
UNDERSTANDING TRAINING AND ADAPTATION IN FEATURE LEARNING:
FROM TWO-LAYER NETWORKS TO FOUNDATION MODELS

by

Zhenmei Shi

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 12/19/2024

The dissertation is approved by the following members of the Final Oral Committee:
Yingyu Liang, Associate Professor, Computer Sciences
Xiaojin Zhu, Professor, Computer Sciences
Frederic Sala, Assistant Professor, Computer Sciences
Yin Li, Assistant Professor, Biostatistics & Medical Informatics and Computer Sciences

© Copyright by Zhenmei Shi 2024
All Rights Reserved

i

For my wife, parents, and brother.

ii

acknowledgments

I would like to express my deepest gratitude to my love, Yingxin Jia. We met in
September 2021 on the UW-Madison campus when I was a third-year graduate stu-
dent, and she was a first-year graduate student. In November 2024, we married in
Seattle. Throughout my PhD journey, Yingxin has been my unwavering supporter,
always encouraging me to pursue my dreams and comforting me during moments
of frustration. Her boundless love, steadfast encouragement, and profound under-
standing have been the foundation of my strength during the most challenging
times. Without her, I would not have achieved this milestone.

I am profoundly grateful to my parents and brother for their unconditional
support over the past 28 years. They have always provided me with the best
opportunities and a happy childhood, encouraging me to strive for excellence. I
am truly fortunate to have such exceptional individuals in my life, whose presence
has made all the difference.

I extend my heartfelt appreciation to my PhD advisor, Prof. Yingyu Liang, for
his invaluable guidance, expertise, and constant encouragement. I still vividly
remember the excitement I felt when I received his email offering me a position
at UW-Madison. Over the past five years, Prof. Liang has patiently mentored
me, especially during the early stages when I was new to research. Together, we
spent over two years working on my first publication, which laid the foundation for
many successful projects thereafter. As I progressed, I learned not only to conduct
research but also to mentor junior researchers, a skill I will carry forward thanks to
his example. His dedication, profound knowledge, and passion for research have
inspired me to push my boundaries and strive for excellence. His mentorship has
been instrumental in shaping both my research trajectory and personal growth.

I am deeply thankful to my thesis committee members, Prof. Xiaojin (Jerry)
Zhu, Prof. Frederic (Fred) Sala, and Prof. Yin Li, for their insightful feedback,
constructive criticism, and valuable suggestions. They have also served as my pre-
liminary exam committee members, and Jerry and Fred were on my qualification
exam committee as well. Collaborations with Fred and Yin have been transforma-

iii

tive, and the theoretical machine learning courses (CS760 and CS861) taught by
Jerry were pivotal in providing tools that significantly shaped my later research.
Their expertise and dedication have been critical to my academic development, and
I am sincerely grateful for their time and effort.

I am indebted to all the collaborators who have enriched my PhD journey. I
would like to thank the members of the Liang group—Jiefeng Chen, Junyi Wei,
Zhuoyan Xu, and Yang Guo—for their hard work and camaraderie. I also appreciate
my collaborators on the UW-Madison campus, including Yifei Ming, Ying Fan,
Yiyou Sun, Jiayu Wang, Prof. Yixuan Li, and Prof. Somesh Jha, for their inspiring
ideas and shared efforts. My sincere gratitude extends to my internship mentors,
Dr. Fuhao Shi, Dr. Myra Nam, and Dr. Sercan Arik at Google, as well as Dr. Shafiq
Joty at Salesforce, for their invaluable guidance. I would like to give special thanks
to Prof. Tengyu Ma for inviting me to join his start-up company after completing
my PhD journey.

I also wish to acknowledge Dr. Zhao Song, my mentor at Adobe, for a year of
productive collaboration exploring fascinating research directions. I am grateful
to the junior researchers I have had the pleasure of working with, including Yufa
Zhou, Zhizhou Sha, Xiaoyu Li, Jiangxuan Long, Bo Chen, Junze Yin, Chiwun Yang,
Yekun Ke, and others, who contributed to my growth as a researcher.

Finally, I would like to express my gratitude to the many individuals who
supported me in various ways. I am especially thankful to Hang Yin, my roommate
during the first two and a half years, for sharing the challenges of the COVID-19
period. I am deeply appreciative of Zhihan Guo for introducing me to my wife,
and my close friends in Madison, including Zifan Liu, Kan Wu, and many others,
for their unwavering camaraderie and encouragement. Their presence has made
this journey more meaningful and enjoyable.

To everyone who contributed to my PhD journey, directly or indirectly, I extend
my heartfelt thanks. This achievement would not have been possible without your
support!

iv

contents

Contents iv

List of Tables xiii

List of Figures xvi

Abstractxxxiv

1 Introduction 1
1.1 How does Feature Learning Emerge in the Training of the Neural Network

Dynamic? 2
1.2 What Forward Path will be led by Feature Learning? 5
1.3 Summary of Contributions 8
1.4 Thesis Outline 9

2 A Theoretical Analysis on Feature Learning in Neural Networks: Emer-
gence from Inputs and Advantage over Fixed Features 11
2.1 Introduction 11
2.2 Related Work 14
2.3 Problem Setup 15

2.3.1 Neural Network Learning . 17
2.4 Main Results 18
2.5 Proof Sketches 21

2.5.1 Provable Guarantees of Neural Networks 21
2.5.2 Lower Bounds . 24

2.6 Experiments 25

3 Provable Guarantees for Neural Networks via Gradient Feature Learn-
ing 30
3.1 Introduction 30

v

3.2 Related Work 32
3.3 Gradient Feature Learning Framework 34

3.3.1 Warm Up: A Simple Setting with Frozen First Layer 35
3.3.2 Core Concepts in the Gradient Feature Learning Framework 37
3.3.3 Provable Guarantee via Gradient Feature Learning 39

3.4 Applications in Special Cases 42
3.4.1 Mixtures of Gaussians . 43
3.4.2 Parity Functions . 46

3.5 Conclusion 49

4 Fourier Circuits in Neural Networks and Transformers: A Case Study of
Modular Arithmetic with Multiple Inputs 50
4.1 Introduction 50
4.2 Related Work 53
4.3 Problem Setup 54

4.3.1 Data and Network Setup . 54
4.3.2 Margins of the Neural Networks 56
4.3.3 Connection between Training and the Maximum Margin So-

lutions . 57
4.4 Main Result 59

4.4.1 Technique Overview . 60
4.5 Experiments 63
4.6 Discussion 66
4.7 Conclusion 68

5 Why Larger Language Models Do In-context Learning Differently? 69
5.1 Introduction 69
5.2 Related Work 72
5.3 Preliminary 73
5.4 Linear Regression 75

5.4.1 Low Rank Optimal Solution 76

vi

5.4.2 Behavior Difference . 78
5.5 Sparse Parity Classification 81

5.5.1 Optimal Solution . 83
5.5.2 Behavior Difference . 84

5.6 Experiments 88
5.6.1 Behavior Difference . 89
5.6.2 Ablation Study . 89

5.7 More Discussions about Noise 90
5.8 Conclusion 91

6 Domain Generalization via Nuclear Norm Regularization 92
6.1 Introduction 92
6.2 Method 94

6.2.1 Preliminaries . 95
6.2.2 Method description . 96

6.3 Experiments 98
6.3.1 Synthetic tasks . 99
6.3.2 Real-world tasks . 100
6.3.3 Ablations and discussions . 102

6.4 Theoretical Analysis 105
6.5 Related Works 108
6.6 Conclusions 110

7 The Trade-off between Universality and Label Efficiency of Representa-
tions from Contrastive Learning 113
7.1 Introduction 113
7.2 Theoretical Analysis 117

7.2.1 What Features are Learned by Contrastive Learning? 119
7.2.2 Analyzing the Trade-Off: Linear Data 122

7.3 Experiments 126
7.3.1 Verifying the Existence of the Trade-off 126

vii

7.3.2 Inspecting the Trade-off: Feature Similarity 129
7.3.3 Improving the Trade-off: Finetune with Contrastive Regular-

ization . 129
7.4 Conclusion and Future Work 131

8 Bypassing the Exponential Dependency: Looped Transformers Efficiently
Learn In-context by Multi-step Gradient Descent 132
8.1 Introduction 132
8.2 Related Work 135
8.3 Preliminary 137

8.3.1 Notations . 137
8.3.2 In-context Learning . 137
8.3.3 Linear Looped Transformer 138
8.3.4 Linear Regression with Gradient Descent 139

8.4 Gradient Computation in Looped Transformer 140
8.5 Error Convergence 145

8.5.1 Convexity and Smoothness Analysis 145
8.5.2 Main Result . 147

8.6 Experiments 149
8.7 Conclusion 151

9 Discovering the Gems in Early Layers: Accelerating Long-Context LLMs
with 1000x Input Token Reduction 153
9.1 Introduction 153
9.2 Related Works 157
9.3 Method 158

9.3.1 Our Algorithm: GemFilter . 160
9.3.2 Running Time and Memory Complexity Analysis 161

9.4 Experiments 163
9.4.1 Needle in a Haystack . 165
9.4.2 LongBench . 165

viii

9.4.3 Ablation Study: Filter Layer Choice 167
9.4.4 More Ablation Study . 168
9.4.5 Running Time and GPU Memory Consumption 169

9.5 Conclusion 169

10 Conclusion and Future Work 171
10.1 Thesis Overview 171
10.2 Future Research Directions 172
10.3 Concluding Remarks 173

A Appendix for Chapter 2 174
A.1 Ethics Statement 174
A.2 Reproducibility Statement 174
A.3 More Technical Discussion on Related Work 175
A.4 Complete Proofs for Provable Guarantees of Neural Networks 180

A.4.1 Existence of A Good Network 181
A.4.2 Initialization . 184
A.4.3 Some Auxiliary Lemmas . 185
A.4.4 Feature Emergence: First Gradient Step 187
A.4.5 Feature Improvement: Second Gradient Step 195
A.4.6 Classifier Learning Stage . 209
A.4.7 Proof of Theorem 2.1 . 211

A.5 Lower Bound for Linear Models on Fixed Feature Mappings 213
A.6 Lower Bound for Learning without Input Structure 215
A.7 Complete Experimental Results 216

A.7.1 Simulation . 217
A.7.2 More Simulation Result in Various Settings 222
A.7.3 Experiments on More Data Generation Models 226
A.7.4 Real Data: Feature Learning in Networks 230
A.7.5 Real Data: The Effect of Input Structure 232

A.8 Provable Guarantees for Neural Networks in A More General Setting 238

ix

A.8.1 Problem Setup . 238
A.8.2 Main Result . 240
A.8.3 Notations . 240
A.8.4 Existence of A Good Network 241
A.8.5 Initialization . 244
A.8.6 Some Auxiliary Lemmas . 245
A.8.7 Feature Emergence: First Gradient Step 247
A.8.8 Feature Improvement: Second Gradient Step 256
A.8.9 Classifier Learning Stage and Main Theorem 277

B Appendix for Chapter 3 283
B.1 Broader Impacts 283
B.2 Limitations 283
B.3 Further Implications 284

B.3.1 Implicit Regularization/Simplicity Bias 284
B.3.2 Lottery Ticket Hypothesis (LTH) 285

B.4 Gradient Feature Learning Framework 286
B.4.1 Simplified Gradient Feature Learning Framework 286
B.4.2 Gradient Feature Learning Framework under Expected Risk 288
B.4.3 Gradient Feature Learning Framework under Empirical Risk

with Sample Complexity . 302
B.5 Applications in Special Cases 316

B.5.1 Linear Data . 316
B.5.2 Mixture of Gaussians . 319
B.5.3 Mixture of Gaussians - XOR 332
B.5.4 Parity Functions . 339
B.5.5 Uniform Parity Functions . 351
B.5.6 Uniform Parity Functions: Alternative Analysis 355
B.5.7 Multiple Index Model with Low Degree Polynomial 366

B.6 Auxiliary Lemmas 369

x

C Appendix for Chapter 4 373
C.1 Limitations 373
C.2 Societal Impact 373
C.3 More Related Work 374
C.4 More Notations and Definitions 374
C.5 Tools from Previous Work 375

C.5.1 Tools from Previous Work: Implying Single/Combined Neurons375
C.5.2 Tools from Previous Work: Maximum Margin for Multi-Class 376

C.6 Class-weighted Max-margin Solution of Single Neuron 377
C.6.1 Definitions . 377
C.6.2 Transfer to Discrete Fourier Space 377
C.6.3 Get Solution Set . 380
C.6.4 Transfer to Discrete Fourier Space for General k Version . . . 385
C.6.5 Get Solution Set for General k Version 387

C.7 Construct Max Margin Solution 391
C.7.1 Sum-to-product Identities . 392
C.7.2 Constructions for θ∗ . 395
C.7.3 Constructions for θ∗ for General k Version 400

C.8 Check Fourier Frequencies 403
C.8.1 All Frequencies are Used . 403
C.8.2 All Frequencies are Used for General k Version 407

C.9 Main Result 410
C.9.1 Main result for k = 3 . 410
C.9.2 Main Result for General k Version 411

C.10 More Empirical Details and Results 412
C.10.1 Implement Details . 412
C.10.2 One-hidden Layer Neural Network 414
C.10.3 One-layer Transformer . 414

D Appendix for Chapter 5 421
D.1 Limitations 421

xi

D.2 Deferred Proof for Linear Regression 421
D.2.1 Proof of Theorem 5.4.1 . 421
D.2.2 Behavior Difference . 423
D.2.3 Auxiliary Lemma . 427

D.3 Deferred Proof for Parity Classification 428
D.3.1 Proof of Theorem 5.5.1 . 428
D.3.2 Proof of Theorem 5.5.2 . 432
D.3.3 Auxiliary Lemma . 434

E Appendix for Chapter 6 435
E.1 Proof of Theoretical Analysis 435

E.1.1 Auxiliary lemmas . 435
E.1.2 Optimal solution of ERM-ℓ2 on ID task 436
E.1.3 Optimal solution of ERM-rank on ID task 441
E.1.4 OOD gap between two objective function 441

E.2 More Experiments Details and Results 442

F Appendix for Chapter 7 448
F.1 Proofs for Section 7.2.1 448

F.1.1 Inductive Biases are Needed for Analyzing Prediction Success 453
F.2 Proofs and More Analysis for Section 7.2.2 454

F.2.1 Lemmas for a more general setting 454
F.2.2 Proofs of Proposition 7.3 and Proposition 7.4 462
F.2.3 Implication for the trade-off 464
F.2.4 Improving the Trade-off by Contrastive Regularization . . . 465

F.3 More Experimental Details and Results 468
F.3.1 Datasets . 468
F.3.2 Verifying the Existence of the Trade-off 470
F.3.3 Inspecting the Trade-off . 473
F.3.4 Improving the Trade-off: Finetune with Contrastive Regular-

ization . 477

xii

F.3.5 Additional Results Verifying Existence of the Trade-off . . . 482

G Appendix for Chapter 9 493
G.1 More Preliminary 493
G.2 Detailed Comparison with Other Methods 493
G.3 Proof of Time Complexity 494
G.4 More Details about Experiments 496

