Logo of Zeyuan's personal website

Table Of Contents

About this site

Solutions (1-10)

1. Multiples of 3 and 5

Problem

If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

Find the sum of all the multiples of 3 or 5 below 1000.

Solution: (download here)

num = 0
sum = 0
while (num<1000):
        if (num % 3) == 0:
                sum = num + sum
        elif (num % 5) == 0:
                sum = num + sum
        num += 1

print sum

2. Even Fibonacci numbers

Problem

Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

Solution: (download here)

# n is the nth term inside the Fibonacci sequence
# return the vaule of the nth term
def fib(n):
        if n == 0:
                return 0
        if n == 1:
                return 1
        else:
                return fib(n-1) + fib(n-2)

# choose the subFib from the Fibonacci sequence based upon the given range
# return the sum of the even values between the startNum and endNum
def subFib(startNum,endNum):
        sum = 0
        n = 0
        cur = fib(n)
        while cur<= endNum:
                if startNum <= cur:
                     if (cur % 2) == 0:
                         sum = sum + cur
                n += 1
                cur = fib(n)
        return sum

print subFib(1,4000000)

3. Largest prime factor

Problem

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143 ?

Solution: (download here)

from math import *

#KEY: there cannot be a number greater than the square root of that number being prime
def isPrime(n):
        if n<= 1:
                return False
        i = 2.0
        while (i <= sqrt(n)):
                if n%i == 0:
                        return False
                i += 1

        return True


def factor(n):
        i = 2
        list = []
        while(i<sqrt(n)):
                if isPrime(i) and (n%i == 0):
                        list.append(i)
                i += 1
        return list[len(list)-1]


print factor(600851475143)

4. Largest palindrome product

Problem

A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.

Find the largest palindrome made from the product of two 3-digit numbers.

Solution: (download here)

from math import *

# pure practice for the recursion data structure, nothing to do with the main program
def isPalindrome(num):

        if len(num) == 1 or len(num) == 0:
                return True

        first = num[0]
        last = num[len(num)-1]

        return (first == last) and isPalindrome(num[1:len(num)-1])

#print "is num %d a Palindrome? %s" % (9909,isPalindrome("9909"))

def find():
        list = []
        r = 0
        i = 999
        j = 999
        while j >= 100:
                while i >= 100:
                        r = i*j
                        #KEY: shortcut to reverse string
                        if str(r) == str(r)[::-1]:
                                list.append(r)
                        i -= 1
                j -= 1
                i = j - 1
        list.sort()
        return list

print "largest Palindrome from product of the three-digit number is %s" % find()

5. Smallest multiple

Problem

2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.

What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

Solution: (download here)

from math import *
import numpy as np

def isPrime(n):
        if n<= 1:
                return False
        i = 2.0
        while (i <= sqrt(n)):
                if n%i == 0:
                        return False
                i += 1

        return True

def minDivisible(k):
        # N: the value the function is going to return
        N = 1
        # index number
        i = 0
        check = True
        # upper bound of the estimation process for a[i]
        limit = sqrt(k)
        a = np.zeros(20)
        # plist is the prime list
        plist = []
        j = 1
        while j <= k:
                if isPrime(j):
                        plist.append(j)
                j += 1

        while i < len(plist):
                #print "index of the list before increment:%d"%i
                a[i] = 1
                if check:
                        if plist[i] <= limit:
                                a[i] = int( log10(k) / log10(plist[i]) )
                        else:
                                check = False
                #print "N: %d"%N
                N = N * plist[i]**a[i]
                i = i + 1
                #print "index of the list after increment:%d"%i

        #print a
        return N

print"the smallest number divisible by each of the numbers 1 to 20 is: %d" % minDivisible(20)

6. Sum square difference

Problem

The sum of the squares of the first ten natural numbers is,

\(1^2 + 2^2 + ... + 10^2 = 385\)

The square of the sum of the first ten natural numbers is,

\((1 + 2 + ... + 10)^2 = 55^2 = 3025\)

Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is \(3025 − 385 = 2640\).

Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

Solution: (download here)

from math import *

def diffSum(n):
        sum_square_n = n * (n+1) *(2*n+1) / 6.0
        sum_n_square = pow((1+n)*n / 2.0 , 2)
        return abs(sum_n_square - sum_square_n)

print diffSum(100)

7. 10001st prime

Problem

By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.

What is the 10 001st prime number?

Solution: (download here)

from math import *
def isPrime(n):
        if n<= 1:
                return False
        i = 2.0
        while (i <= sqrt(n)):
                if n%i == 0:
                        return False
                i += 1

        return True

def find(n):
        list = [2]
        i = 3
        count = 0
        while count < n-1:
                if isPrime(i):
                        list.append(i)
                        count += 1
                i += 2
        return list[count]

print "the 10 001st prime number is: %d"%find(10001)

8. Largest product in a series

Problem

Find the greatest product of five consecutive digits in the 1000-digit number.

73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 12540698747158523863050715693290963295227443043557 66896648950445244523161731856403098711121722383113 62229893423380308135336276614282806444486645238749 30358907296290491560440772390713810515859307960866 70172427121883998797908792274921901699720888093776 65727333001053367881220235421809751254540594752243 52584907711670556013604839586446706324415722155397 53697817977846174064955149290862569321978468622482 83972241375657056057490261407972968652414535100474 82166370484403199890008895243450658541227588666881 16427171479924442928230863465674813919123162824586 17866458359124566529476545682848912883142607690042 24219022671055626321111109370544217506941658960408 07198403850962455444362981230987879927244284909188 84580156166097919133875499200524063689912560717606 05886116467109405077541002256983155200055935729725 71636269561882670428252483600823257530420752963450

Solution: (download here) (download input file)

import os

# open the file to read
f = open(os.path.abspath('euler8_input.txt'))
# store the 1000 digits
data = ''
# store the parse result from one line
parse = ''
# product of five consecutive digits (final result)
product = 0
# index
i = 0
# product of five consecutive digits (cal result)
result = 0

# parse the input file to form 1000 digits into one string
for line in f:
    # note line.strip('\n') will not affect 'line'
    parse = line.strip('\n')
    data = data + parse

while ((i+4) < len(data)):
    result = int(data[i]) * int(data[i+1]) * int(data[i+2]) * int(data[i+3]) * int(data[i+4])
    if result > product:
        product = result
    i += 1

print product

note

string.strip() will not affect the original string.

9. Special Pythagorean triplet

Problem

A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,

\(a^2 + b^2 = c^2\)

For example, \(3^2 + 4^2 = 9 + 16 = 25 = 52\).

There exists exactly one Pythagorean triplet for which \(a + b + c = 1000\). Find the product \(abc\).

Solution: (download here)

# transform relations into ab = 1000(a+b)-500*1000
for a in range(0,1001):
   for b in range(0,1001):
        if (a*b == 1000*(a+b) - 500*1000):
            print a*b*(1000-a-b)
            break

10. Summation of primes

Problem

The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.

Find the sum of all the primes below two million.

Solution: (download here)

from math import *

def isPrime(n):
        if n<= 1:
                return False
        i = 2.0
        while (i <= sqrt(n)):
                if n%i == 0:
                        return False
                i += 1

        return True

# since we know that 2 and 3 are primes
summation = 5

for i in range(5,2000000):
    if isPrime(i):
        summation += i

print summation