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Abstract

In a hybrid peer-to-peer (P2P) system, some operations
are intentionally centralized, such as indexing of peers’ files.
We present several protocols to achieve mutual communi-
cation anonymity between an information requester and a
provider in a hybrid P2P information-sharing environment
with trusted index servers such that neither the requester,
nor the provider can identify each other, and no other peers
can identify the two communicating parties with certainty.
Some existing protocols provide solutions to achieve mutual
anonymity in pure P2P systems without any trusted central
controls. Compared with two representative protocols, our
proposed mutual anonymity protocols improve efficiency by
utilizing trusted third parties and aiming at both reliability
and low-cost. We show that with some limited central sup-
port, our protocols can accomplish the goals of anonymity,
efficiency, and reliability. We have evaluated our techniques
in a browser-sharing environment. We show that the average
increase in response time caused by our protocols is trivial,
and these protocols show advantages over existing protocols
in a hybrid P2P system.

1. Introduction

P2P systems can be classified into two classes: a pure
P2P where peers share data without a centralized coordina-
tion; and a hybrid P2P where some operations are intention-
ally centralized, such as indexing of peers’ files. In a hybrid
P2P, whether the indexing servers can be trusted or not has a
critical implication on how anonymity is enforced.

In a P2P system, each peer can play three different roles:
as a publisherto produce documents; as a provider (or a re-
sponder) to host and deliver documents upon requests; as a
requester(or an initiator) to request documents. In some sys-
tems, a provider and a publisher can be the same peer for
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the same document. In some other systems, a provider and a
publisher are different peers for the same document for vari-
ous reasons. For example, a publisher can distribute its docu-
ments to other provider peers in order to resist censorship; and
documents can also be cached in some non-producer peers.

Depending on circumstances, applications and users of a
system may require different levels of anonymity. It is de-
sirable in practice that the identity of a publisher be hidden
to resist censorship (publisher anonymity), or that either a re-
sponder or an initiator be anonymous (responder or initiator
anonymity), or that both responder and initiator be anony-
mous (mutual anonymity). In the most stringent version,
achieving mutual anonymity requires that neither the initiator,
nor the responder can identify each other, and no other peers
can identify the two communicating parties with certainty.

Our goal is to achieve mutual anonymity between the ini-
tiator and responder with high efficiency in hybrid P2P sys-
tems utilizing trusted index servers (e.g., Napster [10], and
browser-aware proxies [21]). In our work, instead of having
both the initiator and responder each prepare their own covert
path, we rely on the index server to prepare a covert path for
both of them, significantly reducing operations and commu-
nication overhead. We have proposed two new techniques:
center-directing, where encryption cost is independent of the
length of the covert path, and label-switchingthat eliminates
potentially excessive messages in center-directing.

We have evaluated our techniques in a browser-sharing en-
vironment. We show that the average increase in response
time caused by our protocols is trivial, and these protocols
show advantages over existing protocols in a hybrid P2P sys-
tem.

2. Related Work and Motivation

The related work includes existing protocols for the three
types of anonymity. We have paid a special attention to the
work on mutual anonymity, which has motivated us to de-
velop new protocols.



2.1. Publisher and Sender Anonymity

Publisher Anonymity: In order to protect a publisher
peer, many systems provide censorship resistance facility. In
Freenet [3], each node in the response path may cache the
reply locally, which can supply further requests and achieve
publisher anonymity. Publius [20] splits the symmetric key
used to encrypt and decrypt a document into n shares using
Shamir secret sharing and store the n shares on various peers.
Any k of the n peers must be available to reproduce the key.
Instead of splitting keys, FreeHaven[4] and [14] split a docu-
ment into n shares and store them in multiple peers. Any k of
then peers must be available to reproduce the document. Tan-
gler [19] and Dagster[17] make newly published documents
depend on previously published documents. A group of files
can be published together and named in a host-independent
manner.