G.4.1 PyTorch Code . 496
G.4.2 Implementation Details . 497
G.4.3 More Needle in a Haystack 498
G.4.4 Ablation Study on Row Selection 498
G.4.5 Ablation Study on Runs . 498
G.4.6 Index Selection . 499
G.4.7 LLaMA 3.1 Chat Template . 500
G.4.8 More Results of Index Selection 501

References 508

xiii

list of tables

6.1 OOD accuracy for five realistic domain generalization datasets. The
results marked by †, ‡, ∗ are the reported numbers from Gulrajani and
Lopez-Paz (2021), Cha et al. (2021), Rame et al. (2022) respectively. We
highlight our methods in bold. The results of Fish, SelfReg, mDSDI
and MIRO are the reported ones from each paper. Average accuracy
and standard errors are reported from three trials. Nuclear norm reg-
ularization is simple, effective, and broadly applicable. It significantly
improves the performance over ERM and a competitive baseline SWAD
across all datasets considered. 99

6.2 Nuclear norm regularization improves the domain generalization per-
formance over various baselines such as ERM, Mixup, and SWAD. . . 111

6.3 Alternative regularizers with SWAD on the DomainBed benchmark. Full
Table is in Appendix E.2. 112

7.1 Test accuracy on CIFAR-10 with different evaluation methods on MoCo v2 by
using all CIFAR-10 training data. From left to right: incrementally add datasets
for pre-training. 129

7.2 Test accuracy for different evaluation methods on different datasets using all
training data and using foundation models from CLIP, MoCo v3, and SimCSE.
Data augmentation is not used for LP (Linear Probing). For FT (Finetune)
and Ours (our method), 10 augmentations to each training images are used
for CLIP, MoCo v3, and unique augmentation in each training step is used for
SimCSE. More results are in Appendix F.3.4. 130

9.1 Performance comparison on LongBench across various LLMs and meth-
ods. A larger number means better performance. The best score is
boldfaced. 166

9.2 Performance of our method on LongBench using different layers as an
input filter. A larger number means better performance. The best score
is boldfaced. 168

xiv

A.1 Parity labeling results in six methods. The cosine similarity is computed
between the ground-truth

∑
j∈AMj and the closest neuron weight. . . 218

A.2 Interval labeling results in six methods. 220
A.3 Results of six methods for different input data dimensions. The co-

sine similarity is computed between the ground-truth
∑
j∈AMj and the

closest neuron weight. 223
A.4 Results of six methods under different negative class ratios. 225
A.5 Results of six methods for different sample size. 226
A.6 Gaussian mixture setting. 228
A.7 Cosine similarities between the gradients in the early steps. We choose

the neuron weight closest to the average weight of the green cluster at
the end of the training (in Figure A.16 for ResNet(128) and Figure A.17
for ResNet(256)). We record the gradients of the first 30 steps and divide
them to three trunks of 10 steps evenly and sequentially. For the three
trunks, we get the average gradients v1, v2, v3. We calculate their cosine
similarities to their average v̄ = (v1 + v2 + v3)/3 and those between them. 231

E.1 Results on VLCS. For each column, bold indicates the best performance,
and underline indicates the second-best performance. 443

E.2 Results on PACS. 444
E.3 Results on OfficeHome. 445
E.4 Results on Terra Incognita. 446
E.5 Results on DomainNet. 447
E.6 Methods combined with SWAD full results on DomainBed benchmark. 447

F.1 LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T)
pre-trained 500 epochs on ImageNet and ImageNet+GCC-15M. 473

F.2 LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S)
pre-trained on ImageNet-Bird and ImageNet. 475

F.3 LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3
(ViT-S) pre-trained on ImageNet-Vehicle and ImageNet. 475

xv

F.4 LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T)
pre-trained 500 epochs on ImageNet and ImageNet+GCC-15M. 475

F.5 Test accuracy on CIFAR-10 with different evaluation methods on MoCo
v2 under different percentages of labeled data. From top to bottom:
incrementally add datasets for pre-training. 477

F.6 Test accuracy for different evaluation methods on different datasets
using foundation model CLIP (backbone ViT-L). We do not use data
augmentation for LP. We evaluate FT without data augmentation, with
10 augmentation and with 100 augmentation to each training images.
For Ours, we use 10, 100 augmentation. 478

F.7 Test accuracy for different evaluation methods on different datasets
using foundation model MoCo v3 (backbone ViT-B). We do not use data
augmentation for LP. We evaluate FT without data augmentation, with
10 augmentations and with 100 augmentations to each training image.
For Ours, we use 10, 100 augmentation. 479

F.8 Test accuracy for different evaluation methods on different datasets
using foundation model SimCSE (backbone BERT). We do not use data
augmentation for LP. We evaluate FT and Ours with the same data
augmentation as SimCSE. 479

F.9 Test accuracy on CIFAR-10 with different evaluation methods on MoCo
v2 with ResNet18 backbone. From left to right: incrementally add
datasets for pre-training. 481

F.10 LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S)
pre-trained on ImageNet-Bird and ImageNet. 482

F.11 LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3
(ViT-S) pre-trained on ImageNet-Vehicle and ImageNet. 482

G.1 Performance comparison on LongBench across various methods when
using LLaMA 3.1 8B Instruct and its official LLaMA Chat template. A
larger number means better performance. The best score is boldfaced. 501

xvi

list of figures

2.1 Test accuracy on simulated data with or without input structure. 26
2.2 Visualization of the weights wi’s after initialization/one gradient step/two

steps in network learning on the synthetic data. The red star denotes the
ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The red/orange

dots are the weights closest to the red/orange star, respectively. 27
2.3 Visualization of the neurons’ weights in a two-layer network trained on

the subset of MNIST data with label 0/1. The weights gradually form
two clusters. 27

2.4 Test accuracy at different steps for an equal mixture of Gaussian inputs
with data: (a) MNIST, (b) CIFAR10, (c) SVHN. 28

4.1 Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network with
m = 2944 neurons is trained on k = 4-sum mod-p = 47 addition dataset.
We even split the whole datasets (pk = 474 data points) into the training
and test datasets. Every row represents a random neuron from the
network. The left figure shows the final trained embeddings, with red
dots indicating the true weight values, and the pale blue interpolation
is achieved by identifying the function that shares the same Fourier
spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in
Lemma 4.10. See Figure C.1, C.3 in Appendix C.10.2 for similar results
when k is 3 or 5. 58

xvii

4.2 All Fourier spectrum frequencies being covered and the maximum nor-
malized power of the embeddings (hidden layer weights). The one-
hidden layer network withm = 2944 neurons is trained on k = 4-sum
mod-p = 47 addition dataset. We denote û[i] as the Fourier transform
of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2) be the maximum normalized power.

Mapping each neuron to its maximum normalized power frequency, (a)
shows the final frequency distribution of the embeddings. Similar to
our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized
power of the neural network with random initialization. (c) shows, in
frequency space, the embeddings of the final trained network are one-
sparse, i.e., maximum normalized power being almost 1 for all neurons.
This is consistent with our max-margin analysis results in Lemma 4.11.
See Figure C.2 and C.4 in Appendix C.10.2 for results when k is 3 or 5. 61

4.3 2-dimension cosine shape of the trainedWKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention
heads m = 160 is trained on k = 4-sum mod-p = 31 addition dataset.
We even split the whole datasets (pk = 314 data points) into training
and test datasets. Every row represents a random attention head from
the transformer. The left figure shows the final trained attention weights
being an apparent 2-dim cosine shape. The right figure shows their
2-dim Fourier power spectrum. The results in the figures are consistent
with Figure 4.1. See Figure C.5 and Figure C.6 in Appendix C.10.3 for
similar results when k is 3 or 5. 64

xviii

4.4 Grokking (models abruptly transition from bad generalization to perfect
generalization after a large number of training steps) under learning
modular addition involving k = 2, 3, 4, 5 inputs. We train two-layer
transformers with m = 160 attention heads on k = 2, 3, 4, 5-sum mod-
p = 97, 31, 11, 5 addition dataset with 50% of the data in the training
set under AdamW Loshchilov and Hutter (2018) optimizer 1e-3 learn-
ing rate and 1e-3 weight decay. We use different p to guarantee the
dataset sizes are roughly equal to each other. The blue curves show
training accuracy, and the red ones show validation accuracy. There
is a grokking phenomenon in all figures. However, as k increases, the
grokking phenomenon becomes weak. See explanation in Section 4.5. 65

5.1 Larger models are easier to be affected by noise (flipped labels) and
override pretrained biases than smaller models for different datasets
and model families (chat/with instruct turning). Accuracy is calculated
over 1000 evaluation prompts per dataset and over 5 runs with different
random seeds for each evaluation, usingM = 16 in-context exemplars. 85

5.2 Larger models are easier to be affected by noise (flipped labels) and
override pretrained biases than smaller models for different datasets
and model families (original/without instruct turning). Accuracy is
calculated over 1000 evaluation prompts per dataset and over 5 runs with
different random seeds for each evaluation, using M = 16 in-context
exemplars. 85

5.3 The magnitude of attention between the labels and input sentences in
Llama 2-13b and 70b on 100 evaluation prompts; see the main text for
the details. x-axis: indices of the prompts. y-axis: the norm of the last
row of attention maps in the final layer. Correct: original label; wrong:
flipped label; relevant: original input sentence; irrelevant: irrelevant
sentence from other datasets. The results show that larger models focus
on both sentences, while smaller models only focus on relevant sentences. 86

xix

6.1 Causal graph of our data assumption (6.1a), and the effect of nuclear
norm regularization in ERM (6.1b) where we use a linear g for a simple
illustration. From Figure 6.1b, nuclear norm regularization can select a
subset of ERM solutions that extract the smallest possible information
(in the sense of rank) from x for classification, which can reduce the
effect of environmental features for better generalization performance
while still preserving high classification accuracy. 94

6.2 ID and OOD classification results with ERM on the synthetic dataset
with two classes (shown in yellow and navy blue). We visualize the
decision boundary. While the model achieves nearly perfect accuracy on
ID training set, the performance drastically degrades on the OOD test set. 98

6.3 ID and OOD classification results with ERM-NU on the synthetic dataset.
Nuclear norm regularization significantly reduces the OOD error rate. 98

6.4 Nuclear norm regularization enhances competitive baselines across a
range of realistic datasets, as demonstrated by the average difference in
accuracy with nuclear norm regularization for ERM, Mixup, and SWAD.
Detailed results for individual datasets can be seen in Table 6.2. 103

6.5 Stable rank and OOD accuracy of ERM-NU with varying nuclear norm
regularization weight λ (x-axis) on different datasets. 104

7.1 Illustration of the trade-off between universality and label efficiency. x-axis:
from left to right, incrementally add CINIC-10 (C), SVHN (S), GTSRB (G), and
ImageNet32 (I) for pre-training MoCo v2. For example, “CS” means CINIC-
10+SVHN. The average test accuracy of prediction on all 4 datasets (red line)
increases with more diverse pre-training data, while that on the target task
CIFAR-10 (blue line) decreases. (The variance of the blue line is too small to
be seen.) Please refer to Section 7.3.1 for details. 115

7.2 Illustration of the features in our data distributions. 122

xx

7.3 Trade-off between universality and label efficiency for MoCo v2. Appendix F.3.5
shows similar results for more methods and datasets. x-axis: incrementally
add datasets for pre-training MoCo v2. (a) Pre-training data: CINIC-10 (C),
SVHN (S), GTSRB (G), and ImageNet32 (I). E.g., “CS” on the x-axis means
CINIC-10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of
Linear Probing on all 4 datasets. Blue line: test accuracy on the target task. (b)
EMNIST-Digits&Letters (E), Fashion-MNIST (F), GTSRB (G), ImageNet32 (I).
Target: MNIST. (c) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. Note that training does not follow the online learning fashion,
e.g., the model will pre-train from scratch (random initialization) on the CSG
datasets, rather than using the model pre-trained on the CS datasets. 127

7.4 Trade-off between universality and label efficiency on ImageNet. x-axis: from
left to right, incrementally add ImageNet-Bird (B), ImageNet-Vehicle (V),
ImageNet-Cat/Ball/Shop/Clothing/Fruit (+), and ImageNet (ALL) for pre-
training (a) MoCo v3 with backbone ViT-S (b) SimSiam with backbone ResNet50.
For example, “BV” means ImageNet-Bird + ImageNet-Vehicle. Target: ImageNet-
Bird. 128

7.5 Linear CKA similarity among Fer2013 features from MoCo v2 pre-trained on
different datasets. Left: each representation in the first four columns/rows is
pre-trained on a single dataset. “Union" indicates the model pre-trained on the
union of the four disjoint datasets. Right: from left column to right, from top
row to bottom, we incrementally add datasets for pre-training. 128

xxi

8.1 The convergence rate comparison for gradient descent in linear vector
generation with a fixed dimension d = 4 and varying sample sizes
n ∈ {16, 32, 64, 128} and their corresponding condition number κ. The
‘Emp’ means the empirical error of our experiments. The ‘Theory’ means
the theoretical bound in Theorem 8.16. The y-axis is the logarithm of
normalized error and the x-axis is the number of loops T . Both empirical
(solid lines) and theoretical (dashed lines) results are presented for
each n. The plot demonstrates that as the sample size n increases, the
condition number will decrease, so the convergence rate improves. Thus,
with larger n values, there will be a steeper slope and faster convergence
to the optimal solution. 150

9.2 The last row of attention matrices in early layers can locate answer-related
tokens. 154

9.1 Illustration of our method GemFilter: generation with context selection
based on early filter layers. We demonstrate a real Needle in a Haystack
task (Section 9.4.1). The original input consists of 108,172 tokens, includ-
ing the initial instruction, key message, and the query. In the first step,
we use the 13th layer of the LLM (LLaMA 3.1 8B Instruct) as a filter
to compress the input tokens by choosing the top k indices from the
last row of the attention matrix. Notably, the selected input retains the
initial instruction, key message, and query. GemFilter achieves a 1000×
compression, reducing the input token length to 100. In the second
step, we feed the selected tokens for full LLM inference using a stan-
dard generation function, which produces the correct output. GemFilter
significantly reduces running time and GPU memory with negligible
performance loss. 155

xxii

9.3 Comparison of time and GPU memory usage across different methods
on LLaMA 3.1 8B Instruct. ‘gemfilter’ represents our method, using the
13th layer as the filter. It achieves a 2.4× speedup and reduces GPU
memory usage by 30% compared to SnapKV. The iterative generation is
evaluated on 50 tokens generation. Additional results can be found in
Section 9.4.5. 156

9.4 Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model (left column) and the LLaMA
3.1 8B Instruct model (right column). Results for the Phi 3.5 Mini 3.8B
Instruct model are provided in Appendix G.4.3. The x-axis represents
the length of the input tokens, while the y-axis shows the position depth
percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance,
meaning more effective retrieval of the ‘needle’ information. GemFilter
significantly outperforms both standard attention (full KV cache) and
SnapKV. 164

9.5 Distance between the needle position and selected token index position
across three LLMs. The position depth percentage of the “needle” infor-
mation is 50%. The x-axis means the layer index of different LLMs. The
y-axis means min(topk_index − niddle_index). When y = 0, it means
the needle information is covered by the selected token. The needle
information has been successfully discovered in the early layers of all
three LLMs. 167

