a step-by-step procedure to solve a given problem
on a classical computer, a quantum algorithm is a step-
by-step problem-solving procedure, with each step per-
formed on a quantum computer. We note that all classi-
cal algorithms can be in principle executed on a quan-
tum computer, all problems solvable on a quantum com-
puter are solvable on a classical computer, and problems
undecidable by classical computers remain undecidable
on quantum computers. However, quantum algorithms are
essentially different from their classical counterparts in
the sense of being genuine quantum, that is, quantum
gate operations are reversible unitary transformations, and
quantum algorithms utilize fundamental quantum proper-
ties such as quantum superposition and quantum entan-
glement. We refer to quantum algorithms as the algo-
rithms that are inherently quantum for achieving faster
speed than classical algorithms in solving some tough
problems. It should be pointed out that while quantum al-
gorithms cannot be worse than classical algorithms, we
should not expect quantum algorithms to yield advantage
for every single problem; in fact, they usually do not.
As a matter of fact, quantum computers augment, but do
not replace classical computers. A continual challenge in
quantum science is to invent new quantum algorithms to
speed up the best classical algorithms. For example, quan-
tum superposition indicates that we can potentially carry
out exponentially many computations in parallel, but it
is tricky to extract the solution from such an exponential
superposition to achieve some quantum speedup, as ob-
serving the qubit system destroys its state. This is where
we need clever designs of quantum software. Common
techniques employed to create quantum algorithms in-
clude quantum Fourier transform, phase estimation, am-
plitude amplification, quantum walk, quantum annealing
and quantum simulation. The widely known quantum al-
gorithms include Shor’s factoring algorithm and Grover’s
search algorithm, which are, respectively, exponentially
faster and quadratically faster than the best known and
best classical algorithms for the same tasks. Many other
algorithms were created for a wide range of problems
and applications such as searching, sorting, counting,
sampling, simulation, and optimization. See Montanaro
(2016), Nielsen and Chuang (2010) and Wang (2012) for
more discussions.

As a case in point, we consider quantum computation
for the Grover and parity problems. Let f (x) be a function
defined on the integers from 1 to N and taking the values
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±1. Define the parity of f (x) by

Par(f ) =
N∏

x=1

f (x).

The parity of f (x) can be either +1 or −1, and always
depends on the values of f (x) at all N points. It has
been proved that with no further information about f (x),
both classical and quantum algorithms have O(N) time-
complexity to determine its parity, and thus quantum com-
puters cannot outperform classical computers for the par-
ity problem. For the Grover problem, there is a further
information that f (x) is either identically equal to 1 or it
is 1 for N − 1 of the x’s and equal to −1 at one unknown
value of x. For such f (x), its parity indicates its type,
and the computational task for the Grover problem is to
determine the type of f (x) and search for the unknown
value of x (if it exists). With the additional information
about f (x), the best classical and quantum algorithms for
the Grover problem have complexity O(N) and O(

√
N),

respectively, and thus there is an optimal
√

N quantum
speedup. It is interesting to note that, although there is a
quadratic quantum speedup for the Grover problem, the
parity problem has no quantum speedup (see Farhi et al.
(1998) and Grover (1997)). This example indicates that
neither classical nor quantum computers are expected to
be best for all computational tasks.

6.5 Quantum Machine Learning

Quantum machine learning extends classical machine
learning to the quantum realm. Classical machine learn-
ing and statistical learning often refer to an array of statis-
tical approaches to analyzing data, with the goal of in-
ferring the future behavior of target variables (such as
the function relationships of variables and their dynamic
processes) from training data. The learning procedure in-
volves inference, which addresses how statistically effi-
cient we can learn the functions or processes from given
data, and computation, which handles how much com-
putational resources are required to perform a learning
task and how fast algorithms can be designed to carry
out the learning task. The learning objective is to search
for a model that fits well to training data but more im-
portantly enjoys good generalization capability, which
refers to the property of the learned model with good
prediction performance on new observations. Common
learning approaches rely on regularization-based meth-
ods leverage on optimization techniques to solve learn-
ing problems. Quantum learning theory investigates how
quantum resources can affect the learning efficiency. The
theory indicates that it is possible for quantum learners
to achieve higher efficiency such as better generaliza-
tion errors in learning difficult functions for some par-
ticular learning models. However, the major advantages
that quantum mechanics can provide is largely in terms