Initiator/responder Anonymity: Most existing
anonymity techniques are for client/server models, which
only hide the identities of the initiator (clients) from the
responder (the server), but not vice versa. Anonymizer [8]
and Lucent Personalized Web Assistant (LPWA) [7] act as an
anonymizing proxy between a user and a server to generate
an alias for a user, which does not reveal the true identity of
the user. Many systems achieve sender anonymity by having
messages go through a number of middle nodes to form
a covert path. In Mix [2] and Onion [18], the sender part
determines the covert path, and a message is encrypted in a
layered manner starting from the last stop of the path. Instead
of having the initiator select the path, Crowds [11] forms
a covert path in such a way that the next node is randomly
selected by its previous node. Hordes [16] applies a similar
technique used in Crowd, but it uses multicast services to
anonymously route the reply to the initiator. Freedom [6]
and Tarzan [5] are similar to Onion Routing, but they are
implemented at IP layer and transport layer rather than the
application layer.

2.2. Existing mutual anonymity protocols: their mer-
its and limits

Our study targets on mutual anonymity between an initia-
tor and a responder. There are two most related and recent
papers aiming at achieving mutual anonymity: Peer-to-Peer
Personal Privacy Protocol (P 5) [15], and Anonymous Peer-
to-peer File Sharing (APFS) [13].

Paper [15] first proposes to use a global broadcast chan-
nel to achieve mutual anonymity, where all participants in the
anonymous communication send fixed length packets onto
this channel at a fixed rate. Noise packets can be used to
maintain a fixed communication rate. Besides enforcing both
initiator and responder anonymity, this protocol pays a spe-
cial attention to eliminate the possibility of determining the
communication linkability between two specific peer nodes
by providing equal and regular broadcast activities among the

entire peer group. The broadcast nature of this framework can
limit the size of the communication group. To address this
limit, the authors further propose the P 5 scheme that creates
a hierarchy of broadcast channels to make the system scal-
able. Different levels of the hierarchy provide different levels
of anonymity at the cost of communication bandwidth and re-
liability. As authors stated in this paper, P 5 will not provide
high bandwidth efficiency. But P 5 allows individual peer to
trade-off anonymity degree and communication efficiency.

In the APFS system, a coordinator node is set to organize
P2P operations. Although this node is not considered as a
highly centralized and trusted server, it should be on service
all the time, and it plays an important role to coordinate peers
for file sharing. APFS uses Onion as the base to build their
protocol. There are two advantages for APFS. First, all the
communications in the system are mutual anonymous. Even
the coordinator does not know the physical identities of the
peers. Second, the anonymous protocols are designed for a
pure P2P where the trusted centralized servers may not be
available. However, there are also several disadvantages as-
sociated with APFS solely relying on volunteering. First, the
suitability of a volunteering peer needs to be taken into ac-
count, which can significantly affect the performance of P2P
systems. To do so, the coordinator needs to examine each
volunteering peer before possibly assigning a task, such as
peer indexing. The background checking of peers has to be
done anonymously, increasing the communication overhead.
Second, the number of servers can be dynamically changed.
In the worst scenario, no qualified peers are available for a
period of time, causing the P2P system to be in a weak condi-
tion. Thirdly, since any peer can be a server, a malicious node
can easily become a server. Although the peer identities are
hidden from a server, a server has the power to provide wrong
indexing information to mislead the initiators. Finally, since
no trusted servers are available, the anonymous communica-
tions have to be highly complicated.

Both P 5 and APFS provide unique solutions to achieve
mutual anonymity in pure P2P systems without any trusted
central controls. We believe that limited trusted and central-
ized services in decentralized distributed systems are desir-
able and necessary. In practice, trusted central parties exist
and effectively function, such as proxies and firewalls in In-
ternet and distributed systems. Utilizing these trusted par-
ties and aiming at both reliability and low-cost, we propose
a group of mutual anonymity protocols. We show that with
some limited central support, our protocols can accomplish
the goals of anonymity, efficiency, and reliability.