9.6 Comparison of time and GPU memory usage across different methods
on Mistral Nemo 12B Instruct and Phi 3.5 Mini 3.8B Instruct. GemFilter
uses the 19th layer as an input filter for both LLMs. It achieves a 2.4×
speedup and reduces GPU memory usage by 30% compared to SnapKV. 170

A.1 Test accuracy on simulated data under parity labeling with or without
input structure. 219

xxiii

A.2 Visualization of the weights wi’s after initialization/one gradient step/two
gradient steps in network learning under parity labeling. The red star
denotes the ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The

red dots are the weights closest to the red star after two steps; the orange
ones are for the orange star. 219

A.3 Test accuracy on simulated data under interval labeling with or without
input structure. 220

A.4 Visualization of the weights wi’s after initialization/one gradient step/two
gradient steps in network learning under interval labeling. The red star
denotes the ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The

red dots are the weights closest to the red star after two steps; the orange
ones are for the orange star. 221

A.5 Test accuracy on simulated data under different input data dimensions. 222
A.6 Visualization of the weights wi’s in early steps under different input

data dimensions. Upper row: input data dimension d = 100; lower row:
d = 2000. 223

A.7 Test accuracy on simulated data under different negative class ratios. . 224
A.8 Visualization of the weights wi’s in early steps under different class

imbalance ratios. Upper row: negative class ratio 0.8; lower row: 0.9. . 224
A.9 Test accuracy on simulated data under different sample sizes n. 225
A.10 Visualization of the weights wi’s in early steps under different sample

sizes. Upper row: sample size 25000; lower row: 10000. 226
A.11 Visualization of the weights wi’s after initialization/one gradient step/two

gradient steps in network learning under hidden representation labeling.227
A.12 Visualization of the weights wi’s (blue dots) and Gaussian centers (red

for positive labeled clusters and orange for negative labeled clusters). 229
A.13 Visualization of the neurons’ weights in a two-layer network trained on

the subset of MNIST data with label 0/1. The weights gradually form
two clusters. 229

xxiv

A.14 Visualization of the neurons’ weights in a two-layer network trained on
the subset of CIFAR10 data with label airplane/automobile. The weights
gradually form two clusters. 230

A.15 Visualization of the neurons’ weights in a two-layer network trained on
the subset of SVHN data with label 0/1. The weights gradually form
four clusters. 230

A.16 Visualization of the normalized convolution weights in all Residual
block of ResNet(128) trained on the subset of CIFAR10 data with labels
airplane/automobile. We show the weights after 0/3/20 epochs in net-
work learning. The weights gradually form two clusters in all Residual
blocks. We also report average cosine similarity between the green/red
points in the clusters to their centers and cosine similarity between two
cluster centers as (Green, Red, Two Centers). 279

A.17 Visualization of the normalized convolution weights in all Residual
block of ResNet(256) trained on the subset of CIFAR10 data with labels
airplane/automobile. We show the weights after 0/3/20 epochs in net-
work learning. The weights gradually form two clusters in all Residual
blocks. We also report average cosine similarity between the green/red
points in the clusters to their centers and cosine similarity between two
cluster centers as (Green, Red, Two Centers). 280

A.18 Test accuracy at different steps for an equal mixture α = 0.5 of Gaussian
inputs with data: (a) MNIST, (b) CIFAR10, (c) SVHN. 281

A.19 Test accuracy at different steps for an equal mixture α = 0.5 of Tiny
ImageNet inputs with data: (a) CIFAR10, (b) SVHN. 281

A.20 Test accuracy at different steps for varying mixture α of Gaussian inputs
with CIFAR10. 281

A.21 Test accuracy at different steps for an equal mixture α = 0.5 of Gaussian
inputs with MNIST, wherem = 50. 282

A.22 Double descent curves of the students trained on data with synthetic
labels (Loss v.s. Parameter number). 282

xxv

C.1 Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network with
m = 1536 neurons is trained on k = 3-sum mod-p = 97 addition dataset.
We even split the whole datasets (pk = 973 data points) into the training
and test datasets. Every row represents a random neuron from the
network. The left figure shows the final trained embeddings, with red
dots indicating the true weight values, and the pale blue interpolation
is achieved by identifying the function that shares the same Fourier
spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in
Lemma 4.10. 415

C.2 All Fourier spectrum frequencies being covered and the maximum nor-
malized power of the embeddings (hidden layer weights). The one-
hidden layer network withm = 1536 neurons is trained on k = 3-sum
mod-p = 97 addition dataset. We denote û[i] as the Fourier transform
of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2) be the maximum normalized power.

Mapping each neuron to its maximum normalized power frequency, (a)
shows the final frequency distribution of the embeddings. Similar to
our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized
power of the neural network with random initialization. (c) shows,
in frequency space, the embeddings of the final trained network are
one-sparse, i.e., maximum normalized power being almost 1 for all neu-
rons. This is consistent with our maximum-margin analysis results in
Lemma 4.11. 416

xxvi

C.3 Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network with
m = 5632 neurons is trained on k = 5-sum mod-p = 23 addition dataset.
We even split the whole datasets (pk = 235 data points) into the training
and test datasets. Every row represents a random neuron from the
network. The left figure shows the final trained embeddings, with red
dots indicating the true weight values, and the pale blue interpolation
is achieved by identifying the function that shares the same Fourier
spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in
Lemma 4.10. 417

C.4 All Fourier spectrum frequencies being covered and the maximum nor-
malized power of the embeddings (hidden layer weights). The one-
hidden layer network withm = 5632 neurons is trained on k = 5-sum
mod-p = 23 addition dataset. We denote û[i] as the Fourier transform
of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2) be the maximum normalized power.

Mapping each neuron to its maximum normalized power frequency, (a)
shows the final frequency distribution of the embeddings. Similar to
our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized
power of the neural network with random initialization. (c) shows,
in frequency space, the embeddings of the final trained network are
one-sparse, i.e., maximum normalized power being almost 1 for all neu-
rons. This is consistent with our maximum-margin analysis results in
Lemma 4.11. 418

xxvii

C.5 2-dimension cosine shape of the trainedWKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention
heads m = 160 is trained on k = 3-sum mod-p = 61 addition dataset.
We even split the whole datasets (pk = 613 data points) into training
and test datasets. Every row represents a random attention head from
the transformer. The left figure shows the final trained attention weights
being an apparent 2-dim cosine shape. The right figure shows their 2-
dim Fourier power spectrum. The results in these figures are consistent
with Figure C.1. 419

C.6 2-dimension cosine shape of the trainedWKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention
heads m = 160 is trained on k = 5-sum mod-p = 17 addition dataset.
We even split the whole datasets (pk = 175 data points) into training
and test datasets. Every row represents a random attention head from
the transformer. The left figure shows the final trained attention weights
being an apparent 2-dim cosine shape. The right figure shows their 2-
dim Fourier power spectrum. The results in these figures are consistent
with Figure C.3. 420

F.1 A two-dim example of XOR structure in the space of ϕ. 454
F.2 Trade-off of universality and label efficiency for MoCo v2, NNCLR,

SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. “1, 2, 3, 4"
means incrementally adding datasets for pre-training. The x-axis is the
average test accuracy of Linear Probing on all 4 datasets. The y-axis is
test accuracy on the target task. Pre-training data: (a)(b)(c) CINIC-
10, SVHN, GTSRB, and ImageNet32. Target task: CIFAR-10. (d)(e)(f)
EMNIST-Digits&Letters, Fashon-MNIST, GTSRB, ImageNet32. Target:
MNIST. (g)(h)(i) FaceScrub, CIFAR-10, SVHN, ImageNet32. Target:
Fer2013. 483

xxviii

F.3 Linear CKA similarity score among downstream task features from
MoCo v2 pretrained on three sets of datasets. For “Independent", each
representation model in the first four columns/rows is pre-trained on
a single dataset. “Union" indicates the model pre-trained on the union
among four disjoint datasets. “Incremental" means from left column
to right, from top row to bottom, we incrementally add datasets for
pre-training. 484

F.4 Linear CKA similarity among CIFAR10 features from MoCo v2 pre-
trained on CINIC10. Each representation in the first three columns/rows
is pre-trained with a different weight decay value. 485

F.5 Pre-train MoCo v2 and SimSiam on CIFAR-10 + ImageNet32(200k) with
varying number of classes of ImageNet32 from 50 to 1000 (x-axis) under
a fixed size of pre-training data. The y-axis is LP test accuracy on CIFAR-10.485

F.6 Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and Sim-
Siam with varying target relevant (CINIC-10) pre-training data percent-
age (100%, 50%, 20%). 486

F.7 Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and Sim-
Siam pre-trianed on datasets including CIFAR-10. 486

F.8 The t-SNE visualization (Van der Maaten and Hinton, 2008) for CIFAR-
10 training data normalized features from different evaluation methods,
where the model is pre-trained on (CSGI) defined in Fig. 7.3. FT and
Ours are trained on the 20% CIFAR-10 training dataset. Different colors
correspond to different classes. 487

xxix

F.9 Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: in-
crementally add datasets for pre-training. Pre-training data: (a)(b)(c)
CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red
line: average test accuracy of Linear Probing on all 4 datasets. Blue
line: test accuracy on the target task. (d)(e)(f) EMNIST-Digits&Letters
(E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. All evaluations are trained with 1% labeled data. . . . 488

F.10 Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: in-
crementally add datasets for pre-training. Pre-training data: (a)(b)(c)
CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red
line: average test accuracy of Linear Probing on all 4 datasets. Blue
line: test accuracy on the target task. (d)(e)(f) EMNIST-Digits&Letters
(E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. All evaluations are trained with 5% labeled data. . . . 489

F.11 Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: in-
crementally add datasets for pre-training. Pre-training data: (a)(b)(c)
CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red
line: average test accuracy of Linear Probing on all 4 datasets. Blue
line: test accuracy on the target task. (d)(e)(f) EMNIST-Digits&Letters
(E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. All evaluations are trained with 10% labeled data. . . 490

xxx

F.12 Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: in-
crementally add datasets for pre-training. Pre-training data: (a)(b)(c)
CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red
line: average test accuracy of Linear Probing on all 4 datasets. Blue
line: test accuracy on the target task. (d)(e)(f) EMNIST-Digits&Letters
(E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. All evaluations are trained with 20% labeled data. . . 491

F.13 Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: in-
crementally add datasets for pre-training. Pre-training data: (a)(b)(c)
CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I). For example,
“CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10. Red
line: average test accuracy of Linear Probing on all 4 datasets. Blue
line: test accuracy on the target task. (d)(e)(f) EMNIST-Digits&Letters
(E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I).
Target: Fer2013. All evaluations are trained with 100% labeled data. . 492

G.1 Needle in a Haystack performance comparison of different filter layers
with LLaMA 3.1 8B Instruct model. The x-axis represents the length of
the input tokens, while the y-axis shows the position depth percentage
of the ‘needle’ information (e.g., 0% indicates the beginning, and 100%
indicates the end). A higher score reflects better performance, meaning
more effective retrieval of the ‘needle’ information. 497

xxxi

G.2 Needle in a Haystack performance comparison of different methods
using the Phi 3.5 Mini 3.8B Instruct model. The x-axis represents the
length of the input tokens, while the y-axis shows the position depth
percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance,
meaning more effective retrieval of the ‘needle’ information. GemFilter
significantly outperforms both standard attention (full KV cache) and
SnapKV. 502

G.3 Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model. The x-axis represents the
length of the input tokens, while the y-axis shows the position depth
percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance,
meaning more effective retrieval of the ‘needle’ information. (a) is using
the middle row to select top k indices and (b) is using the row with
largest ℓ2 norm to select top k indices. 503

G.4 Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model. The x-axis represents the
length of the input tokens, while the y-axis shows the position depth
percentage of the ‘needle’ information (e.g., 0% indicates the beginning,
and 100% indicates the end). A higher score reflects better performance,
meaning more effective retrieval of the ‘needle’ information. (a) is our
method GemFilter and (b) is the degenerate version GemFilter-One-Run
for ablation study. 504

xxxii

G.5 Needle in a Haystack visualization of the top-k indices of each atten-
tion layer in GemFilter and SnapKV when using the Mistral Nemo 12B
Instruct model. The GemFilter uses layer-19 (the same as other experi-
ments) as its filter layer. Both GemFilter and SnapKV use k = 100, i.e.,
the number of selected tokens. The x-axis is the layer index, 40 layers
in total. The y-axis is the input index, where the input token length is
n = 46, 530. We use 50% as the position depth percentage of the ‘needle’
information. The red dots mean the selected tokens for the correspond-
ing layer and input tokens. The blue rectangle represents the position
of the needle information. The output of GemFilter is “The best thing to
do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.”
which is totally correct. The output of SnapKV is “The best thing to do in
San Francisco is eat a sandwich.” which is partially correct. 505

G.6 Needle in a Haystack visualization of the top-k indices of each attention
layer in GemFilter and SnapKV when using the LLaMA 3.1 8B Instruct
model. The GemFilter uses layer-13 (the same as other experiments) as
its filter layer. Both GemFilter and SnapKV use k = 1024, i.e., the number
of selected tokens. The x-axis is the layer index, 32 layers in total. The
y-axis is the input index, where the input token length is n = 108, 172.
We use 50% as the position depth percentage of the ‘needle’ information.
The red dots mean the selected tokens for the corresponding layer and
input tokens. The blue rectangle represents the position of the needle
information. The output of GemFilter is “Eat a sandwich and sit in Dolores
Park on a sunny day.” which is totally correct. The output of SnapKV is
“Eat a sandwich at a deli in the Mission District.” which is partially correct. 506

xxxiii

G.7 Needle in a Haystack visualization of the top-k indices of each atten-
tion layer in GemFilter and SnapKV when using the Phi 3.5 Mini 3.8B
Instruct model. The GemFilter uses layer-19 (the same as other experi-
ments) as its filter layer. Both GemFilter and SnapKV use k = 1024, i.e.,
the number of selected tokens. The x-axis is the layer index, 32 layers
in total. The y-axis is the input index, where the input token length
is n = 122, 647. We use 50% as the position depth percentage of the
‘needle’ information. The red dots mean the selected tokens for the
corresponding layer and input tokens. The blue rectangle represents the
position of the needle information. The output of GemFilter is “Sit in
Dolores Park on a sunny day and eat a sandwich.” which is totally correct.
The output of SnapKV is “Eat a sandwich.” which is partially correct. . 507

xxxiv

abstract

Deep neural networks have achieved remarkable success across various domains of
artificial intelligence. A key factor in their success is their ability to learn effective
feature representations from data, distinguishing them from traditional machine
learning methods. This thesis explores how feature learning emerges during neural
network training and demonstrates its crucial role in foundation models’ adaptation
to downstream applications.

First, we provide theoretical insights into the emergence of feature learning
in neural networks. We demonstrate that the networks can efficiently learn class-
relevant patterns in early training stages using minimal parameters, avoiding the
curse of dimensionality that affects traditional methods. Our analysis reveals that
this capability stems from the networks’ ability to leverage inherent input data
structures. We develop a unified analysis framework for two-layer networks trained
by gradient descent, characterizing how feature learning occurs beyond kernel
approaches. We extend our investigation to Transformer architectures, analyzing
Fourier features in one-layer Transformers and uncovering the relationship between
model scale and in-context learning behavior. Our findings reveal that larger models
cover more hidden features while smaller ones emphasize important features,
leading to different in-context learning behaviors.