of computation. In other words, quantum machine learn-
ing can offer advantages over its classical counterpart in
terms of computational complexity. Therefore, it is rea-
sonable to expect quantum computers to be faster than
classical computers for solving some machine learning
problems, but it is important and challenging to explore
quantum softwares that enable quantum machine learn-
ing to realize such quantum speedups. Recent develop-
ment indeed shows a class of quantum machine learn-
ing algorithms exhibit some quantum speedups. For ex-
ample, from a computational perspective, solving linear
equation systems is almost ubiquitous in machine learn-
ing, and finding a learning solution usually comprises a
sequence of standard linear algebra operations such as
matrix multiplication and inversion. Quantum linear al-
gebra algorithms offer quantum speedups over their clas-
sical analogs. As a case in point, quantum basic linear al-
gebra subroutines (BLAS), which include finding eigen-
vectors and eigenvalues and solving linear equations, ex-
hibit exponential quantum speedups over their best known
classical counterparts. The quantum BLAS renders quan-
tum speedups for an array of data analysis and ma-
chine learning algorithms including linear algebra opera-
tion, gradient descent, Newton’s method, linear program-
ing, semidefinite and quadratic programming, topological
analysis, least-squares, nearest-neighbor, support vector
machines, clustering, and principal component analysis
(PCA). Also special-purpose quantum computers, such
as quantum annealers and programmable quantum opti-
cal arrays, bear architectures well suited to quantum op-
timization and deep learning particularly quantum deep
learning with Boltzmann machines. More discussions
can be found in Adachi and Henderson (2015), Amin
et al. (2018), Arodz and Saeedi (2019), Arunachalam and
de Wolf (2018), Benedetti et al. (2016), Biamonte et al.
(2017), Brandão et al. (2019), Ciliberto et al. (2018),
Dunjko, Taylor and Briegel (2016), Dunjko and Briegel
(2018), Jordan (2005), Lloyd, Mohseni and Rebentrost
(2014), O’Gorman et al. (2015), Rebentrost, Mohseni and
Lloyd (2014), Salakhutdinov and Hinton (2009), Shenvi,
Kempe and Whaley (2003), Svore, Hastings and Freed-
man (2014), Wiebe, Kapoor and Svore (2016, 2015),
Wiebe and Granade (2016), and Wittek (2014). Below
we provide short illustrations for some selected topics in
quantum machine learning.

6.5.1 Bayesian quantum phase estimation. Quantum
phase estimation is the key to achieve quantum speedups
in many well-known quantum algorithms (Nielsen and
Chuang, 2010, Wang, 2012). Suppose that a unitary op-
erator U has an eigenvector |ξ〉 with corresponding eigen-
value e

√−12πϕ , ϕ ∈ (0,1). We do not know the phase ϕ of
the eigenvalue, and our goal is to find ϕ based on a set of
experiments performed on a quantum circuit. The experi-
ments involve preparing the state |ξ〉 and performing mea-
surement on U multiple times at some angle, where the
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angle θ and the number M of times are randomly chosen.
The Bayesian phase estimation procedure is to perform a
series of random measurements and then solve a classical
reconstruction problem using Bayesian inference. Given
ϕ, and randomly chosen M and θ , the conditional prob-
abilities of obtaining measurement outcomes 1 and 0 are
as follows:

P(1|ϕ; θ,M) = 1 − cos(2πMϕ + θ)

2

= 1 − P(0|ϕ; θ,M).

For a given measurement sequence, with a uniform pri-
ori distribution on ϕ, we obtain the posterior distribution
of ϕ. We may repeat this process for a series of experi-
ments, and the Bayesian phase estimation approach pro-
vides posterior distributions over the phase ϕ, which offer
estimates of the true eigenvalue and the algorithm’s uncer-
tainty in that value. More details can be found in Paesani
et al. (2017), Svore, Hastings and Freedman (2014) and
Wiebe and Granade (2016). More generally, Hamiltonian
learning has been developed to infer quantum Hamilto-
nians via Bayesian inference for understanding quantum
dynamics. See Granade et al. (2012), Wiebe et al. (2014)
and Wiebe, Granade and Cory (2015) for details.

6.5.2 Quantum principal component analysis. PCA
depends on the eigendecomposition of a covariance ma-
trix, which, in the quantum context, can be converted
into simulating a Hamiltonian in quantum simulation de-
scribed in Section 6.3. Suppose that data are observed in
the form of vectors vj in a d-dimensional vector space,
j = 1, . . . , n. Assume that vj have zero mean and finite
variance. Without loss of generality we further assume
vj are unit vectors (otherwise we may normalize each
to be a unit vector and then use their norms to adjust
selection probability below). Quantum principal compo-
nent analysis randomly selects a vector from v1, . . . , vn

and then maps each selected vector vj into a pure quan-
tum state |vj 〉. The random encoding procedure yields a
quantum state with b = log2 d qubits and a density ma-
trix ρ̂ = 1

n

∑n
j=1 |vj 〉〈vj |, which is equal to the sample

covariance matrix up to an overall factor.
We first describe a quantum technique called density

matrix exponentiation. Using a simple trick with the par-
tial trace over the first variable and the swap operator S,
we get

tr1
[
e−√−1S�tρ ⊗ πe

√−1S�t ]
= cos2(�t)π + sin2(�t)ρ − √−1 sin(�t)[ρ,π ]
= π − √−1�t[ρ,π ] + O

([�t]2)
(6.11)

= e−√−1ρ�tπe
√−1ρ�t + O

([�t]2)
= e−√−1[ρ,π]�t(π) + O

([�t]2)
,

where tr1 denotes the partial trace over the first variable,
and swap operator S has a matrix representation

S =
d∑

j,k=1

|j〉〈k| ⊗ ∣∣k〉〈j ∣∣.