3. Anonymity with Trusted Third Parties

We present our techniques for achieving mutual anonymity
of the initiator and responder with the help of trusted index
servers that keeps (but not publicize) the whereabouts of the
contents that are stored in the peers. Each peer sends an index



of files they are willing to share with others peers to selected
index servers periodically or when the percentage of updated
files reaches to a certain threshold. We use I to represent
the initiator, R to represent the responder, S to represent the
index server that I contacts, and pi (i = 1; 2; :::) to represent
a peer. For conciseness of the presentation, we assume there
is only one index server. Section 4 discusses how multiple
index servers will be involved in order to scale a P2P system.

We describe one intuitive protocol using mix, and two
new protocols, center-directingand label-switching, which
are advanced alternatives. In the rest of the paper, we use
X ! Y : M to represent X sending a message M to Y .
We use KX to denote the public key of X , and fMgK to
represent encrypting the message M with the key K.

3.1. A Mix-based Protocol: an intuitive solution

The detail of the mix-based protocol is shown below:

Step 1: The initiator sends a request to S. The request is
encrypted with S’s public key.

I ! S : ffile IDgKS

Step 2: S finds out that the file is possessed by R, it se-
lects a list of peers p0; p1; :::; pk at random, and builds a mix
with R as the first member of the path, I as the last member,
and with pi in the middle. We call this path mix. mix is of
the form (p0; (p1:::(I; fakemix)Kpk :::)Kp0)KR. The item
fakemix is introduced to confuse the last node in the mix,
pk, so that the format of a message passing through the mid-
dle nodes are the same. So pk cannot be sure that she is the
last stop. In addition, it generates a DES key K. It then sends
a message to R. The message includes K encrypted with R’s
public key, ffile IDg encrypted with the DES key K, K
encrypted with I’s public key, and the mix.

S ! R : fKgKR; ffile IDgK; fKgKI;mix

Step 3: R obtains K using its private key to decrypt
fKgKR; it uses K to decrypt the portion of the message
ffile IDgK and gets the file f based on the file ID ; it
uses its private key to peel mix to obtain p0, and also the rest
of the path, mix0, i.e. (p1:::(I; fakemix)Kpk :::)Kp0 . It en-
crypts the file f with K and sends a message to p0:

R! p0 : ffgK; fKgKI;mix
0

Step 4: pi decrypts mix0 using its private key to obtain
the address of the next member in the mix paths, and this also
produces the rest of the path, mix00. It then sends a message
to pi+1. For pk, pk+1 is I .

pi ! pi+1 : ffgK; fKgKI;mix
00

Step 5: I obtains K using its private key, and uses K to
decrypt the encrypted file.

The anonymizing path is selected by the trusted index
server; and the mix routers are selected among the peers.
Having the index server perform a path selection, this scheme

becomes less vulnerable to traffic analysis since the peers’
public keys need only be exposed to the index server. Other-
wise, an eavesdropper who knows the peers’ public keys may
reconstruct the path by applying the public keys in a reverse
order. Furthermore, the index server has the opportunity to
balance the load of the peers that act as mix routers. In this
protocol, only the path is encrypted with an expensive public
key encryption, and the content is encrypted with a less ex-
pensive DES key. This arrangement makes the scheme effi-
cient. This scheme can be made more efficient by encrypting
the mix path using secret keys that are shared between the in-
dex server and each of the peers. The content is encrypted by
a key that is generated by the index server and is only known
to I andR. This hides the content from anybody except I and
R. Figure 1 shows an example with two middle nodes.

1

I R

p0p

1:{file_ID}K
1

Initiator Responder

Index Server

s R I

0 R

1 1 0

2: {{K}K  , {file_ID}K, {K}K  ,

1 0

1 {I, fakemix}Kp  }

I

I

3: {{f}K, {K}K   ,

4: {{f}K, {K}K   ,

I5:{{f}K,{K}K   , fakemix}

{p  , {p  ,{I, fakemix}Kp }Kp }K  }

{p  ,{I, fakemix}Kp }Kp  }

Figure 1. An example of Mix-Based Protocol

3.2. Center-Directing

Alternatively, S can be used to reduce the number of en-
cryption/decryption operations. We describe two new proto-
cols: center-directingand label-switching.