Building on these theoretical insights, we develop practical applications for
foundation models. We introduce nuclear norm regularization for improved do-
main generalization, demonstrating consistent performance improvements across
various tasks. We address the trade-off between universality and label efficiency
in contrastive learning through a novel regularization method. Furthermore, we
propose looped Transformers for implementing multi-step gradient descent in
in-context learning and develop GemFilter, an algorithm that leverages early-layer
attention features to accelerate Large Language Model inference.

This thesis advances our understanding of feature learning in neural networks
and provides practical methods for improving foundation models’ performance,
developing more efficient and effective machine learning systems.

1

1 introduction

Nowadays, deep neural networks dominate artificial intelligence and machine
learning. Deep Learning has achieved remarkable empirical success and has been
a main driving force for the recent progress in machine learning and artificial
intelligence. It has been widely used in many applications, such as computer
vision (He et al., 2016; Ren et al., 2015; Chen et al., 2018; Goodfellow et al., 2014;
Krizhevsky et al., 2012), natural language processing (Devlin et al., 2019; Vaswani
et al., 2017; Williams et al., 2018; Dolan and Brockett, 2005; Howard and Ruder, 2018;
Rajpurkar et al., 2016; Peters et al., 2018), speech recognition (Hannun et al., 2014;
Abdel-Hamid et al., 2014; Amodei et al., 2016; Chorowski et al., 2015) and game
playing (Silver et al., 2016, 2017), etc. In particular, foundation models (Bommasani
et al., 2021), e.g., Llama (AI, 2024) and ChatGPT (OpenAI, 2022), have been widely
involved in people’s living and work and demonstrated immense potential to
enhance various aspects.

Various empirical studies have shown that an important characteristic of deep
neural networks is their feature learning ability, i.e., to learn a feature mapping for
the inputs which allows better performance. This is widely believed to be a key
factor to their remarkable success in many applications, in particular, an advantage
over traditional machine learning methods. To understand their success, it is crucial
to understand the source and benefit of feature learning in neural networks. Only
when we have a deeper understanding of feature learning, we can improve deep
learning comprehensively in a wide range of real applications. This raises critical
research questions:

How does feature learning emerges during the neural network training?
If we know that, could we utilize feature learning better, particularly in foundation models?

In this thesis, we assert the following statement:

Feature learning emerges from input data structures during the neural network training
and is crucial for foundation models adaptation to downstream applications.

2

In real-life vision tasks, the raw input data has a extremely large dimension. For
example, one color image from a 120 fps HD 1080p YouTube video has dimensions
1920× 1080× 3 = 6.2× 106. A 10-min video clip will have dimensions 600× 120×
6.2 × 106 = 4.5 × 1011. We know that there is a huge information redundancy.
Empirical observations show that deep networks can discover an effective feature
representation for the task and learn neurons that correspond to different important
semantic patterns in the inputs (e.g., human eyes, bird shapes, tires, etc. in images).
Thus, it can non-linearly project the image to a feature space with much fewer
dimensions, e.g., 512. However, most traditional machine learning methods, like
kernel methods, suffer from the curse of dimensionality which is not tolerable in a
real-world application. In contrast, due to feature learning, neural networks can
routinely tackle high-dimensional datasets and adapt to the latent low-dimensional
structure without suffering from the curse of dimensionality.

In this thesis, we first study how feature learning emerge in the neural network
training dynamic, under settings including two-layer neural networks and one-layer
Transformers (Vaswani et al., 2017). We find that the task-useful feature is emergent
from the input data distribution, which explains how feature learning make neural
networks successful and beyond traditional machine learning methods. Secondly,
based on our understanding, we propose many algorithm utilization feature learn-
ing to make the foundation models have better downstream application adaptation,
including domain generalization, few-shot adaptation, in-context learning, and
Large Language Models inference acceleration. In the subsequent sections, we
will delve into the specific details of these two aspects and discuss their respective
contributions.

1.1 How does Feature Learning Emerge in the
Training of the Neural Network Dynamic?

Given the importance of feature learning, it is necessary to understand how feature
learning emerges to improve neural networks’ feature learning ability. The analysis

3

of feature learning is extremely challenging because the optimization of deep neural
networks is non-convex. Even training a three-node network can be NP-complete in
the worst case (Blum and Rivest, 1989). In contrast, the practical networks can be of
hundreds of layers with millions of nodes but can be trained to small training losses
with a relatively simple algorithm, in particular, Stochastic Gradient Descent (SGD)
with back-propagation. Overcoming the challenge, our studies show two critical
properties resulting in feature learning: (1) feature learning emergence from input
data structures in the first few learning steps; (2) implicit regularization/simplicity
bias of SGD towards effective features structure after the first few learning steps.

We refer readers to Chapter 2 to Chapter 4 for more details. Here, we made a
summary with high-level intuition.

Feature learning emergence from input data structures. In Chapter 2, to thor-
oughly understand the importance of feature learning for success, our work (Shi
et al., 2022c) proposes to analyze learning problems motivated by practical data.
The labels are determined by a set of class-relevant patterns and the inputs are gen-
erated from these along with some background patterns. Our work demonstrates
that a neural network with a small number of parameters is enough to learn some
class-relevant patterns in a few training steps, and these patterns are sufficient to
make the model a good performance on the task. On the other hand, traditional
machine learning methods with fixed features do not have such power. They need
exponential fixed features to cover the whole feature space so that they can contain
enough class-relevant features with a high probability to gain non-trivial perfor-
mance. Covering the whole feature space will lead to the curse of dimensionality.
Thus, we answer that, by feature learning, neural networks can figure out the low-
dimensional structure of useful features and prevent the curse of dimensionality.
Furthermore, we show that feature learning in the first few steps of neural networks
comes from the input data structure. Our work demonstrates that if there is no
input data structure, both neural networks and traditional methods cannot be better
than random guessing. It suggests that the input data structures (useful patterns)
are crucial for efficient machine learning in real-world applications.

4

Provable guarantees for neural networks via gradient feature learning. The
current theoretical analysis of deep neural network is not adequate for understand-
ing their success, e.g., the Neural Tangent Kernel approach fails to capture their
key feature learning ability, while recent analyses on feature learning are typically
problem-specific. In Chapter 3, our work (Shi et al., 2023d) proposes a unified
analysis framework for two-layer networks trained by gradient descent, which
extends the first work to general data distributions. The framework is centered
around the principle of feature learning from gradients, and its effectiveness is
demonstrated by applications in several prototypical problems such as mixtures
of Gaussians and parity functions. The framework also sheds light on interesting
network learning phenomena such as feature learning beyond kernels and the
lottery ticket hypothesis.

Fourier feature in one-layer Transformers. In the evolving landscape of machine
learning, a pivotal challenge lies in deciphering the feature representations har-
nessed by neural networks and Transformers. In Chapter 4, our work (Li et al.,
2024b) directs our focus to the complex algebraic learning task of modular addition
involving k inputs. Our research presents a thorough analytical characterization of
the features learned by stylized one-hidden layer neural networks and one-layer
Transformers in addressing this task. A cornerstone of our theoretical framework
is the elucidation of how the principle of margin maximization shapes the features
adopted by one-hidden layer neural networks. We demonstrate that a neuron count
of these networks attain a maximum margin solution. Furthermore, we establish
that each hidden-layer neuron aligns with a specific Fourier feature, integral to
solving modular addition problems. By correlating our findings with the empirical
observations of similar studies, we contribute to a deeper comprehension of the
intrinsic computational mechanisms of neural networks. Furthermore, we observe
similar computational mechanisms in attention matrices of one-layer Transformers.
Our work stands as a significant stride in unraveling their operation complexities,
particularly in the realm of complex algebraic tasks.

5

Feature learning in in-context learning. Large language models (LLM) have
emerged as a powerful tool for AI, with the key ability of incontext learning (ICL),
where they can perform well on unseen tasks based on a brief series of task examples
without necessitating any adjustments to the model parameters. One recent interest-
ing mysterious observation is that models of different scales may have different ICL
behaviors: larger models tend to be more sensitive to noise in the test context. In
Chapter 5, our work (Shi et al., 2024b) studies this observation theoretically aiming
to improve the understanding of LLM and ICL. We analyze two stylized settings:
(1) linear regression with one-layer singlehead linear Transformers and (2) parity
classification with two-layer multiple attention heads Transformers (non-linear
data and non-linear model). In both settings, we give closed-form optimal solutions
and find that smaller models emphasize important hidden features while larger
ones cover more hidden features; thus, smaller models are more robust to noise
while larger ones are more easily distracted, leading to different ICL behaviors.
This sheds light on where Transformers pay attention to and how that affects ICL.

1.2 What Forward Path will be led by Feature
Learning?

Pre-trained representations (a.k.a. foundation models) have recently become a
prevalent learning paradigm, where one first self-supervised pre-trains a represen-
tation function using large-scale unlabeled data and then learns simple predictors
on top of the representation using small labeled data from the downstream tasks.
The self-supervised pre-training can compete with or outperform supervised pre-
training on the downstream prediction performance. Practical examples like GPT-3
(a language generative model introduced by OpenAI, has 175B parameters trained
on 300B tokens and costs millions of dollars), CLIP, DALL·E, PaLM, and Flamingo
have obtained effective representations universally useful for a wide range of down-
stream tasks. There are two key desiderata for the representation function: label
efficiency (the ability to learn an accurate classifier on top of the representation

6

with a small amount of labeled data) and universality (usefulness across a wide
range of downstream tasks). As we have a better understanding of feature learning
emerging from input data structure, it can advise us on the proper way to improve
foundation models.

In Chapter 6 and Chapter 7, we provide several cases of using feature learning
analysis in real-world applications to gain two key desiderata. Furthermore, in
Chapter 8 and Chapter 9, we illustrate how to utilize feature learning to improve
Transformers. Here, we made a summary with high-level intuition

Domain generalization. The ability to generalize to unseen domains is crucial
for machine learning systems deployed in the real world, especially when we only
have data from limited training domains. In Chapter 6, we propose a simple and
effective regularization method based on the nuclear norm of the learned features
for domain generalization. Intuitively, the proposed regularizer mitigates the im-
pacts of environmental features and encourages learning domain-invariant features.
Theoretically, we provide insights into why nuclear norm regularization is more
effective compared to ERM and alternative regularization methods. Empirically, we
conduct extensive experiments on both synthetic and real datasets. We show that
nuclear norm regularization achieves strong performance compared to baselines in
a wide range of domain generalization tasks. Moreover, our regularizer is broadly
applicable with various methods such as ERM and SWAD with consistently im-
proved performance, e.g., 1.7% and 0.9% test accuracy improvements respectively
on the DomainBed benchmark.

Contrastive regularization. In Chapter 7, we focus on one of the most popular
instantiations of this paradigm: contrastive learning with linear probing, i.e., learn-
ing a linear predictor on the representation pre-trained by contrastive learning. We
show that there exists a trade-off between the two desiderata so that one may not
be able to achieve both simultaneously. Specifically, we provide analysis using a
theoretical data model and show that, while more diverse pre-training data result
in more diverse features for different tasks (improving universality), it puts less

7

emphasis on task-specific features, giving rise to larger sample complexity for down-
stream supervised tasks, and thus worse prediction performance. Guided by this
analysis, we propose a contrastive regularization method to improve the trade-off.
We validate our analysis and method empirically with systematic experiments
using real-world datasets and foundation models.

Looped Transformers in in-context learning. In-context learning has been recog-
nized as a key factor in the success of Large Language Models (LLMs). It refers to
the model’s ability to learn patterns on the fly from provided in-context examples
in the prompt during inference. Previous studies have demonstrated that the Trans-
former architecture used in LLMs can learn feature by implementing a single-step
gradient descent update by processing in-context examples in a single forward pass.
In Chapter 8, our work show that, during in-context learning, a looped Transformer
can learn feature by implementing multi-step gradient descent updates in forward
passes. We study linear looped Transformers in-context learning on linear vector
generation tasks. We show that linear looped Transformers can learn feature by
implementing multi-step gradient descent efficiently for in-context learning. Our
results demonstrate that as long as the input data has a constant condition number,
the linear looped Transformers can achieve a small error by multi-step gradient
descent during in-context learning. Our findings offer new insights into the mecha-
nisms behind LLMs and potentially guiding the better design of efficient inference
algorithms for LLMs.

Utilizing attention feature to compress input. Large Language Models (LLMs)
have demonstrated remarkable capabilities in handling long context inputs, but this
comes at the cost of increased computational resources and latency. In Chapter 9,
our research (Shi et al., 2024a) introduces a novel approach for the long context
bottleneck to accelerate LLM inference and reduce GPU memory consumption. Our
research demonstrates that LLMs can identify relevant tokens by attention feature
in the early layers before generating answers to a query. Leveraging this insight,
we propose an algorithm that uses early layers of an LLM as filters to select and

8

compress input tokens, significantly reducing the context length for subsequent
processing. Our method, GemFilter, demonstrates substantial improvements in
both speed and memory efficiency compared to existing techniques. Notably, it
achieves a 2.4× speedup and 30% reduction in GPU memory usage compared to
SOTA methods. GemFilter is simple, training-free, and broadly applicable across
different LLMs. Crucially, it provides interpretability by allowing humans to inspect
the selected input sequence. These findings not only offer practical benefits for LLM
deployment, but also enhance our understanding of LLM internal mechanisms,
paving the way for further optimizations in LLM design and inference.

1.3 Summary of Contributions
This thesis makes several significant contributions to understanding feature learning
in neural networks and its applications in foundation models.

The first major contribution is a theoretical understanding of feature learn-
ing emergence. We demonstrated that feature learning emerges from input data
structures during early training steps. Our analysis proved that neural networks
can learn class-relevant patterns with minimal parameters, avoiding the curse of
dimensionality that plagues traditional methods. We developed a unified analy-
sis framework for two-layer networks trained by gradient descent, revealing how
feature learning occurs beyond kernel approaches.

The second key contribution centers on novel insights into Transformer architec-
ture. We characterized feature representations in one-layer Transformers through
the lens of Fourier features and revealed the relationship between model scale and
in-context learning behavior. Our work demonstrated how larger models cover
more hidden features while smaller models emphasize important ones, providing
crucial insights into model behavior at different scales.

The third significant contribution focuses on practical applications in founda-
tion models. We introduced nuclear norm regularization for improved domain
generalization and developed contrastive regularization methods to balance uni-
versality and label efficiency. Additionally, we created the GemFilter algorithm for

9

efficient long-context processing in LLMs and proposed looped Transformers for
implementing multi-step gradient descent in in-context learning.

1.4 Thesis Outline
The remainder of this thesis is organized into two main parts, focusing on theo-
retical understanding of feature learning emergence and practical applications in
foundation models.

Chapter 2-Chapter 5 establish the theoretical foundations of feature learning
emergence. Chapter 2 analyzes how feature learning emerges from input data
structures in neural networks. We present our theoretical framework for under-
standing feature learning in the first few training steps and demonstrate why neural
networks can avoid the curse of dimensionality while traditional methods cannot.
Chapter 3 introduces our unified analysis framework for two-layer networks trained
by gradient descent, showing how gradient-based feature learning occurs beyond
kernel approaches. Chapter 4 and Chapter 5 extends our analysis to Transform-
ers, characterizing Fourier features in one-layer Transformers and examining the
relationship between model scale and in-context learning behavior.