S is a sparse matrix of size d2, which can be clearly seen
from the following explicit expression for the case of d =
2:

S =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ .

Thus, for sparse S, e−√−1S�t can be performed effi-
ciently. As a result, simply performing infinitesimal swap
operations on ρ ⊗ π allows us to simulate the unitary
time evolution e−√−1ρ�tπe

√−1ρ�t = e−√−1[ρ,π]�t(π)

and thus construct the unitary operator e−√−1ρt via the
Schrödinger equation (2.3) in the density matrix form,
where we have used the Baker–Campbell–Hausdorff for-
mula that for matrices A and B,

AdeAB = eABe−A = eadAB =
∞∑

k=0

1

k!(adA)k(B),

and linear transformations adA and AdA with defini-
tions adAB = [A,B] = AB − BA, and AdAB = ABA−1.
The quantum density matrix exponentiation procedure for
constructing e−√−1ρt comprises the preparation of an en-
vironment state π and the application of the global swap
operator S to the combined system and environment state
ρ ⊗ π followed by partial trace tr1 to discard the environ-
mental degrees of freedom.

Applying the density matrix exponentiation procedure
to ρ̂ we construct e−√−1ρ̂�t . Then we utilize the quan-
tum phase estimation algorithm to find eigenvalues and
eigenvectors of the density matrix ρ̂, which renders the
principle components. The quantum PCA procedure has
computational complexity O(log2 d) with potential to
be exponentially faster than classical PCA. See Lloyd,
Mohseni and Rebentrost (2014) and Rebentrost, Mohseni
and Lloyd (2014) for more details.

6.5.3 Quantum support vector machines. Consider the
binary classification problem where we have training
data (x1, y1), . . . , (xn, yn), with xi = (xij ) ∈ R

p and yi ∈
{−1,1}, and the goal is to use the training data to learn
how to predict classes y for feature vectors x. Define
a hyperplane f (x) = xτβ to induce a classification rule
sign(xτβ), where β = (βj ) ∈ R

p is a parameter. We need
to find a suitable value for parameter β based on the train-
ing data. The training of the sparse support vector ma-
chines model with the hinge loss is often converted into
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solving the following minimization problem:

arg min
β

1

n

n∑
i=1

max
(
0,1 − yiβ

τ xi

) + λ

p∑
j=1

|βi |,

where λ > 0 is a tuning parameter. The nonlinear uncon-
strained optimization problem can be transformed to an
equivalent constrained linear programming problem with
n + 2p nonnegative variables and n linear inequality con-
straints,

arg min
ξ,β+,β−

1

n

n∑
i=1

ξi + λ

p∑
j=1

β+
j + λ

p∑
j=1

β−
j ,

subject to

p∑
j=1

yixijβ
+
j −

p∑
j=1

yixijβ
+
j ≥ 1 − ξi,

ξi, β
±
j ≥ 0, i = 1, . . . , n, j = 1, . . . , p,

The support vector machines solution is βj = β+
j − β−

j .
While classical algorithms for solving such linear pro-
gramming problems have asymptotic computational com-
plexity Õ(mn) where m = n + 2p, quantum algorithms
have been proposed recently for the optimization prob-
lems with time complexity Õ(

√
mn) or even Õ(

√
m +√

n), which offers potential for a quadratic speedup com-
pared to the classical algorithms. Furthermore, for the
least squares support vector machines (with the mini-
mization problem: minβ

1
2‖β‖2 + λ

∑n
i=1 ξ2

i subject to
ξi ≥ 0, yix

τ
i β = 1− ξi, i = 1, . . . , n), quantum algorithms

offer an exponential speedup over classical algorithms.
Also nonlinear classification rules can be derived by using
kernels. For a polynomial kernel matrix K , we normal-
ize it by its trace to obtain K̂ = K/ tr(K). Using density

matrix exponentiation in (6.11) to construct e−√−1K̂t and

then applying quantum phase estimation to e−√−1K̂t we
perform eigen-analysis and matrix inversion for K and
thus efficiently solve the optimization problem for find-
ing the support vector machines solution. See Arodz and
Saeedi (2019) and Rebentrost, Mohseni and Lloyd (2014)
for more details.