Instead of passing the mix through the whole covert path
in mix-basedprotocol, the center-directingprotocol has the
index server send each node in the covert path its next hop in-
dividually. The basic idea of the center-directing protocol is
as follows. The index server S selects several peers to form a
covert path. It directs the content through the path by sending
each middle node pi a pair < label(pi); pi+1 > that is en-
crypted with pi’s public key. The labels can be generated such
that label(pi+1) = flabel(pi)gKpji+1

. The labels uniquely
identify a message, and pi+1 is the next member in the covert
path. When the peer pi sees a message from a peer labeled ’l’,
it will change the label to flgKpji+1

and forward the message
to pi+1. Each pi keeps a hash table to synchronize between
the message from the index server and the message from its
previous hop. The pji+1 is a random generated node number.
Using the random node’s public key to encrypt the request
label each time, we can defend against traffic analysis in the
sense that (1) labels for the same request appear differently
along the covert path, and (2) the random generated node has
no correlation with the nodes in the covert path. This protocol



takes advantage of the fact that encryption cost is much lower
than decryption cost in public key encryption. In contrast to
the mix-based scheme, this protocol uses messages to set up
the path. Although this incurs additional cost in hashing, set-
ting up the path can be done in parallel. The big difference lies
in the size of items being encrypted and decrypted. The server
needs to encrypt k < label; pi > pairs. Each peer decrypts
once to reveal the next hop, and encrypts once to produce a
label for the next hop. Therefore, the sizes of items that need
to be encrypted by public key encryption are independent of
the path length.

The details of the protocol are shown below:

Step 1: The initiator I sends a request to S.

I ! S : ffile IDgKS

Step 2: S first generates k that is the number of middle
nodes in the covert path. S then generates a unique label for
the request, n, and the first middle node in a covert path, p 0.
S also generates a DES key K. In addition, it randomly gen-
erates another node number used to convert the request label
in node R, pj0. S then sends the following message to R:

S ! R : fKgKR; fn; file ID; p0; pj0gK; fKgKI

Step 3: S generates the next stop of p0, p1, and another
random node number pj1 . It converts the request label n to
fngKpj0

. S then sends a message to node p0:

S ! p0 : fngKpj0
; fp1; pj1gKp0

Step 4: R obtains K using its private key to decrypt
fKgKR; it uses K to decrypt the portion of the message
ffile IDgK and gets the file f based on the file ID; it
converts the request label n to fngKpj0

. It encrypts the file f
with K and sends a message to p0:

R! p0 : fngKpj0
; ffgK; fKgKI

Step 5: S generates the next stop of pi, pi+1, and an-
other random node number pji+1 . It converts the request label
f: : : fngKpj0

: : :gKpji�1
to f: : : fngKpj0

: : :gKpji
. For pk,

pk+1 is I . S then sends a message to node pi:

S ! pi : f: : : fngKpj0
: : :gKpji

; fpi+1; pji+1gKpi

Step 6: pi first matches the request label coming from
the index server and the request label coming from last
stop, f: : : fngKpj0

: : :gKpji
, so that it finds the next stop

for the request, pi+1. It then converts the request la-
bel f: : : fngKpj0

: : :gKpji
to f: : : fngKpj0

: : :gKpji+1
, and

sends a message to pi+1. For pk, pk+1 is I .

R! p0 : f: : : fngKpj0
: : :gKpji+1

; ffgK; fKgKI

Step 7: I obtains K using its private key, and uses K to
decrypt the encrypted file.

Figure 2 illustrates this protocol with two middle nodes.
Each middle node uses an encryption operation to compute
the label for setting up the path instead of using a decryption
operation.