Chapter 6-Chapter 9 focus on practical applications of feature learning in foun-
dation models. Chapter 6 presents our nuclear norm regularization method for
domain generalization, including theoretical analysis and empirical validation
across various tasks. Chapter 7 explores the trade-off between universality and
label efficiency in contrastive learning, introducing our contrastive regularization
method to improve this balance. Chapter 8 describes our work on looped Trans-
formers for in-context learning, demonstrating how they can implement multi-step
gradient descent updates. Chapter 9 presents GemFilter, our algorithm for efficient
long-context processing in Large Language Models, showing how feature learning
can be leveraged to improve computational efficiency.

Chapter 10 concludes the thesis by summarizing our key findings and contribu-
tions to feature learning theory and practice. We discuss the broader implications

10

of our work for the field of machine learning and outline promising directions for
future research.

Each chapter begins with an overview of the specific problem being addressed
and concludes with a discussion of results and their implications. Technical proofs
and additional experimental details are provided in appendices to maintain read-
ability while ensuring completeness.

11

2 a theoretical analysis on feature learning in neural
networks: emergence from inputs and advantage over
fixed features

Contribution statement. This chapter is joint work with Junyi Wei and Yingyu
Liang. The author Zhenmei Shi proposed the method, contributed to part of the
theoretical analysis, and completed all the experiments. The results of this chapter
have been published as a conference paper in ICLR 2022 (Shi et al., 2022c).

2.1 Introduction
Various empirical studies have shown that an important characteristic of neural
networks is their feature learning ability, i.e., to learn a feature mapping for the
inputs which allow accurate prediction (e.g., Zeiler and Fergus (2014); Girshick
et al. (2014); Zhang et al. (2019); Manning et al. (2020)). This is widely believed
to be a key factor to their remarkable success in many applications, in particular,
an advantage over traditional machine learning methods. To understand their
success, it is then crucial to understand the source and benefit of feature learning in
neural networks. Empirical observations show that networks can learn neurons that
correspond to different semantic patterns in the inputs (e.g., eyes, bird shapes, tires,
etc. in images (Zeiler and Fergus, 2014; Girshick et al., 2014)). Moreover, recent
progress (e.g., Caron et al. (2018); Chen et al. (2020c); He et al. (2020a); Jing and
Tian (2020)) shows that one can even learn a feature mapping using only unlabeled
inputs and then learn an accurate predictor (usually a linear function) on it using
labeled data. This further demonstrates the feature learning ability of neural net-
works and that these input distributions contain important information for learning
useful features. These empirical observations strongly suggest that the structure of
the input distribution is crucial for feature learning and feature learning is crucial
for the strong performance. However, it is largely unclear how practical training

12

methods (gradient descent or its variants) learn important patterns from the inputs
and whether this is necessary for obtaining the superior performance, since the
empirical studies do not exclude the possibility that some other training methods
can achieve similar performance without feature learning or with feature learning
that does not exploit the input structure. Rigorous theoretical investigations are
thus needed for answering these fundamental questions: How can effective features
emerge from inputs in the training dynamics of gradient descent? Is learning features from
inputs necessary for the superior performance?

Compared to the abundant empirical evidence, the theoretical understanding
still remains largely open. One line of work (e.g. Jacot et al. (2018); Li and Liang
(2018); Du et al. (2019); Allen-Zhu et al. (2019b); Zou et al. (2020); Chizat et al.
(2019) and many others) shows in certain regime, sufficiently overparameterized
networks are approximately linear models, i.e., a linear function on the Neural
Tangent Kernel (NTK). This falls into the traditional approach of linear models
on fixed features, which also includes random features (Rahimi and Recht, 2008)
and other kernel methods (Kamath et al., 2020). The kernel viewpoint thus does
not explain feature learning in networks nor the advantage over fixed features. A
recent line of work (e.g. Daniely and Malach (2020); Bai and Lee (2019); Ghorbani
et al. (2020); Yehudai and Shamir (2019); Allen-Zhu and Li (2019, 2020a); Li et al.
(2020); Malach et al. (2021) and others) shows examples where networks provably
enjoy advantages over fixed features, under different settings and assumptions.
While providing insightful results separating the two approaches, most studies
have not investigated if the input structure is crucial for feature learning and thus
the advantage. Also, most studies have not analyzed how gradient descent can
learn important input patterns as effective features, or rely on strong assumptions
like models or data atypical in practice (e.g., special networks, Gaussian data, etc).

Towards a more thorough understanding, we propose to analyze learning prob-
lems motivated by practical data, where the labels are determined by a set of class
relevant patterns and the inputs are generated from these along with some back-
ground patterns. We use comparison for our study: (1) by comparing network
learning approaches with fixed feature approaches on these problems, we analyze

13

the emergence of effective features and demonstrate feature learning leads to the
advantage over fixed features; (2) by comparing these problems to those with the
input structure removed, we demonstrate that the input structure is crucial for
feature learning and prediction performance.

More precisely, we obtain the following results. We first prove that two-layer
networks trained by gradient descent can efficiently learn to small errors on these
problems, and then prove that no linear models on fixed features of polynomial
sizes can learn to as good errors. These two results thus establish the provable ad-
vantage of networks and implies that feature learning leads to this advantage. More
importantly, our analysis reveals the dynamics of feature learning: the network
first learns a rough approximation of the effective features, then improves them to
get a set of good features, and finally learns an accurate classifier on these features.
Notably, the improvement of the effective features in the second stage is needed
for obtaining the provable advantage. The analysis also reveals the emergence and
improvement of the effective features are by exploiting the data, and in particular,
they rely on the input structure. To formalize this, we further prove the third result:
if the specific input structure is removed and replaced by a uniform distribution,
then no polynomial algorithm can even weakly learn in the Statistical Query (SQ)
learning model, not to mention the advantage over fixed features. Since SQ learning
includes essentially all known algorithms (in particular, mini-batch stochastic gradi-
ent descent used in practice), this implies that feature learning depends strongly on
the input structure. Finally, we perform simulations on synthetic data to verify our
results. We also perform experiments on real data and observe similar phenomena,
which show that our analysis provides useful insights for the practical network
learning.

Our analysis then provides theoretical support for the following principle: feature
learning in neural networks depends strongly on the input structure and leads to the superior
performance. In particular, our results make it explicit that learning features from
the input structure is crucial for the superior performance. This suggests that
input-distribution-free analysis (e.g., traditional PAC learning) may not be able to
explain the practical success, and advocates an emphasis of the input structure in

14

the analysis. While these results are for our proposed problem setting and network
learning in practice can be more complicated, the insights obtained match existing
empirical observations and are supported by our experiments. The compelling
evidence hopefully can attract more attention to further studies on modeling the
input structure and analyzing feature learning.

2.2 Related Work
This section provides an overview while more technical discussions can be found
in Appendix A.3.
Neural Tangent Kernel (NTK) and Linearization of Neural Networks. One line
of work (e.g. Jacot et al. (2018); Li and Liang (2018); Matthews et al. (2018); Lee
et al. (2019a); Novak et al. (2019); Yang (2019); Du et al. (2019); Allen-Zhu et al.
(2019b); Zou et al. (2020); Ji and Telgarsky (2019b); Cao et al. (2020); Geiger et al.
(2020); Chizat et al. (2019) and more) explains the success of sufficiently over-
parameterized neural network by connecting them to linear methods like NTK.
Though their approaches are different, they all base on the observation that when
the network is sufficiently large, the weights stay close to the initialization during the
training, and training is similar to solving a kernel method problem. This is typically
referred to as the NTK regime, or lazy training, or linearization. However, networks
used in practice are usually not large enough to enter this regime, and the weights
are frequently observed to traverse away from the initialization. Furthermore,
in this regime, network learning is essentially the traditional approach of linear
methods over fixed features, which cannot establish or explain feature learning and
the advantage of network learning.
Advantage of Neural Networks over Linear Models on Fixed Features. Since
the superior network learning results via gradient descent are not well explained
by the NTK view, a recent line of work has turned to learning settings where
neural networks provably have advantage over linear models on fixed features
(e.g. Daniely and Malach (2020); Refinetti et al. (2021); Malach et al. (2021); Dou
and Liang (2020); Bai and Lee (2019); Ghorbani et al. (2020); Allen-Zhu and Li

15

(2019); see the great summary in Malach et al. (2021)). While formally establishing
the advantage, they have not thoroughly answered the two fundamental questions
this work focuses on; in particular, most existing work has not studied whether
the input structure is a crucial factor for feature learning and thus the advantage,
and/or has not considered how the features are learned in more practical training
scenarios. For example, Ghorbani et al. (2020) show the advantage of networks in
approximation power and Dou and Liang (2020) show their statistical advantage,
but they do not consider the learning dynamics (i.e., how the training method
obtains the good network). Allen-Zhu and Li (2019) prove the advantage of the
networks for PAC learning with labels given by a depth-2 ResNet and Allen-Zhu
and Li (2020a) prove for Gaussian inputs with labels given by a multiple-layer
network, while neither considers the influence of the input structure on feature
learning or the advantage. Daniely and Malach (2020) prove the advantage of
the networks for learning sparse parities on specific input distributions that help
gradient descent learn effective features for prediction, and Malach et al. (2021)
consider similar learning problems but with specifically designed differentiable
models, while our work analyzes data distributions and models closer to those in
practice and also explicitly focuses on whether the input structure is needed for the
learning. There are also other theoretical studies on feature learning in networks
(e.g. Yehudai and Ohad (2020); Zhou et al. (2021b); Diakonikolas et al. (2020); Frei
et al. (2020)), which however do not directly relate feature learning to the input
structure or the advantage of network learning.

2.3 Problem Setup
To motivate our setup, consider images with various kinds of patterns like lines
and rectangles. Some patterns are relevant for the labels (e.g., rectangles for distin-
guishing indoor or outdoor images), while the others are not. If the image contains
a sufficient number of the former, then we are confident that the image belongs to
a certain class. Dictionary learning or sparse coding is a classic model of such data
(e.g., Olshausen and Field (1997); Vinje and Gallant (2000); Blei et al. (2003)). We

16

thus model the patterns as a dictionary, generate a hidden vector indicating the
presence of the patterns, and generate the input and label from this vector.

Let X = Rd be the input space, and Y = {±1} be the label space. Suppose
M ∈ Rd×D is an unknown dictionary with D columns that can be regarded as
patterns. For simplicity, assume M is orthonormal. Let ϕ̃ ∈ {0, 1}D be a hidden
vector that indicates the presence of each pattern. Let A ⊆ [D] be a subset of size k
corresponding to the class relevant patterns. Then the input is generated byMϕ̃,
and the label can be any binary function on the number of class relevant patterns.
More precisely, let P ⊆ [k]. Given A and P, we first sample ϕ̃ from a distribution
Dϕ̃, and then generate the input x̃ and the class label y from ϕ̃:

ϕ̃ ∼ Dϕ̃, x̃ =Mϕ̃, y =

+1, if
∑
i∈A ϕ̃i ∈ P,

−1, otherwise.
(2.1)

Learning with Input Structure. We allow quite general Dϕ̃ with the following
assumptions:

(A0) The class probabilities are balanced: Pr[
∑
i∈A ϕ̃i ∈ P] = 1/2.

(A1) The patterns in A are correlated with the labels with the same correlation: for
any i ∈ A, γ = E[yϕ̃i] − E[y]E[ϕ̃i] > 0.

(A2) Each pattern outside A is identically distributed and independent of all other
patterns. Let po := Pr[ϕ̃i = 1] and without loss of generality assume po ⩽ 1/2.

Let D(A,P,Dϕ̃) denote the distribution on (x̃,y) for some A,P, and Dϕ̃. Given
parametersΞ = (d,D,k,γ,po), the familyFΞ of distributions include allD(A,P,Dϕ̃)
with A ⊆ [D], P ⊆ [k], and Dϕ̃ satisfying the above assumptions. The labeling
function includes some interesting special cases:

Example 1. Suppose P = {i ∈ [k] : i > k/2} for some threshold, i.e., we will set
the label y = +1 when more than a half of the relevant patterns are presented in
the input.

17

Example 2. Suppose k is odd, and let P = {i ∈ [k] : i is odd}, i.e., the labels are
given by the parity function on ϕ̃j(j ∈ A). This is useful to prove our lower bounds
via the properties of parities.

Appendix A.8 presents results for more general settings (e.g., incoherent dic-
tionary, unbalanced classes, etc.). On the other hand, our problem setup does
not include some important data models. In particular, one would like to model
hierarchical representations often observed in practical data and believed to be
important for deep learning. We leave such more general cases for future work.
Learning Without Input Structure. For comparison, we also consider learning
problems without input structure. The data are generated as above but with differ-
ent distributions Dϕ̃:

(A1’) The patterns are uniform over {0, 1}D: for any i ∈ [D], Pr[ϕ̃i = 1] = 1/2
independently.

Given parameters Ξ0 = (d,D,k), the family FΞ0 of distributions without input
structure is the set of all the distributions with A ⊆ [D], P ⊆ [k] and Dϕ̃ satisfying
the above assumptions.

2.3.1 Neural Network Learning

Networks. We consider training a two-layer network via gradient descent on the
data distribution:

g(x) =
2m∑
i=1

aiσ(⟨wi, x⟩+ bi) (2.2)

where wi ∈ Rd,bi,ai ∈ R, and σ(z) = min(1, max(z, 0)) is the truncated rectified
linear unit (ReLU) activation function. Let θ = {wi,bi,ai}2mi=1 denote all the param-
eters, and let superscript (t) denote the time step, e.g., g(t) denote the network at
time step t with θ(t) = {w(t)

i ,b(t)i ,a(t)
i }.

Loss Function. Similar to typical practice, we will normalize the data for learning:
first compute x = (x̃−E[x̃])/σ̃where σ̃2 = E

∑d
i=1(x̃i−E[x̃i])2 is the variance of the

18

data, and then train on (x,y). This is equivalent to setting ϕ = (ϕ̃− E[ϕ̃])/σ̃ and
generating x =Mϕ. For (x̃,y) from D and the normalized (x,y), we will simply
say (x,y) ∼ D.

For the training, we consider the hinge-loss ℓ(y, ŷ) = max{1 − yŷ, 0}. We will
inject some noise ξ to the neurons for the convenience of the analysis. (This can
be viewed as using a smoothed version of the activation σ̃(z) = Eξσ(z+ ξ) similar
to those in existing studies like Allen-Zhu and Li (2022); Malach et al. (2021). See
Section 2.5 for more explanations.) Formally, the loss is:

LD(g;σξ) = E(x,y)[ℓ(y,g(x; ξ))], where g(x; ξ) =
2m∑
i=1

aiEξ[σ(⟨wi, x⟩+ bi + ξi)]

(2.3)

where ξ ∼ N(0,σ2
ξIm×m) are independent Gaussian noise. Let LD(g) denote the

typical hinge-loss without noise. We also consider ℓ2 regularization: R(g; λa, λw) =∑2m
i=1 λa|ai|

2 + λw∥wi∥2
2 with regularization coefficients λa, λw.