6.5.4 Quantum deep learning with Boltzmann ma-
chines. Deep learning has been widely explored in quan-
tum machine learning. The literature has been mainly con-
centrated on speeding up the training of classical models
and on developing relatively less matured quantum neu-
ral networks, which refer to that all their component parts,
ranging from the single neurons to the training algorithms,
are carried out on quantum computers. Boltzmann ma-
chines are stochastic models that enable to produce new
data based on prior observations, which are called gener-
ative models in deep learning. Because of their intrinsic

link to the Ising model, Boltzmann machines are espe-
cially suitable for learning exploration from a quantum
viewpoint.

As a classical machine learning technique, Boltzmann
machines serve as the basis of powerful deep learning
models. A Boltzmann machine usually consists of visi-
ble and hidden binary units that are jointly denoted by
si , i = 1, . . . ,N , where N is the total number of units.
We use the notation si = (sv, sh) to distinguish the vis-
ible and hidden variables with index v for visible vari-
ables and h for hiddens, and reserve vector notations v,
h, and s = (v,h) for representing random vectors corre-
sponding to visible, hidden, and combined units, respec-
tively. A classical Ising model is employed to describe
the variables sj . As in Section 6.2, the Hamiltonian (or
energy function) of the Ising model is Hc

I ≡ Hc
I (s) de-

fined in (6.1), where now we take N = b, and γj and δij

are considered as model parameters to be tuned during
the training in machine learning. In equilibrium, the prob-
ability of observing a state v of the visible variables is
described by the Boltzmann distribution summed over all
hidden variables,

(6.12) Pv = Z−1
∑

h

e−Hc
I (s), Z = ∑

s
e−Hc

I (s),

which is called the marginal distribution of the visible ran-
dom vector v. We aim to find parameters θ = {γj , δij } in
the Hamiltonian Hc

I such that Pv becomes as close as pos-
sible to the corresponding empirical distribution defined
by the training data. The common classical approaches
to finding the parameters are to maximize likelihoods,
and the maximization is often achieved via some com-
bination of gradient descent and sampling. Research has
demonstrated that sampling from Boltzmann machines
and calculating their likelihoods are computationally very
difficult, and MCMC simulations are often employed as
standard techniques to overcome the hard computational
tasks, though MCMC can be be very costly or even impos-
sible for models with a large number of neurons. Train-
ing with quantum resources can be very helpful in reduc-
ing the training cost and offering some quantum speedup.
Thus, it makes quantum deep learning more feasible or
preferable than the classical approach. Quantum tech-
niques, which include quantum linear algebra, quantum
sampling, and quantum annealers, have been developed to
train the classical Boltzmann machines. Special-purpose
quantum computers such as quantum annealers and pro-
grammable photonic circuits are very suitable for training
Boltzmann machines. In particular the D-Wave devices,
quantum annealers with tunable transverse Ising models,
have been applied to encode deep quantum learning pro-
tocols on over thousands of spins. See Adachi and Hen-
derson (2015), Benedetti et al. (2016) and Wiebe, Kapoor
and Svore (2016) for details.



QUANTUM SCIENCE AND QUANTUM TECHNOLOGY 67

Quantum resources can give new, fundamentally quan-
tum, models for deep learning. Quantum Boltzmann ma-
chines are introduced to cross-breed between training arti-
ficial neural networks and fully quantum neural networks.
They induce an array of quantum effects such as quantum
tunneling. Unlike classical Boltzmann machines, quan-
tum Boltzmann machines can yield quantum states as out-
puts, and thus deep quantum networks can learn to pro-
duce quantum states for representing a broad range of
systems, which is beyond the capability of classical ma-
chine learning. Quantum Boltzmann machines are defined
by quantum Ising models in transverse fields. Similar to
the classical case, as described in Section 6.2, the quan-
tum Hamiltonian of the quantum Ising model is Hq

I given
by (6.3), where again we take N = b, and γj and δij are
model parameters to be tuned during the training. Note
that Hq

I is a 2N ×2N diagonal matrix, which is in contrast
to vectors with dimensionality equal to N , the number of
variables, used in classical machine learning.

Denote by |v,h〉 the eigenstates of Hamiltonian Hq
I ,

where again v and h stand for vectors of visible and hid-
den variables, respectively. For diagonal Hamiltonian Hq

I ,

e−Hq
I is also a diagonal matrix with its 2N diagonal ele-

ments being e−Hc
I corresponding to all 2N configurations.

Define its partition function Z = tr[e−Hq
I ] and density ma-

trix

(6.13) ρ = Z−1e−Hq
I .