1

I R

p0p

Index Server

Initiator Responder

R 0 j0 I1:{file_ID}Ks

j0 1 j1 p0p
j0p j1p j2 p1

p  j0

2: {{K}K  , {n, file_ID, p   , p   }K, {K}K  }

p pj0 j1

I

I6: {{{n}K     }K    , {f}K, {K}K  }

pj0 pj1 pj2 I

5: {{{n}K    }K    , {I, p    }K    }

4: {{n}K     , {f}K, {K}K }

3: {{n}K     , {p  , p  }K    }

7: {{{{n}K    }K    }K    ,{f}K, {K}K  }

Figure 2. Example of Center-Directing Protocol

3.3. Label-Switching

The label-switching protocol further reduces the messag-
ing overhead of center-directing by putting more states on the
peers. Rather than sending the middle nodes labels and next
hop addresses on-the-fly, the index server produces a path ta-
ble beforehand. The table is produced such that each peer p i,
as a destination, is associated with several path options. The
path is of the form px � py � � � � pi (L). This table is broken
into sub-tables and distributed to peers (encrypted with their
public keys). The sub-table of pj consists of a list of pairs
of the form (L; nexthop). For every appearance of p j in the
path table, : : :� pj � pw � : : : (L), the pair (L; pw) is added
to pj’s sub-table.

Table 1. Path Table
Peers path

0 2-3-0(L8) 4-6-0-(L3) 3-4-0(L4) 1-7-0(L1)
1 . . . . . . . . . . . .
2 . . . . . . . . . . . .

Table 2. Sub-Tables
Peer1 Peer2 Peer3 Peer4

L1 7 L8 3 L8 0 L3 6
. . . . . . . . . . . . L4 4 L4 0
. . . . . . . . . . . . . . . . . . . . . . . .

Table 1 shows an example path table with 4 options for
each peer. Table 2 shows some sub-tables derived from Table
1. In this example, each path option has two middle nodes.
The number of middle nodes is not fixed in our design. It
has already been shown that variable path-length strategies
perform better than fix-length strategies[9]. Assuming that
the index server needs to prepare a path from node 5 to 0, it
can select among 4 paths from entry for node 0: 2-3-0(L8),
4-6-0(L3), 3-4-0(L4), and 1-7-0(L1). Suppose L4 is picked.
The message will route to node 3, 4 and finally to 0, with each
peer using their own sub-tables.

The detail of the protocol is shown below:

Step 1: The initiator I sends a request to S.



I ! S : ffile IDgKS

Step 2: S randomly selects a path in the entry for I in the
path table (say p0 � p1 : : : pk � I), and a key K. Assuming
that this path has a label l. It sends the following message to
R. Here p0 is the first middle node in the path.

S ! R : fl; p0gK; fKgKR; fKgKI

Step 3: R sends a message (the label) to p0:

R! p0 : l

A persistent connection will be established betweenR and
p0 if the connection does not already exist. This connection
is bound to the label l. Each pi sends a message to pi+1 that
is obtained from the sub-table of pi. A persistent connection
is set between pi and pi+1.

pi ! pi+1 : l

Step 4: A message is sent along the persistent connec-
tions from R to I . We use �l ! to represent the persistent
connection identified by the label l.

R� l! I : ffgK; fKgKI

Step 5: I obtains K using its private key, and uses K to
decrypt the encrypted file.

This protocol does not need the synchronization associated
with center-directing protocol; it does not need as much en-
cryption/decryption operations compared with the mix-based
protocol: the only encryption and decryption occurs during
the sub-table distribution. The overhead comes from the
spaces for storing the path table and sub-tables and the time
spending on table look-ups. Even though the path table kept
in the trusted index may be a target of attack, multiple paths
for a given source-destination pair adds one additional level
of defense.

4. Multiple Trusted Index Servers

In order to scale a P2P system to a large size, we will use
multiple trusted index servers. Since multiple proxy servers
are always available in an Internet region, this arrangement
can be easily set up in practice. Besides scalability, the ar-
rangement of multiple index servers will improve the relia-
bility of a P2P system. As a peer node joins a P2P system,
it will register itself in multiple index servers. Servers may
be down sometimes but unlikely at the same time. Thus, the
indexing service is fault tolerant and much more reliable than
the system with a single index server. However, use of multi-
ple index servers also raises a load balancing issue. Without
proper scheduling and redirections of peer requests, the work-
loads among the index servers can be unbalanced, generating
some hot spot servers and leaving some others idle or lightly
loaded.