Training Process. We first perform an unbiased initialization: for every i ∈ [m],
initialize w(0)

i ∼ N(0,σ2
wId×d) with σw = 1/k, b(0)

i ∼ N
(
0,σ2

b

)
with σb = 1/k2,

a
(0)
i ∼ N(0,σ2

a) with σa = σ̃2/(γk2), and then set w(0)
m+i = w(0)

i , b(0)
m+i = b

(0)
i ,

a
(0)
m+i = −a

(0)
i . We then do gradient updates:

θ(t) = θ(t−1) − η(t)∇θ
(
LD(g

(t−1);σ(t)ξ) + R(g(t−1); λ(t)a , λ(t)w)
)

, for t = 1, 2, . . . , T ,

(2.4)

for some choice of the hyperparameters η(t), λ(t)a , λ(t)w , σ(t)ξ , and T .

2.4 Main Results
Provable Guarantee for Neural Networks. The network learning has the following
guarantee:

19

Theorem 2.1. For any δ, ϵ ∈ (0, 1), if k = Ω
(

log2 (D/(δγ))
)

, po = Ω(k2/D), and
max{Ω(k12/ϵ3/2),D} ⩽ m ⩽ poly(D), then with properly set hyperparameters, for any
D ∈ FΞ, with probability at least 1 − δ, there exists t ∈ [T] such that Pr[sign(g(t)(x)) ̸=
y] ⩽ LD(g(t)) ⩽ ϵ.

The theorem shows that for a wide range of the background pattern probability
po and the number of class relevant patterns k, the network trained by gradient
descent can obtain a small classification error. More importantly, the analysis shows
the success comes from feature learning. In the early stages, the network learns and
improves the neuron weights such that on the features (i.e., the neurons’ outputs)
there is an accurate classifier; afterwards it learns such a classifier. The next section
will provide a detailed discussion on the feature learning.
Lower Bound for Fixed Features. Empirical observations and Theorem 2.1 do not
exclude the possibility that some methods without feature learning can achieve
similar performance. We thus prove a lower bound for the fixed feature approach,
i.e., linear models on data-independent features.

Theorem 2.2. Suppose Ψ is a data-independent feature mapping of dimension N with
bounded features, i.e., Ψ : X → [−1, 1]N. For B > 0, the family of linear models on Ψ
with bounded norm B is HB = {h(x̃) : h(x̃) = ⟨Ψ(x̃),w⟩, ∥w∥2 ⩽ B}. If 3 < k ⩽ D/16
and k is odd, then there exists D ∈ FΞ such that all h ∈ HB have hinge-loss at least
po

(
1 −

√
2NB
2k

)
.

So using fixed features independent of the data cannot get loss nontrivially
smaller than po unless with exponentially large models. In contrast, viewing the
neurons σ(⟨wi, x⟩+ bi) as learned features, network learning can achieve any loss
ϵ ∈ (0, 1) with models of polynomial sizes. We emphasize the lower bound is
because the feature map Ψ is independent of the data. Indeed, there exists a small
linear model on a small dimensional feature map allowing 0 loss for each data
distribution in our problem set FΞ (Lemma 2.5). However, this feature map Ψ∗ is
different for different data distribution in FΞ, i.e., depends on the data. On the other
hand, the feature map Ψ in the lower bound is data-independent, i.e., fixed before

20

seeing the data. For Ψ to work simultaneously for all distributions in FΞ, it needs to
have exponential dimensions. Intuitively, it needs a large number of features, so
that there are some features to approximate each Ψ∗

i . There are exponentially many
data distributions in FΞ, and thus exponentially many data-dependent features
Ψ∗
i , which requires Ψ to have an exponentially large dimension. Network learning

updates the hidden neurons using the data and can learn to move the features to
the right positions to approximate the ground-truth data-dependent features Ψ∗,
so it does not need an exponentially large dimension feature map.

The theorem directly applies to linear models on fixed finite-dimensional feature
maps, e.g., linear models on the input or random feature approaches (Rahimi and
Recht, 2008). It also implies lower bounds to infinite dimensional feature maps
(e.g., some kernels) that can be approximated by feature maps of polynomial
dimensions. For example, Claim 1 in Rahimi and Recht (2008) implies that a
function f using shift-invariant kernels (e.g., RBF) can be approximated by a model
⟨Ψ(x̃),w⟩ with the dimension N and weight norm B bounded by polynomials of
the related parameters of f like its RKHS norm and the input dimension. Then
our theorem implies some related parameter of f needs to be exponential in k for f
to get nontrivial loss, formalized in Corollary 2.3. Kamath et al. (2020) has more
discussions on approximating kernels with finite dimensional maps.

Corollary 2.3. For any function f using a shift-invariant kernel K with RKHS norm
bounded by L, or f(x) =

∑
i αiK(zi, x) for some data points zi and ||α||2 ⩽ L. If 3 <

k ⩽ D/16 and k is odd, then there exists D ∈ FΞ such that f has hinge-loss at least
po

(
1 −

poly(d,L)
2k

)
− 1

poly(d,L) .

Lower Bound for Without Input Structure. Existing results do not exclude the
possibility that some learning methods without exploiting the input structure can
achieve strong performance. To show the necessity of the input structure, we
consider learning FΞ0 with input structure removed. We obtain a lower bound for
such learning problems in the classic Statistical Query (SQ) model (Kearns, 1998).
In this model, the algorithm can only receive information about the data through
statistical queries. A statistical query is specified by some polynomially-computable

21

property predicate Q of labeled instances and a tolerance parameter τ ∈ [0, 1]. For
a query (Q, τ), the algorithm receives a response P̂Q ∈ [PQ − τ,PQ + τ], where
PQ = Pr[Q(x,y) is true]. Notice that a query can be simulated using the average
of roughly O(1/τ2) random data samples with high probability. The SQ model
captures almost all common learning algorithms (except Gaussian elimination)
including the commonly used mini-batch SGD, and thus is suitable for our purpose.

Theorem 2.4. For any algorithm in the Statistical Query model that can learn over FΞ0 to
classification error less than 1

2 −
1

(Dk)
3 , either the number of queries or 1/τ must be at least

1
2

(
D
k

)1/3.

The theorem shows that without the input structure, polynomial algorithms
in the SQ model cannot get a classification error nontrivially smaller than random
guessing. The comparison to the result for with input structure then shows that
the input structure is crucial for network learning, in particular, for achieving the
advantage over fixed feature models.

2.5 Proof Sketches
Here we provide the sketch of our analysis, focusing on the key intuition and
discussing some interesting implications. The complete proofs are included in
Appendix A.4-A.6.

2.5.1 Provable Guarantees of Neural Networks

Overall Intuition. We first show that there is a two-layer network that can represent
the target labeling function, whose neurons can be viewed as the “ground-truth”
features to be learned. We then show that after the first gradient step, the hidden
neurons of the trained network become close to the ground-truth: their weights
contain large components along the class relevant patterns but small along the
background patterns. We further show that in the second gradient step, these
features get improved: the “signal-noise” ratio between the components for class

22

relevant patterns and those for the background ones becomes larger, giving a set of
good features. Finally, we show that the remaining steps learn an accurate classifier
on these features.
Existence of A Good Network. We show that there is a two-layer network that can
fit the labels.

Lemma 2.5. For any D ∈ FΞ, there exists a network g∗(x) =
∑n
i=1 a

∗
iσ(⟨w∗

i , x⟩ + b∗i)
with y = g∗(x) for any (x,y) ∼ D. Furthermore, the number of neurons n = 3(k + 1),
|a∗
i | ⩽ 32k, 1/(32k) ⩽ |b∗i | ⩽ 1/2, w∗

i = σ̃
∑
j∈AMj/(4k), and |⟨w∗

i , x⟩ + b∗i | ⩽ 1 for
any i ∈ [n] and (x,y) ∼ D.

In particular, the weights of the neurons are proportional to
∑
j∈AMj, the sum

of the class relevant patterns. We thus focus on analyzing how the network learns
such neuron weights.
Feature Emergence in the First Gradient Step. The gradient for wi (ignoring the
noise) is:

∂LD(g)

∂wi

= −aiE(x,y)∼D {yI[yg(x) ⩽ 1]σ ′[⟨wi, x⟩+ bi]x}

= −aiE(x,y)∼D {yxσ ′[⟨wi, x⟩+ bi]}

where the last step is due to g(x) = 0 by the unbiased initialization. Let qj =

⟨Mj, wi⟩ denote the component along the direction of the pattern Mj. Then the
component of the gradient onMj is:〈

Mj,
∂

∂wi

LD(g)

〉
=− aiE {yϕjσ

′[⟨wi, x⟩+ bi]}

=− aiE

yϕjσ ′

∑
ℓ∈[D]

ϕℓqℓ + bi

 .

The key intuition is that with the randomness of ϕℓ (and potentially that of the
injected noise ξ), the random variable under σ ′ is not significantly affected by a
small subset of ϕℓqℓ. For example, for class relevant patterns j ∈ A, let I[D] :=

23

σ ′
[∑

ℓ∈[D]ϕℓqℓ + bi

]
and I−A := σ ′ [∑

ℓ ̸∈Aϕℓqℓ + bi
]
. We have I[D] ≈ I−A and

thus:〈
Mj,

∂

∂wi

LD(g)

〉
∝ E

{
yϕjI[D]

}
≈ E {yϕjI−A} = E {yϕj}E[I−A] =

γ

σ̃
E[I−A]

since y only depends on ϕj(j ∈ A). Then the gradient has a nontrivial component
along the pattern. Similarly, for background patterns j ̸∈ A, the component of the
gradient alongMj is close to 0.

Lemma 2.6 (Informal). Assume po,k as in Theorem 2.1 and σ(1)
ξ < 1/k, then with high

probability ∂
∂wiLD(g

(0);σ(1)
ξ) = −a

(0)
i

∑D
j=1MjTj where for a small ϵe:

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ O(ϵe/σ̃) with β ∈ [Ω(1), 1];

• if j ̸∈ A, then |Tj| ⩽ O(σ2
ϕϵeσ̃).

By setting λ(1)
w = 1/(2η(1)), we have

w(1)
i = η(1)a

(0)
i

D∑
j=1

MjTj ≈ η(1)a
(0)
i

βγ

σ̃

∑
j∈A

Mj.

For small po, e.g., po = Õ(k2/D), these neurons can already allow accurate predic-
tion. However, for such small po, we cannot show a provable advantage of networks
over fixed features. On the other hand, for larger po meaning a significant number of
background patterns in the input, the approximation error terms Tj(j ̸∈ A) together
can overwhelm the signals Tj(j ∈ A) and lead to bad prediction, even though each
term is small. Fortunately, we will show that the second gradient step can improve
the weights by decreasing the ratio between Tj(j ̸∈ A) and Tj(j ∈ A).
Feature Improvement in the Second Gradient Step. We note that by setting a
small η(1), after the update we still have yg(x; ξ) < 1 for most (x,y) ∼ D and thus
the gradient in the second step is:

∂

∂wi

LD(g;σξ) ≈ −aiE(x,y)∼D {yxEξσ ′[⟨wi, x⟩+ bi + ξi]} .

24

We can then follow the intuition for the first step again. For j ∈ A, the component
⟨Mj, ∂

∂wiLD(g)⟩ is roughly proportional to γ
σ̃
E[I−A,ξ] where

I−A,ξ := σ
′

[∑
ℓ ̸∈A

ϕℓqℓ + bi + ξi

]
.

While ϕℓqℓ may not have large enough variance, the injected noise ξi makes sure
that a nontrivial amount of data activate the neuron.1 Then I−A,ξ ̸= 0, leading to a
nontrivial component alongMj, similar to the first step. On the other hand, for j ̸∈ A,
the approximation error term Tj depends on how well σ ′ [∑

ℓ ̸∈A,ℓ ̸=jϕℓqℓ + bi + ξi
]

approximates σ ′
[∑

ℓ∈[D]ϕℓqℓ + bi + ξi

]
. Since the qℓ’s (the weight’s component

along Mℓ) in the second step are small compared to those in the first step, we
can then get a small error term Tj. So the ratio between Tj(j ̸∈ A) over Tj(j ∈ A)

improves after the second step, giving better features allowing accurate prediction.
Classifier Learning Stage. Given the learned features, we are then ready to show
the remaining gradient steps can learn accurate classifiers. Intuitively, with small
hyperparameter values (η(t) = k2

Tm1/3 , λ(t)a = λ
(t)
w ⩽ k3

σ̃m1/3 ,σ(t)ξ = 0 for 2 < t ⩽ T =

m4/3), the first layer’s weights do not change too much and thus the learning is
similar to convex learning using the learned features. Formally, our proof uses the
online convex optimization technique in Daniely and Malach (2020).

2.5.2 Lower Bounds

The lower bounds are based on the following observation: our problem setup is
general enough to include learning sparse parity functions. Consider an odd k, and
let P = {i ∈ [k] : i is odd}. Then y is given by ΠA(z) :=

∏
j∈A zj for zj = 2ϕ̃j − 1, i.e.,

the parity function on zj(j ∈ A). Then known results for learning parity functions
can be applied to prove our lower bounds.

1Equivalently, the network uses σ̃(z) = Eξσ(z+ ξ), a Gaussian smoothed version of σ, and the
smoothing allows z slightly outside the activated region of σ to generate gradient for the learning.
Empirically it is not needed since typically sufficient data can activate the neurons. One potential
reason is that the data have their own noise to achieve a similar effect (a remote analog being noisy
gradients can help the optimization). Further analysis on such an effect is left for future work.

25

Lower Bound for Fixed Features. We show that FΞ contains learning problems that
consist of a mixture of two distributions with weights po and 1 − po respectively,
where in the first distribution D

(1)
A , x̃ is given by the uniform distribution over ϕ̃

and the label y is given by the parity function on A. On such D
(1)
A , Daniely and

Malach (2020) shows that exponentially large models over fixed features is needed
to get nontrivial loss. Intuitively, there are exponentially many labeling functions
ΠA that are uncorrelated (i.e., “orthogonal” to each other): E[ΠA1ΠA2] = 0 for any
A1 and A2. Note that the best approximation of ΠA by a fixed set of features Ψi’s is
its projection on the linear span of the features. Then with polynomial-size models,
there always exists some ΠA far from the linear span.

Remark. It is instructive to compare to network learning, which finds the effective
weights

∑
j∈AMj among the exponentially many candidates corresponding to

different A’s. This can be done efficiently by exploiting the data since the gradient is
roughly proportional to E {yx} =

∑
j∈AMj. The network then learns data-dependent

features on which polynomial size linear models can achieve small loss.
Lower Bound for Learning without Input Structure. Clearly, FΞ0 contains the
distributions D(1)

A described above. The lower bound then follows from classic SQ
learning results (Blum et al., 1994).

Remark. The SQ lower bound analysis does not apply to FΞ, because in FΞ

the input distribution is related the labeling function. This allows networks to
learn with polynomial time/sample. While both the labeling function and the
input distribution affect the learning, few existing studies explicitly point out the
importance of the input structure. We thus emphasize the input structure is crucial
for networks to learn effective features and achieve superior performance.

2.6 Experiments
Our experiments mainly focus on feature learning and the effect of the input struc-
ture. We first perform simulations on our learning problems to (1) verify our main
theorems on the benefit of feature learning and the effect of input structure; (2)
verify our analysis of feature learning in networks. We then check if our insights

26

carry over to real data: (3) whether similar feature learning is presented in real
network/data; (4) whether damaging the input structure lowers the performance.
The results are consistent with our analysis and provide positive support for the
theory. Below we present part of the results and include the complete experimental
details and results in Appendix A.7.