Then the diagonal elements of ρ are equal to the Boltz-
mann probabilities of all 2N configurations. Given a state
|v〉 of the visible variables, we get the following marginal
Boltzmann probability Pv by tracing over the hidden vari-
ables:

(6.14) Pv = tr[�vρ],
where �v is a diagonal matrix whose diagonal elements
are equal to 1 if the visibles are in state v, and 0 other-
wise. The use of �v is to limit the trace only to diagonal
elements corresponding to the visible variables which are
in state v. It is easy to see that definitions (6.12) and (6.14)
are identical for the diagonal Hamiltonian and density ma-
trix, but (6.14) is still valid for the nondiagonal case.

To add a transverse field to the quantum Hamiltonian
Hq

I , as described in Section 6.2, we need nondiagonal ma-
trices σ x

j described in (6.7) to obtain the transverse field
Ising Hamiltonian as follows:

(6.15) Hq
� = −∑

i

�iσ
x
i − ∑

i,j

δijσ
z
i σ

z
j − ∑

j

γjσ
z
j ,

where besides the original parameters γj and δij , we have
additional model parameters �i . A quantum Boltzmann
machine is defined by the quantum Boltzmann distribu-
tion of the transverse field Ising Hamiltonian Hq

� . As Hq
�

is a nondiagonal matrix, we may express its eigenvectors

by superpositions in the computation basis composed of
the classical states |v,h〉, and the corresponding quantum
Boltzmann machine has quantum probability distribution
with nondiagonal density matrix ρ given by (6.13) with
Hq

I replaced by Hq
� as well as the marginal Boltzmann

probability distribution Pv defined in (6.14). Performing
each measurement on the states of the qubits in the σ z-
basis we obtain the outcome ±1, and thus the measure-
ment output for the visible variables follows the marginal
probability distribution Pv given by (6.14).

Our learning goal is to train the quantum Boltzmann
machine and find the model parameters θ = {�i, γj , δij }
in the Hamiltonian Hq

� such that the probability distri-
bution Pv gets as near as possible to the corresponding
empirical distribution determined by the input data. The
method of finding the parameters is to maximize some
bounds on relevant likelihoods, due to the likelihood in-
tractability for quantum Boltzmann machines. Treating as
a class of recurrent quantum neural networks, quantum
Boltzmann machines can be trained for machine learning
tasks such as discriminative and generative learning, as
well as quantum state tomography and quantum anneal-
ing. More details can be found in Amin et al. (2018) and
Kieferova and Wiebe (2016).

6.5.5 Quantum machine learning for quantum data. In
general quantum machine learning is particularly suitable
for quantum data which are the actual output states gen-
erated by quantum systems and processes, and the spe-
ciality of quantum data analysis is the capability of using
quantum simulators to probe quantum dynamics. We may
apply quantum machine learning algorithms like quantum
PCA and quantum Boltzmann machines to quantum data
(such as quantum states of light and matter) for exploit-
ing the quantum states and uncovering their hidden fea-
tures and patterns. The obtained analysis results in quan-
tum modes are often much more efficient and more en-
lightening than the the classical analysis of data draw-
ing from quantum systems. See Granade et al. (2012),
Havlíček et al. (2019), Kieferova and Wiebe (2016),
Lloyd, Mohseni and Rebentrost (2014), Marvian and
Lloyd (2016), Wiebe et al. (2014) and Wiebe, Granade
and Cory (2015) for details.

6.5.6 Quantum sampling. Sampling methods are
widely used techniques to compute some intractable
quantities. Examples include the most commonly used
Monte Carlo methods in particular MCMC simulations.
While classical Monte Carlo simulations are performed
by pseudo-random numbers, quantum computation is able
to generate genuine random numbers and perform true
Monte Carlo simulations. Quantum MCMC algorithms
are developed to offer a quadratic speedup over classi-
cal MCMC algorithms in terms of spectral gap, inverse
temperature, desired precision or the hitting time. See
Chowdhury and Somma (2017), Richter (2006), Szegedy
(2004) and Temme et al. (2011) for details.
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6.5.7 Quantum machine learning with noise. Noise
can be potentially beneficial for solving machine learn-
ing problems. Research has shown in the classical case
that noise may play a positive role in perturbing gradi-
ents for jumping out local optima and improving gen-
eralization performance. It becomes promising to ana-
lyze noisy learning problems from a quantum perspec-
tive and particularly exploit advantageously the effects of
noise in quantum machine learning. For example, we may
study whether the kinds of noise occurred in quantum sys-
tems have similar distributional and structural behaviors
to those usually seen in classical settings, and if they can
play a beneficial role in quantum machine learning as in
the classical case. See Cross, Smith and Smolin (2015)
and Grilo, Kerenidis and Zijlstra (2018) for details.