We will adapt load sharing schemes to make resource allo-
cations in the P2P system. Each index server node maintains
a current load index of its own and/or a global load index

file that contains load status information of other index server
nodes. The load status can be the number of registered peers,
the average number of handled requests, storage for index of
files to be shared, and so on. There are two alternatives to bal-
ance the workloads among the indexing servers when a peer
wants to join the system.

� index-server-based selections.When a peer node joins
the system and asks for an indexing service, it first ran-
domly selects an index server. The load sharing system
may periodically collect and distribute the load informa-
tion among all index server nodes. Based on the load
information of all index server nodes, the selected server
will then suggest a list of lightly loaded index servers,
including or excluding itself, for the peer node to be reg-
istered. One advantage of this approach is reliability.
When a peer node leaves the system, it will inform one
of the index nodes. This node will carry this message
when it broadcasts its load status to other index server
nodes. Since all index servers are trusted, a selection of
most lightly servers is guaranteed. One disadvantage of
this approach is that the global load statuses have to be
updated frequently among all the index servers to keep
each node informed.

� peer-node-based selections.When a peer node joins the
system and asks for an indexing service, it first broad-
casts its request to all the index servers. Each index
server will then return its status back to the peer node.
The peer node will select a list of index servers to be
the hosts, which are hopefully the most lightly loaded.
When a peer node leaves the system, it will broadcast
this status change message to all the index server nodes.
In contrast to the alternative of index-server-based selec-
tions, this alternative does not require updating the load
statuses globally among the index servers because a peer
node will collect them each time it needs them. How-
ever, reliability is not guaranteed because peer nodes are
not trusted, and they may not follow the load balancing
principle when they select index server nodes.

There are also two alternatives when a peer node requests
a file. The first alternative is straight forward. The peer node
simply sends the request to index servers one by one. When
it reaches the index server that has the index of the requested
file, the file will be anonymously delivered to the peer node
from a path arranged by the index server. The second ap-
proach involves two steps. The peer node first broadcasts a
query message to all the index servers. The index servers that
have the indices of the requested file will inform the peer node
about their service availability. The peer node will then send
the request to the index server that has responded earliest, for
an anonymous file delivery. If the index server does not de-
liver the file for some reason, the peer node will try to send
the request to other index servers that responded later than the



first one. Although broadcast is not involved in the first alter-
native, the search is not as objective as the second alternative.
In general, we have no strong reasons favoring one approach
over another. A detailed study of alternatives of multiple in-
dex servers is beyond the scope of this paper.

5. Security Analysis

We analyze how the different protocols can defend against
attacks from the various parties in the P2P networks. Because
the situations for the initiator and the responder are symmet-
ric, we consider only how different parties can guess the iden-
tity of the initiator.

The responder: To the responder, all other peers have the
same likelihood of being the initiator. The probability that
the responder correctly guess the identity of the initiator is
1

n�1 (n is the total number of peers). Instead of making a
random guess, the responder can bet that the peer to whom
she sends the message is the initiator. She is only able to
make the right bet if there is no middle node selected. We
assume that probability that there are k middlemen is p(k),
the probability that the responder makes the right bet is p(0).

A middle node: We consider two cases: In the first case
the middleman makes a random guess, because the only thing
she can be sure about is that she is not the initiator. In this
case, the probability it makes a correct guess is 1

n�1 . In
the second case, the middleman bets that the peer to which
it sends the message is the initiator. If there are k middle-
men, only one of the k middlemen will make a correct bet.
The probability that a middleman can make the correct bet is
1

n�2

Pn�2
k=1

p(k)
k

, and p(k) is the probability that there are k
middlemen.

In both cases, the probability will become smaller if mul-
tiple peers communicate simultaneously. For the protocols
with the index server, even if a middle node can figure out
who is communicating with whom, it still cannot figure out
what is communicated.