Figure 2.1: Test accuracy on simulated data with or without input structure.

Simulation: Verification of the Main Results. We generate data according to our
problem setup, with d = 500,D = 100,k = 5,po = 1/2, a randomly sampled A,
and labels given by the parity function. We then train a two-layer network with
m = 300 following our learning process, and for comparison, we also use two
fixed feature methods (the NTK and random feature methods based on the same
network). Finally, we also use these three methods on the data distribution with
the input structure removed (i.e., FΞ0 in Theorem 2.4).

Figure 2.1 shows that the results are consistent with our results. Network learn-
ing gets high test accuracy while the two fixed feature methods get significantly
lower accuracy. Furthermore, when the input structure is removed, all three meth-
ods get test accuracy similar to random guessing.
Simulation: Feature Learning in Networks. We compute the cosine similarities
between the weights wi’s and visualize them by Multidimensional Scaling. (Recall
that our analysis is on the directions of the weights without considering their scaling,
and thus it is important to choose cosine similarity rather than say the typical

27

Euclidean distance.) Figure 2.2 shows that the results are as predicted by our
analysis. After the first gradient step, some weights begin to cluster around the
ground-truth

∑
j∈AMj (or −

∑
j∈AMj due to the ai in the gradient update which

can be positive or negative). After the second step, the weights get improved and
well-aligned with the ground-truth (with cosine similarities > 0.99). Furthermore,
if a classifier is trained on the features after the first step, the test accuracy is about
52%; if the same is done after the second step, the test accuracy is about 100%. This
demonstrates while some effective features emerge in the first step, they need to be
improved in the second step to get accurate prediction.

Figure 2.2: Visualization of the weights wi’s after initialization/one gradient
step/two steps in network learning on the synthetic data. The red star denotes the
ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The red/orange dots are the

weights closest to the red/orange star, respectively.

Figure 2.3: Visualization of the neurons’ weights in a two-layer network trained on
the subset of MNIST data with label 0/1. The weights gradually form two clusters.

Real Data: Feature Learning in Networks. We perform experiments on MNIST (Le-
Cun et al., 1998; Deng, 2012), CIFAR10 (Krizhevsky, 2012), and SVHN (Netzer
et al., 2011). On MNIST, we train a two-layer network withm = 50 on the subset

28

(a) (b) (c)

Figure 2.4: Test accuracy at different steps for an equal mixture of Gaussian inputs
with data: (a) MNIST, (b) CIFAR10, (c) SVHN.

with labels 0/1 and visualize the neurons’ weights as in the simulation. Figure 2.3
shows a similar feature learning phenomenon: effective features emerge after a
few steps and then get improved to form two clusters. Similar results are observed
on other datasets. These suggest the insights obtained in our analysis are also
applicable to the real data.
Real Data: The Effect of Input Structure. Since we cannot directly manipulate
the input distribution of real data, we perform controlled experiments by injecting
different inputs. For labeled dataset L and injected input U, we first train a teacher
network fitting L, then use the teacher network to give labels on a mixture of
inputs from L and U, and finally train a student network on this new dataset M
consisting of the mixed inputs and the teacher network’s labels. Checking the
student’ performance on different parts of M and comparing to those by directly
training the student on the original data L can reveal the impact of changing the
input structure. We use MNIST, CIFAR10, or SVHN as L, and use Gaussian or
images in Tiny ImageNet (Le and Yang, 2015) as U. The networks for MNIST are
two-layer with m = 9, and those for CIFAR10/SVHN are ResNet-18 convolutional
neural networks (He et al., 2016).

Figure 2.4 shows the results on an equal mixture of data and Gaussian. It
presents the test accuracy of the student on the original data part, the Gaussian
part, and the whole mixture. For example, on CIFAR10, the network learns well
over the CIFAR10 part (with accuracy similar to directly training on the original

29

data) but learns slower with worse accuracy on the Gaussian part. Furthermore,
the accuracy on the whole mixture is lower than that of training on the original
CIFAR10. This shows that the input structure indeed has a significant impact on
the learning. While MNIST+Gaussian shows a less significant trend (possibly
because the tasks are simpler), the other datasets show similar significant trends as
CIFAR10+Gaussian (the results using Tiny ImageNet are in the appendix).

30

3 provable guarantees for neural networks via
gradient feature learning

Contribution statement. This chapter is joint work with Junyi Wei and Yingyu
Liang. The author Zhenmei Shi proposed the method, contributed to part of the
theoretical analysis, and completed all the experiments. The results of this chapter
have been published as a conference paper in NeurIPS 2023 (Shi et al., 2023d).

3.1 Introduction
Neural network learning has achieved remarkable empirical success and has been
a main driving force for the recent progress in machine learning and artificial
intelligence. On the other hand, theoretical understandings significantly lag behind.
Traditional analysis approaches are not adequate due to the overparameterization
of practical networks and the non-convex optimization in the training via gradient
descent. One line of work (e.g. Jacot et al. (2018); Li and Liang (2018); Chizat
et al. (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Zou et al. (2020) and many
others) shows under proper conditions, heavily overparameterized networks are
approximately linear models over data-independent features, i.e., a linear function
on the Neural Tangent Kernel (NTK). While making weak assumptions about the
data and thus applicable to various settings, this approach requires the network
learning to be approximately using fixed data-independent features (i.e., the kernel
regime, or fixed feature methods). It thus fails to capture the feature learning
ability of networks (i.e., to learn a feature mapping for the inputs which allow
accurate prediction), which is widely believed to be the key factor to their empirical
success in many applications (e.g., Zeiler and Fergus (2014); Girshick et al. (2014);
Zhang et al. (2019); Manning et al. (2020)). To study feature learning in networks,
a recent line of work (e.g. Allen-Zhu and Li (2019); Bai and Lee (2019); Yehudai
and Shamir (2019); Allen-Zhu and Li (2020a); Ghorbani et al. (2020); Daniely and
Malach (2020); Li et al. (2020); Malach et al. (2021) and others) shows examples

31

where networks provably enjoy advantages over fixed feature methods (including
NTK), under different settings and assumptions. While providing more insights,
these studies typically focus on specific problems, and their analyses exploit the
specific properties of the problems and appear to be unrelated to each other. Is there
a common principle for feature learning in networks via gradient descent? Is there a unified
analysis framework that can clarify the principle and also lead to provable error guarantees
for prototypical problem settings?

In this work, we take a step toward this goal by proposing a gradient feature
learning framework for analyzing two-layer network learning by gradient descent.
(1) The framework makes essentially no assumption about the data distribution
and can be applied to various problems. Furthermore, it is centered around features
from gradients, clearly illustrating how gradient descent leads to feature learning
in networks and subsequently accurate predictions. (2) It leads to error guarantees
competitive with the optimal in a family of networks that use the features induced
by gradients on the data distribution. Then for a specific problem with structured
data distributions, if the optimal in the induced family is small, the framework
gives a small error guarantee.

We then apply the framework to several prototypical problems: mixtures of
Gaussians, parity functions, linear data, and multiple-index models. These have
been used for studying network learning (in particular, for the feature learning
ability), but with different and seemingly unrelated analyses. In contrast, straight-
forward applications of our framework give small error guarantees, where the main
effort is to compute the optimal in the induced family. Furthermore, in some cases
like parities, we can handle more general data distributions than existing work.

Finally, we also demonstrate that the framework sheds light on several interesting
network learning phenomena such as feature learning beyond the kernel regime,
simplicity bias, and lottery ticket hypothesis (LTH). Due to space limitations, we
present implications about features beyond the kernel regime in the main body but
defer other implications in Section B.3 with a brief here. (1) For simplicity bias,
it is generally believed that the optimization has some implicit regularization effect
that restricts learning dynamics to a low capacity subset of the whole hypothesis

32

class, so can lead to good generalization Neyshabur (2017); Gidel et al. (2019). Our
framework provides an explanation that the learning first learns simpler functions
and then more sophisticated ones where the simplicity bias is measured by the size
of the family of gradient feature-induced networks. (2) For LTH, our framework
allows us to formally prove LTH for two-layer networks, showing (a) the winning
lottery subnetwork exists and (b) gradient descent on the subnetwork can learn
to similar loss in similar runtime as on the whole network. (b) is novel and not
analyzed in existing work.

3.2 Related Work
Neural Networks Learning Analysis. Recently there has been an increasing interest
in the analysis of network learning. One line of work connects the sufficiently over-
parameterized neural network to linear methods around its initialization like NTK
(e.g. Jacot et al. (2018); Li and Liang (2018); Matthews et al. (2018); Zou et al.
(2018); Oymak and Soltanolkotabi (2019); Lee et al. (2019a); Novak et al. (2019);
Yang (2019); Du et al. (2019); Allen-Zhu et al. (2019b); Chizat et al. (2019); Oymak
et al. (2019); Arora et al. (2019a); Cao and Gu (2019); Ji and Telgarsky (2019b);
Cao et al. (2020); Geiger et al. (2020); Liang et al. (2024h); Gu et al. (2024) and
more), so that the neural network training is a convex problem. The key idea is that
it suffices to consider the first-order Tyler expansion of the neural network around
the origin when the initialization is large enough. However, NTK lies in the lazy
training (kernel) regime that excludes feature learning Chizat and Bach (2018a);
Lee et al. (2018); Woodworth et al. (2020); Geiger et al. (2021). Many studies
(e.g. Arora et al. (2019b); Allen-Zhu and Li (2019); Wei et al. (2019); Ghorbani
et al. (2019); Yehudai and Shamir (2019); Hanin and Nica (2019); Allen-Zhu et al.
(2019a); Bai and Lee (2019); Allen-Zhu and Li (2020a); Daniely and Malach (2020);
Dou and Liang (2020); Lee et al. (2020); Chen et al. (2020a); Yang and Hu (2020);
Huang and Yau (2020); Li et al. (2020); Ghorbani et al. (2020); Refinetti et al. (2021);
Malach et al. (2021); Luo et al. (2021); Cao et al. (2022); Abbe et al. (2022b); Shi
et al. (2023d) and more) show that neural networks take advantage over NTK

33

empirically and theoretically. Another line of work is the mean-field (MF) analysis
of neural networks (e.g. Mei et al. (2018); Chizat and Bach (2018b); Mei et al.
(2019); Sirignano and Spiliopoulos (2020); Chen et al. (2022); Ren et al. (2023) and
more). The insight is to see the training dynamics of a sufficiently large-width
neural network as a PDE. It uses a smaller initialization than the NTK so that
the parameters may move away from the initialization. However, the MF does
not provide explicit convergence rates and requires an unrealistically large width
of the neural network. One more line of work is neural networks max-margin
analysis (e.g. Soudry et al. (2018); Gunasekar et al. (2018a); Nacson et al. (2019b);
Ji and Telgarsky (2019a); Lyu and Li (2019); Nacson et al. (2019a); Chizat and
Bach (2020); Moroshko et al. (2020); Ji and Telgarsky (2020); Telgarsky (2022);
Frei et al. (2023b,a); Lyu et al. (2021) and more). They need a strong assumption
that the convergence starts from weights having perfect training accuracy, while
feature learning happens in the early stage of training. To explain the success of
neural networks beyond the limitation mentioned above, some work introduces
the low intrinsic dimension of data distributions (Chen et al., 2019a,b; Bartlett
et al., 2020; Frei et al., 2021; Chatterji et al., 2021; Stöger and Soltanolkotabi, 2021).
Another recent line of work is that a trained network can exactly recover the ground
truth or optimal solution or teacher network (Du et al., 2018; Arora et al., 2018;
Nacson et al., 2019c; Papyan et al., 2020; Oymak and Soltanolkotabi, 2020; Zhou et al.,
2021b; Akiyama and Suzuki, 2021, 2023; Mousavi-Hosseini et al., 2022), but they
have strong assumptions on data distribution or model structure, e.g., Gaussian
marginals. Goldt et al. (2019); Wang et al. (2020a); Feng and Tu (2021); Abbe
et al. (2022a); Veiga et al. (2022) show that training dynamics of neural networks
have multiple phases, e.g., feature learning at the beginning, and then dynamics
in convex optimization which requires proxy convexity (Frei and Gu, 2021) or PL
condition (Karimi et al., 2016) or special data structure.
Feature Learning Based on Gradient Analysis. A recent line of work is studying
how features emerge from the gradient. Allen-Zhu and Li (2022); Frei et al. (2022c)
consider linear separable data and show that the first few gradient steps can learn
good features, and the later steps learn a good network on neurons with these

34

features. Daniely and Malach (2020); Shi et al. (2022c); Frei et al. (2022b) have
similar conclusions on non-linear data (e.g., parity functions), while in their prob-
lems one feature is sufficient for accurate prediction (i.e., single-index data model).
Damian et al. (2022) considers multiple-index with low-degree polynomials as
labeling functions and shows that a one-step gradient update can learn multiple
features that lead to accurate prediction. Ba et al. (2022) studies one gradient step
feature improvements under different learning rates. Radhakrishnan et al. (2023)
proposes Recursive Feature Machines trying to show the mechanism of recursively
feature learning but without giving a final loss guarantee. These studies consider
specific problems and exploit the properties of the data to analyze the gradient in a
delicate way, while our work provides a general framework applicable to different
problems.

3.3 Gradient Feature Learning Framework
Problem Setup. Let X ⊆ Rd denote the input space, Y ⊆ R the label space. Let D
be an arbitrary data distribution over X× Y. Denote the class of two-layer networks
withm neurons as:

Fd,m :=
{
g(a,W,b)

∣∣ g(a,W,b)(x) := a⊤ [σ(W⊤x − b)
]
=

∑
i∈[m]

ai [σ(⟨wi, x⟩− bi)]
}

,

(3.1)

where σ(z) = max(z, 0) is the ReLU activation function, a ∈ Rm is the second layer
weight, W ∈ Rd×m is the first layer weight, wi is the i-th column of W (i.e., the
weight for the i-th neuron), and b ∈ Rm is the bias for the neurons. For technical
simplicity, we only train a, W but not b. Let superscript (t) denote the time step,
e.g., g(a(t),W(t),b) denote the network at time step t. Denote Ξ := (a, W,b), Ξ(t) :=
(a(t), W(t),b).

The goal of neural network learning is to minimize the expected risk, i.e.,
LD(g) := E(x,y)∼DL(x,y)(g), where L(x,y)(g) = ℓ(yg(x)) is the loss on an exam-

35

ple (x,y) for some loss function ℓ(·), e.g., the hinge loss ℓ(z) = max{0, 1− z}, and the
logistic loss ℓ(z) = log[1 + exp(−z)]. We also consider ℓ2 regularization. The regu-
larized loss with regularization coefficient λ is LλD(g) := LD(g) +

λ
2 (∥W∥

2
F + ∥a∥2

2).
Given a training set with n i.i.d. samples Z = {(x(l),y(l))}l∈[n] from D, the empirical
risk and its regularized version are:

L̃Z(g) : =
1
n

∑
l∈[n]

L(x(l),y(l))(g), L̃λZ(g) := L̃Z(g) +
λ

2 (∥W∥
2
F + ∥a∥2

2). (3.2)

Then the training process is summarized in Algorithm 1.