6.6 Quantum Computational Supremacy

Determining a quantum speedup depends on how we
define the quantum speedup notation. One approach is to
take a formal computational complexity perspective based
on rigorous mathematical proofs. Another realistic per-
spective is based on what can be achieved with feasi-
ble finite size devices and requires sound statistical evi-
dence to confirm a scaling advantage over certain finite
range of problem sizes. For example, it has already been
rigorously proved in terms of computational complexity
that quantum algorithms like Grover’s search algorithm
and Shor’s factoring algorithm offer speedups over known
classical algorithms. Unfortunately, such rigorous proofs
are often not available for most cases, and even avail-
able, many existing quantum algorithms fail to provide
reference for any specific implementation such as the ex-
act number of qubits needed to implement them; in fact,
they often cannot be implemented on about 100 qubit plat-
forms available in the near to medium term. We need to
resort to the second perspective, and detecting a scaling
advantage of quantum computing over classical comput-
ing would hinge on the so-called benchmarking problem,
namely, the existence of a quantum computer performed
on well designed computational tasks with sound sta-
tistical analysis of computing experiments and resulting
data. Such advantages may include improved computa-
tional speed, accuracy, and sampling for classically inac-
cessible systems. Quantum algorithms and computational
problems are created for these platforms with a limited
number of qubits where classical computation is impos-
sible. The mission involving both hardware and software
along with statistical analysis aims at demonstrating the
quantum computational supremacy given in Section 6.1.
Quantum scientists are building quantum computers of 50
to 100 qubits to demonstrate quantum supremacy. For ex-
ample, the Google quantum AI group has achieved quan-
tum supremacy by building a quantum processor named
‘Sycamore’ of 54 superconducting qubits to sample from

the output distributions of random quantum circuits, while
it is hard for current supercomputers to handle the sam-
pling problem beyond around 50 qubits. See Aaronson
and Chen (2017), Arute et al. (2019), Boixo et al. (2018),
Bouland et al. (2018), Bravyi, Gosset and König (2018),
Harrow and Montanaro (2017), Lund, Bremner and Ralph
(2017), Markov et al. (2018), Neill et al. (2018) and
Rønnow et al. (2014). Below we briefly describe boson
sampling and random quantum circuits.

6.6.1 Boson sampling. Boson sampling is a quantum
computation model where n identical bosons pass through
a network of passive optical elements (beamsplitters and
phase-shifters) and then the locations of the bosons are de-
tected. Quantum supremacy can be demonstrated by im-
plementing boson sampling with a medium size network.
A network system with 50 photons (qubits) and 2500
paths is currently intractable for classical computers. To
implement boson sampling all required physical devices
are single-photon sources, beamsplitters, phase-shifters
and photon-detectors. The physical implementation of the
scheme encounters a myriad of technicalities such as syn-
chronization of pulses, mode-matching, quickly control-
lable delay lines, tunable beamsplitters and phase-shifters,
single-photon sources, and accurate, fast, single photon
detectors.

To define the boson sampling model, we adopt a sta-
tistical approach based on the permanents of the subma-
trices of a unitary matrix, which requires minimal quan-
tum physics and quantum computation terminology. For a
n × n matrix A = (aij ), we define its permanent by

Perm(A) = ∑
π

n∏
i=1

aiπ(i),

where the sum is over all permutations π of 1,2, . . . , n.
Consider the quantum system involving n identical pho-
tons and m modes, where we may loosely interpret
‘mode’ as the location of a photon, and we are only inter-
ested in the case of m ≥ n. The quantum system has com-
putational basis states of the form |s〉 = |s1, s2, . . . , sm〉,
where si indicates the number of photons in the ith mode.
Denote the set corresponding to all the computational ba-
sis states by

�m,n = {
s = (s1, s2, . . . , sm) : s1 + s2 + · · · + sm = n

}
.

It is easy to see that the total number of elements in �m,n

is equal to M = (m+n−1
n

)
. For a given m × m unitary ma-

trix U and each s ∈ �m,n, we obtain matrix Us from U by
keeping its first n columns and repeating sj times its j th
row. Define a discrete probability distribution on �m,n as
follows:

Pr(s) = |Perm(Us)|2
s1! · · · sm! .
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It can be shown that Pr(s) is a well-defined probability dis-
tribution on �m,n and corresponds to the quantum system
with n photons, m modes and an optical network whose
action is determined by the unitary matrix U. Boson sam-
pling refers to sampling from distribution Pr(s). As clas-
sical computers cannot handle the sampling problem even
with moderate size, we may demonstrate the quantum
supremacy by successfully implementing boson sampling
of reasonable size on quantum computing devices. More
details can be found in Harrow and Montanaro (2017) and
Lund, Bremner and Ralph (2017).