A local eavesdropper: An eavesdropper is an entity that
can monitor all local traffic. The worst case is when there is
only one pair communicating (or the messages being commu-
nicated are so distinctive such that the eavesdropper is able to
figure out who is communicating with whom). Even in this
worst case, the eavesdropper still cannot figure out the content
without the cooperation either from the responder or initiator
(for the protocols with the index server) or one of the middle-
men (for the shortcut-responding protocol).

Cooperating Peers: We consider cases where at least two
middle nodes cooperate, and assume that neither the respon-
der nor the initiator is involved. Two things make it hard for
cooperating nodes to guess the identity of the initiator: (1)
the middlemen do not know for sure how many communica-
tions are proceeding simultaneously, and (2) the format of a
message passing through the middle nodes is the same. If k
collaborating peers were to make a random guess, the proba-

bility that they make the right guess is 1
n�k

, because all peers
other than the k peers can be the initiator. If the collaborat-
ing peers were to make a bet, they can first eliminate all the
peers that are communicating with peers that they know for
sure is not the initiator. The worst scenario is when at least
m � 1 out of all m middle nodes are involved. Even in this
case, these middle nodes only have 1

2 probability of correctly
guessing that there is only one communication is conducted.
The probability for them to correctly bet the identity of the
initiator is 1

2 .
Our protocols keep the same anonymity degree with P 5

and APFS while achieving high efficiency shown in the next
section.

6. Performance Evaluation

We estimate the additional overhead incurred in the pro-
tocols for achieving mutual communication anonymity. Our
testbed is the browser-sharing environment where clients
share cached Web contents [21]. The clients are the peers,
and the proxy server is the index server. The proxy maintains
an index of all files that are possibly cached in its clients’
browser caches. If a user request misses both in the client’s
local cache and in the proxy cache, the proxy will search the
index file in an attempt to find the file in another client’s
browser cache. If the file is found in a client’s cache, the
proxy can then instruct this browser to forward the file to the
requesting client. Our metric is the additional response time
for each request hit in a remote browser cache compared with
the response time of a request hit in the local browser cache.
The increment comes from two major sources: time spent on
transferring the requested data from the remote cache to the
local cache, and time spent on the protocols.1

We use trace-driven simulations and the Boeing traces [1]
for the evaluation. We selected two days’ traces (March 4 and
March 5, 1999). There are 3996 and 3659 clients involved
in these two days’ traces, representing the total numbers of
requests of 219,951 and 184,476, respectively. The total re-
quested file sizes for the two traces are 7.54 and 7.00 Gbytes.

6.1. Data Transfer Time through Peer Nodes

We estimate the data transfer time through peer nodes
based on a 100 Mbps Ethernet in our simulation. The bus con-
tention is handled as follows. If multiple clients request bus
service simultaneously, the bus will transfer documents one
by one in FIFO order distinguished by each request’s arrival
time. Our experiments based on the ping facility show that
the startup time of data communications among the clients
in our local area network is less than 0.01 second. Setting
0.01 second as the network connection time, we can see that
the amounts of data transfer times spent for communications

1We have neglected the costs for building and looking up the hash tables
because the hashing cost is insignificant comparing with the other costs.



among clients on both traces are very low, which is shown in
Figure 3.

6.2. Overhead of DES and RSA

The source programs of DES and RSA are obtained from
[12]. The machine we used for the experiments is a PC with
a 1000 MHz Pentium III CPU and 128 Mbytes of memory.
We used a large number of cached files in Microsoft’s IE5
browsers as the input files for the tests. We ran each test 10
times. The average of 10 measurements is used.

The running times of DES are proportional to the sizes
of the input files. Our measurement results show that DES’s
speed is 43.3 Mbps. The ratio of the RSA’s running time
to the input file size is not linear. RSA can encrypt/decrypt
at a speed of 543/45.4 Kbps with a 512-bit value, 384/24.8
Kbps with a 768-bit value, and 275/14.6 Kbps with a 1024-
bit value. It should be noted that the decryption speed of RSA
is 12-19 times slower than the encryption speed. These mea-
sured results are used in our simulations to calculate the over-
heads of DES and RSA.