6.6.2 Random quantum circuits. Random quantum
circuits are created in a specific way so that when they
are generated with enough ‘complexity’, even the most
powerful classical supercomputer cannot directly simu-
late the generated quantum circuits. However, quantum
computers can sample from the output distributions cor-
responding to the obtained quantum circuits. Here a quan-
tum circuit is a sequence of d clock cycles of one- and
two-qubit gates with gates applied to different qubits in
the same cycle. The number d of cycles is called the
depth of the circuit. We say a random quantum circuit
has enough ‘complexity’, if both its qubits and depth are
large enough. If the gates to be applied are chosen from
a universal quantum gate set, the unitary matrix U of the
circuit is a random matrix whose distribution converges
to the Haar measure on the collection of unitary matrices
when the depth of the circuit goes to infinity. Specifically
when a quantum circuit contains n qubits, with 2n com-
putational basis states |x〉 = |x1x2 · · ·xn〉, xi ∈ {0,1}, a
quantum state |ψd〉 produced by the random quantum cir-
cuit is a linear combination of the computational basis
and thus has 2n amplitudes, each with real and imaginary
parts. Therefore there are 2n+1 parameters in each quan-
tum state. As the unitary matrix U of the random quan-
tum circuit converges in distribution to the Haar measure,
the random vector of the amplitude parameters asymptot-
ically follows a uniform distribution on the unit sphere.
Define the output distribution of the random quantum cir-
cuit to be measurement probability p(x) = |〈x|ψd〉|2. As
the depth d of the random quantum circuit goes to in-
finity, p(x) approaches the Porter–Thomas distribution.
The Google research group is working on finding ways
to generate random quantum circuits so that their output
distributions quickly converge to the Porter–Thomas dis-
tribution. Based on the asymptotic distribution, we may
develop a statistical approach to determine if a sample
is generated from the theoretical output distribution of
a desired random quantum circuit. Since it is difficult
for classical supercomputers to deal with the sampling
problem beyond around 50 qubits at the present time,
the Google quantum scientists have designed a quantum
processor named ‘Sycamore’ of 54 transmon qubits and

implemented quantum random circuits in a two dimen-
sional lattice to demonstrate quantum supremacy. See
Arute et al. (2019), Boixo et al. (2018), and Neill et al.
(2018) for more details.

7. QUANTUM METROLOGY

Measurement is at the heart of science, technology, in-
dustry, and commerce. We need measurements and metro-
logical standards to quantitatively assess scientific phe-
nomena and technological progress, and gauge the ex-
change of goods and service including information. Mea-
surement devices are physical apparatuses whose func-
tions and accuracy are governed by the laws of physics,
and transformative improvements in measurement tech-
nologies often follow the utilization of a new physical law.
Quantum metrology (or quantum sensing) is to exploit the
strange laws of quantum physics to build new and bet-
ter sensors and measuring devices. Fueling with quantum
laws, quantum metrology may lead to a game-changing
shift in scientific studies, technological progress, as well
as commerce and industry developments.

The basic concept of quantum metrology is that a probe
device interacts with an appropriate system to learn the
properties of the system, where the interaction alters the
state of the probe, and measurements of the probe un-
cover the characteristic parameters of the system. For
quantum sensing, the probe is usually prepared in one
certain quantum state, its encounter with the system nor-
mally changes its state with both beneficial and adversar-
ial effects in the sense that it not only responds to the pa-
rameters of interest but also decoheres the probe (which
means there is loss of information from the probe into the
system due to quantum decoherence, illustrated in Sec-
tion 6.1). Then appropriately devised measurements can
ascertain in what way and to what extent such encounter
has changed the state of the probe, which enables quan-
tum sensing to evaluate the system parameters. Quantum
sensing promises to develop high-resolution and highly
sensitive measurement techniques that will provide bet-
ter precision than the same measurement performed un-
der a classical framework. They include quantum sensors,
quantum clocks, and quantum imaging. The applications
range from the sub-nano to the galactic scale, while some
are in fact close to commercial use. The potential impact
of quantum metrology is far-reaching. An array of dis-
tinct platforms allow quantum-enhanced measurement of
time, space, rotation, as well as gravitational, electrical
and magnetic fields. The technologies are promising to
make fundamental changes in a wide range of fields such
as physics, chemistry, biology, medicine or data storage
and processing.

There is a strong link between quantum metrology and
quantum information. For example, both quantum in-
formation and quantum sensing rely on the same quan-
tum properties such as entanglement, in particular, high
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level of multipartite entanglement, to achieve better per-
formance than their classical counterparts. See Degen,
Reinhard and Cappellaro (2017), Kruse et al. (2016), and
Pezzè et al. (2018) for more details.

Quantum tomography plays an important role in quan-
tum sensing. Quantum state tomography refers to recon-
struction of a quantum state based on measurements per-
formed on the quantum state. Statistically it is a density
matrix estimation problem based on quantum measure-
ments. Common quantum measurements are on observ-
able M, which is defined as a Hermitian matrix on C

d .
For example, the Pauli matrices as observables are widely
employed to perform quantum measurements in quantum
science and quantum technology, and we may represent
many density matrices through Pauli matrices. Suppose
that the observable M has the following spectral decom-
position:

(7.1) M =
r∑

a=1

λaQa,

where λa are r different real eigenvalues of M, and Qa

are projections onto the eigen-spaces corresponding to λa .
Given a quantum system prepared in state ρ , we use a
probability space (�,F,P ) to define measurement out-
comes when performing measurements on the observable
M. Let R be the measurement outcome of M. The theory
of quantum physics indicates that R is a random variable
on (�,F,P ) which takes values in {λ1, λ2, . . . , λr}, and
has probability distribution

P(R = λa) = tr(Qaρ),
(7.2)

a = 1,2, . . . , r,E(R) = tr(Mρ).

Quantum state tomography is to reconstruct ρ from in-
dependent and identically distributed measurement out-
comes R1, . . . ,Rn. See Artiles, Gill and Guţă (2005), Cai
et al. (2016), Malley and Hornstein (1993) and Wang and
Xu (2015).

Designing and controlling quantum systems are com-
plex and challenging in the development of quantum sci-
ence and quantum technology. Statistical methods pro-
vide powerful tools for the study of quantum design and
quantum control. Examples of successful applications in-
clude quantum gate constructions with high fidelity preci-
sion in quantum computation and quantum information,
extraction of theoretical insights about quantum states
in condensed matter, and quantum control procedures in
optimizing adaptive quantum metrology. Like quantum
phase estimation and quantum tomography, many quan-
tum problems are in essence statistical problems, and it is
our firm belief that statistics and data science have great
potential to make significant improvement in quantum
metrology.

8. CONCLUDING REMARKS

Quantum science and quantum technology gain enor-
mous attention in multiple frontiers of many scientific
fields. Quantum computation can give rise to an expo-
nential speedup over classical counterpart for tackling
certain computational tasks, quantum information can
bring about exponential savings in information transmis-
sion for handling computational and communication jobs,
and quantum communication can offer more secure cryp-
tosystems than classical analogue for solving commu-
nication problems. Some of the quantum protocols are
already in practical implementation, such as quantum-
fingerprinting, quantum key distribution, quantum anneal-
ing, and quantum simulation. This paper reviews quantum
science and quantum technology from a statistical per-
spective. We introduce concepts like key quantum proper-
ties and qubits. We present quantum communication and
quantum information, illustrate quantum computation and
quantum metrology, and discuss major quantum technolo-
gies associated with them. We show the advantages of
quantum techniques over the available classical counter-
parts.

As statistics and machine learning nowadays heav-
ily involve computation, it is natural to expect quantum
computation to play a major role in data science. In-
deed, quantum computation and quantum simulation may
have tremendous potential to revolutionize computational
statistics and data science. On the other hand, there is
great demand in studying statistical issues for theoretical
research and experimental work in quantum science and
quantum technology. As quantum phenomena are intrin-
sically stochastic, and data collected in quantum experi-
ments become more and more complex, we need to de-
velop sophisticated statistical methods for enhancing data
analysis and improving understanding of quantum events
(Paesani et al., 2017, Wang, 2011, 2012, 2013, Wang,
Wu and Zou, 2016, Wiebe et al., 2014, Wiebe, Kapoor
and Svore, 2016). A great deal of current work is taken
place on creating new protocols and developing novel
approaches to certifying quantum devices such as test-
ing and assessing their quantum performances. Clearly,
such certification requires efficient and scalable statisti-
cal methods for calibrating and validating quantum prop-
erties. Moreover, certification needs to take into account
commercial considerations for compliance with industry
standards by working together with industry, academics,
national labs, and government organizations (Acín and
Masanes, 2016, Wang, Wu and Zou, 2016, Wiebe et al.,
2014).

As indicated in Section 6.1, the bottleneck of quan-
tum computing at the present time is primarily on quan-
tum hardware, and current quantum computing largely de-
pends on what kinds of quantum computers experimental-
ists can build. On the other hand, as we have demonstrated
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in Section 6.6 for the quantum computational supremacy
endeavor, besides hardware quantum computing also re-
quires sophisticated mathematical models, sound statisti-
cal analysis, and better computational tools. As a matter
of fact, in general we call for some combination of new
experimental techniques, better mathematical and statis-
tical understanding, and improved computational tools in
order to significantly advance the development of quan-
tum science and quantum technology.
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