6.3. Comparisons of Protocols

We have shown how we measure the data transfer times
and the costs of DES and RSA operations. Here we com-
pare the accumulated overheads of the protocols. Figure 3
compares the total increased response times and their break-
downs for the protocols using the “Boeing March 4 trace” and
“Boeing March 5 trace” with 2 and 5 clients acting as middle
nodes.

The performance results in Figure 3 show that center-
directing and label-switching protocols generate very low
overhead, while mix-based protocol has relatively higher
overhead. The label-switching protocol shows its best per-
formance. It is not desirable if the response time of a request
hit in a remote browser cache is larger than that of the same
request to the server. This is not a concern because our exper-
iments show that the average response time increment is less
than 3.7ms when we use 5 middle nodes for both traces. The
two protocols with lower overhead only increase the response
time to about 2.7 ms when 5 middle nodes are used.

The time spent on RSA for the mix-based protocol in-
creases as the number of middle nodes increases. In con-
trast, the times spent on DES and RSA for the center-directing
and label-switching protocols are independent of the num-
ber of middle nodes. The number of RSA operations of
center-directing protocol is the highest. However, most of
them are low-cost encryption operations for small messages
(such as a request, labels, node IDs), which are paralleliz-
able. Both center-directing and label-switching protocols
show very good scalability.

The data transfer time increases proportionally to the in-
crease of the number of middle nodes. The transfer time of
label-switching is lower than that of other protocols because

it uses a persistent channel for continuous data transfers be-
tween the the same pairs of sending and receiving nodes. The
data transfer time is still a dominant portion of the total over-
head. We should limit the number of middle nodes to balance
the two basic goals: achieving mutual anonymity and quick
response time. Paper [9] shows that the anonymity degree
may not always monotonically increase as the length of com-
munication path increases.

7. Conclusion

Providing a reliable and efficient anonymity protection
among peers is highly desirable in order to build a scalable
and secured P2P systems. In this paper, we have presented
several protocols to achieve mutual anonymity in a hybrid
P2P file-sharing environment. Our protocols take advantage
of the existence of trusted third parties to improve efficiency
and reliability, and use them to prepare the covert paths for
anonymous communications.

The protocols utilizing trusted third parties may have three
potential limits. First, these trusted third parties may become
single points of failure. This potential problem can be ad-
dressed by our proposed methods of multiple index servers.
In addition, we can enforce anonymous communications be-
tween any peer to the trusted servers, hiding their identities
and locations.

Second, one may have a concern about scalability of P2P
system with the involvement of trusted parties. Specifically,
we may not have enough trusted parties to handle the increas-
ingly growing Internet user community. We believe this is not
a necessary concern. The client/server model will continue to
play its important roles and continue to co-exist with the P2P
model. Thus, the number of trusted servers will proportion-
ally increase as the number of peers increases.

Finally, A P2P system with the involvement of trusted par-
ties may not be completely open and free, but may put some
restrictions to peers. For example, a peer has the freedom to
join and leave a pure P2P system anytime. Although a peer
still has this freedom in our system, she needs to do regis-
tration to a pre-defined index server(s). In fact, we view the
involvement of the trusted parties for this respect positively.
Researchers in the distributed system community have made
a long-term effort to attempt to build trustworthy systems out
of untrusted peers. We believe that this principle applies to
P2P systems.

To a great extent, the performance and robustness of a
P2P system depend on the capacity of trusted servers and
on the suitability of peers to act as middle nodes. A strong
P2P system should be self-organizing, and adaptive to dy-
namic application demands and changing of network condi-
tions. When a peer is used for some centralized function (e.g.,
index servers), some reputation system must be used to reg-
ulate their use. We attempt to follow these principles in de-
signing our protocols.
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Figure 3. Breakdown of data transfer and protocol overhead with 2 and 5 middle nodes for Boeing
March 4 trace (left) and Boeing March 5 Trace (right). MB(k) represent mix-based protocol with k

middle nodes. Similarly, CD, and LS represent center-directing, label-switching, respectively.
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