Algorithm 1 Network Training via Gradient Descent
Initialize (a(0), W(0),b)
for t = 1 to T do

Sample Z(t−1) ∼ Dn

a(t) = a(t−1)−η(t)∇aL̃λ
(t)

Z(t−1)(gΞ(t−1)), W(t) = W(t−1)−η(t)∇WL̃λ
(t)

Z(t−1)(gΞ(t−1))
end for

In the whole paper, we need some natural assumptions about the data and the
loss.

Assumption 3.1. We assume E[∥x∥2] ⩽ Bx1, E[∥x∥2
2] ⩽ Bx2, ∥x∥2 ⩽ Bx and for any label

y, we have |y| ⩽ 1. We assume the loss function ℓ(·) is a 1-Lipschitz convex decreasing
function, normalized ℓ(0) = 1, |ℓ ′(0)| = Θ(1), and ℓ(∞) = 0.

Remark 3.2. The above are natural assumptions. Most input distributions have the bounded
norms required, and the typical binary classification Y = {±1} satisfies the requirement.
Also, the most popular loss functions satisfy the assumption, e.g., the hinge loss and logistic
loss.

3.3.1 Warm Up: A Simple Setting with Frozen First Layer

To illustrate some high-level intuition, we first consider a simple setting where the
first layer is frozen after one gradient update, i.e., no updates to W for t ⩾ 2 in
Algorithm 1.

36

The first idea of our framework is to provide guarantees compared to the optimal
in a family of networks. Here let us consider networks with specific weights for the
first layer:

Definition 3.3. For some fixed W ∈ Rd×m,b ∈ Rd, and a parameter Ba2, consider the
following family of networks FW,b,Ba2 , and the optimal approximation network loss in this
family:

FW,b,Ba2 :=
{
g(a,W,b) ∈ Fd,m

∣∣ ∥a∥2 ⩽ Ba2
}

, OPTW,b,Ba2 := min
g∈FW,b,Ba2

LD(f).

(3.3)

The second idea is to compare to networks using features from gradient descent.
As an illustrative example, we now provide guarantees compared to networks with
first layer weights W(1) (i.e., the weights after the first gradient step):

Theorem 3.4 (Simple Setting). Assume L̃Z

(
f(a,W(1),b)

)
is L-smooth to a. Let η(t) =

1
L

, λ(t) = 0, for all t ∈ {2, 3, . . . , T }. Training by Algorithm 1 with no updates for the first
layer after the first gradient step, w.h.p., there exists t ∈ [T] such that

LD(g(a(t),W(1),b))

⩽OPTW(1),b,Ba2 +O

(
L(∥a(1)∥2

2 + B
2
a2)

T
+

√
B2
a2(∥W(1)∥2

FB
2
x + ∥b∥2

2)

n

)
.

Intuitively, the theorem shows that if the weight W(1) after one step gradient
gives a good set of neurons in the sense that there exists a classifier on top of
these neurons with low loss, then the network will learn to approximate this good
classifier and achieve low loss. The proof is based on standard convex optimization
and the Rademacher complexity (details in Section B.4.1).

Such an approach, while simple, has been used to obtain interesting results
about network learning in existing work, which shows that W(1) can indeed give
good neurons due to the structure of the special problems considered (e.g., parities
on uniform inputs Barak et al. (2022), or polynomials on a subspace Damian

37

et al. (2022)). However, it is unclear whether such intuition can still yield useful
guarantees for other problems. So for our purpose of building a general framework
covering more prototypical problems, the challenge is what features from gradient
descent should be considered so that the family of networks for comparison can
achieve a low loss on other problems. The other challenge is that we would like
to consider the typical case where the first layer weights are not frozen. In the
following, we will introduce the core concept of Gradient Features to address the
first challenge, and stipulate proper geometric properties of Gradient Features for
the second challenge.

3.3.2 Core Concepts in the Gradient Feature Learning Framework

Now, we will introduce the core concept in our framework, Gradient Features, and
use it to build the family of networks to derive guarantees. As mentioned, we
consider the setting where the first layer is not frozen. After the network learns
good features, to ensure the updates in later gradient steps of the first layer are
still benign for feature learning, we need some geometric conditions about the
gradient features, which are measured by parameters in the definition of Gradient
Features. The conditions are general enough so that, as shown in Section 3.4, many
prototypical problems satisfy them and the induced family of networks enjoy low
loss leading to useful guarantees.

We begin by considering what features can be learned via gradients. Note
that the gradient w.r.t. wi is ∂LD(g)

∂wi = aiE(x,y) [ℓ
′(yg(x))y [σ ′ (⟨wi, x⟩− bi)] x] =

aiE(x,y) [ℓ
′(yg(x))yxI[⟨wi, x⟩ > bi]] . Inspired by this, we define the following no-

tion:

Definition 3.5 (Simplified Gradient Vector). For any w ∈ Rd, b ∈ R, a Simplified
Gradient Vector is

G(w,b) := E(x,y)∼D[yxI[w⊤x > b]]. (3.4)

Remark 3.6. Note that the definition ofG(w,b) ignores the term ℓ ′(yg(x)) in the gradient,

38

where f is the model function. In the early stage of training (or the first gradient step),
ℓ ′(·) is approximately a constant, i.e., ℓ ′(yg(x)) ≈ ℓ ′(0) due to the symmetric initialization
(see Equation (3.9)).

Definition 3.7 (Gradient Feature). For a unit vector D ∈ Rd with ∥D∥2 = 1, and a
γ ∈ (0, 1), a direction neighborhood (cone) CD,γ is defined as:

CD,γ := {w | |⟨w,D⟩|/∥w∥2 > (1 − γ)} . (3.5)

Let w ∈ Rd, b ∈ R be random variables drawn from some distribution W,B. A Gradient
Feature set with parameters p,γ,BG is defined as:

Sp,γ,BG(W,B) :=
{
(D, s)

∣∣ Pr
w,b

[
G(w,b) ∈ CD,γ , ∥G(w,b)∥2 ⩾ BG , s = b

|b|

]
⩾ p

}
.

(3.6)

When clear from context, write it as Sp,γ,BG .

Remark 3.8. The gradient features are simply the normalized vectors D that are given
(approximately) by the simplified gradient vectors. (Similarly, the normalized scalar s is
given by the bias b.) To be a useful gradient feature, we require the direction to be “hit”
by sufficiently large simplified gradient vectors with sufficient large probability, so as to be
distinguished from noise and remain useful throughout the gradient steps. Later we will
use the gradient features when W,B are the initialization distributions.

To make use of the gradient features, we consider the following family of net-
works using these features and with bounded norms, and will provide guarantees
compared to the best in this family:

Definition 3.9 (Gradient Feature Induced Networks). The Gradient Feature Induced
Networks are:

Fd,m,BF,S (3.7)

:=
{
g(a,W,b) ∈ Fd,m

∣∣ ∀i ∈ [m], |ai| ⩽ Ba1, ∥a∥2 ⩽ Ba2, (wi,bi/|bi|) ∈ S, |bi| ⩽ Bb
}

,

39

where S is some Gradient Feature set and BF := (Ba1,Ba2,Bb) are some parameters.

Remark 3.10. In the Gradient Feature Induced Networks, the weight and the bias of a
neuron are simply the scalings of some item in the feature set S (for simplicity the scaling of
wi is absorbed into the scaling of ai and bi).

Definition 3.11 (Optimal Approximation via Gradient Features). The optimal approx-
imation network and loss using Gradient Feature Induced Networks Fd,r,BF,S are defined
as:

g∗ := arg min
g∈Fd,r,BF ,S

LD(f), OPTd,r,BF,S := min
g∈Fd,r,BF ,S

LD(f). (3.8)

3.3.3 Provable Guarantee via Gradient Feature Learning

To obtain the guarantees, we first specify the symmetric initialization. It is conve-
nient for the analysis and is typical in existing analysis (e.g., Daniely and Malach
(2020); Damian et al. (2022); Allen-Zhu and Li (2022); Shi et al. (2022c)), though
some other initialization can also work. Formally, we train a two-layer network with
4m neurons, g(a,W,b) ∈ Fd,4m. We initialize a(0)

i , w(0)
i from Gaussians and bi from

a constant for i ∈ {1, . . . ,m}, and initialize the parameters for i ∈ {m + 1, . . . , 4m}

accordingly to get a zero-output initial network. Specifically:

for i ∈ {1, . . . ,m} : a
(0)
i ∼ N(0,σ2

a), w(0)
i ∼ N(0,σ2

wI),bi = b̃,

for i ∈ {m+ 1, . . . , 2m} : a
(0)
i = −a

(0)
i−m, w(0)

i = −w(0)
i−m,bi = −bi−m, (3.9)

for i ∈ {2m+ 1, . . . , 4m} : a
(0)
i = −a

(0)
i−2m, w(0)

i = w(0)
i−2m,bi = bi−2m

where σ2
a,σ2

w, b̃ > 0 are hyper-parameters. After initialization, a, W are updated as
in Algorithm 1.

We are now ready to present our main result in the framework.

40

Theorem 3.12 (Main Result). Assume Assumption 3.1. For any ϵ, δ ∈ (0, 1), ifm ⩽ ed

and

m =Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 , (3.10)

T =Ω

(
1
ϵ

(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logm
√
BbBG

+
1

Bx1(mp)
1
4

))
, (3.11)

n =Ω

(mBxB2
a2
√
Bb(mp)

1
2 logm

ϵrBa1
√
BG

)3

+

(
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

)
√
Bx2

)3
 ,

(3.12)

then with initialization (3.9) and proper hyper-parameter values, we have with probability
⩾ 1 − δ over the initialization and training samples, there exists t ∈ [T] in Algorithm 1
with:

Pr[sign(gΞ(t)(x)) ̸= y] ⩽LD (gΞ(t)) (3.13)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√
2γ+O

(√
Bx2

BGn
1
3

)
+ ϵ.

Intuitively, the theorem shows when a data distribution admits a small approx-
imation error by some “ground-truth” network with r neurons using gradient
features from Sp,γ,BG (i.e., a small optimal approximate loss OPTd,r,BF,Sp,γ,BG

), the
gradient descent training can successfully learn good neural networks with suffi-
ciently manym neurons.

Now we discuss the requirements and error guarantee. Viewing boundedness
parameters Ba1,Bx1 etc. as constants, then the number m of neurons learned is
roughly Θ̃

(
r4

pϵ4

)
, a polynomial overparameterization compared to the “ground-

truth” network. The proof shows that such an overparameterization is needed such
that some neurons can capture the gradient features given by gradient descent. This
is consistent with existing analysis about overparameterization network learning,

41

and also consistent with existing empirical observations.
The error bound consists of three terms. The last term ϵ can be made arbitrarily

small, while the other two depend on the concrete data distribution. Specifically,
with larger r and γ, the second term increases. While the first term (the optimal
approximation loss) decreases, since larger r means a larger “ground-truth” net-
work family, and larger γ means a larger Gradient Feature set Sp,γ,BG . So there
is a trade-off between these two terms. When we later apply the framework to
concrete problems (e.g., mixtures of Gaussians, parity functions), we will show
that depending on the specific data distribution, we can choose proper values for
r,γ to make the error small. This then leads to error guarantees for the concrete
problems and demonstrates the unifying power of the framework.
Proof Sketch. The intuition in the proof of Theorem 3.12 is closely related to the
notion of Gradient Features. First, the gradient descent will produce gradients that
approximate features in Sp,γ,BG . Then, the gradient descent update gives a good set
of neurons, such that there exists an accurate classifier using these neurons with
loss comparable to the optimal approximation loss. Finally, the training will learn
to approximate the accurate classifier, resulting in the desired error guarantee. The
complete proof is in Section B.4, including the proper values for hyper-parameters
like η(t) in Theorem B.17. Below we briefly sketch the key ideas and omit the
technical details.

We first show that a large subset of neurons has gradients at the first step as good
features. (The claim can be extended to multiple steps. For simplicity, we follow
existing work (e.g., Daniely and Malach (2020); Shi et al. (2022c)) and present only
the first step.) Let ∇i denote the gradient of the i-th neuron ∇wiLD(gΞ(0)). Denote
the subset of neurons with nice gradients approximating feature (D, s) as:

G(D,s),Nice :=
{
i ∈ [2m] : s = bi/|bi|, ⟨∇i,D⟩ > (1 − γ) ∥∇i∥2 , ∥∇i∥2 ⩾

∣∣∣a(0)
i

∣∣∣BG}.

(3.14)

Lemma 3.13 (Feature Emergence). For any r size subset {(D1, s1), . . . , (Dr, sr)} ⊆
Sp,γ,BG , with probability at least 1−re−Θ(mp), for all j ∈ [r], we have |G(Dj,sj),Nice| ⩾

mp
4 .

42

This is because∇i = ℓ ′(0)a(0)
i E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

x
]
= ℓ ′(0)a(0)

i G(w
(0)
i ,bi).

Now consider sj = +1 (the case −1 is similar). Since wi is initialized by Gaus-
sians, by ∇i’s connection to Gradient Features, we can see that for all i ∈ [m],
Pr
[
i ∈ G(Dj,+1),Nice

]
⩾ p

2 . The lemma follows from concentration via a large enough
m, i.e., sufficient overparameterization. The gradients then allow obtaining a set of
neurons approximating the “ground-truth” network with comparable loss:

Lemma 3.14 (Existence of Good Networks). For any δ ∈ (0, 1), with proper hyper-
parameter values, with probability at least 1 − δ, there is ã such that ∥ã∥0 = O

(
r(mp)

1
2

)
and g(ã,W(1),b)(x) =

∑4m
i=1 ãiσ

(
⟨w(1)

i , x⟩− bi
)

satisfies

LD(g(ã,W(1),b)) ⩽ OPTd,r,BF,Sp,γ,BG
+
√

2rBa1Bx1

(
√
γ+

√
2Bb√
mpBG

)
.

Given the good set of neurons, we finally show that the remaining gradient
steps can learn an accurate classifier. Intuitively, with small step sizes η(t), the
first layer’s weights wi do not change too much and thus the learning is similar to
convex learning using the good set of neurons. Technically, we adopt the online
convex optimization analysis in Daniely and Malach (2020) to get the final loss
guarantee in Theorem 3.12.

3.4 Applications in Special Cases
In this section we will apply the gradient feature learning framework to some
specific problems, corresponding to concrete data distributions D. We primarily
focus on prototypical problems for analyzing feature learning in networks. We will
present here the results for mixtures of Gaussians and parity functions, and include
the complete proofs and some other results in Section B.5.

43

3.4.1 Mixtures of Gaussians

Mixtures of Gaussians are among the most fundamental and widely used statistical
models. Recently, it has been used to study neural network learning, in particular,
the effect of gradient descent for feature learning of two-layer neural networks and
the advantage over fixed feature methods Refinetti et al. (2021); Frei et al. (2022c).
Data Distributions. We follow notations from Refinetti et al. (2021). The data
are from a mixture of r high-dimensional Gaussians, and each Gaussian is as-
signed to one of two possible labels in Y = {±1}. Let S(y) ⊆ [r] denote the set
of indices of Gaussians associated with the label y. The data distribution is then:
q(x,y) = q(y)q(x|y),q(x|y) =

∑
j∈S(y) pjNj(x), where Nj(x) is a multivariate nor-

mal distribution with mean µj, covariance Σj, and pj are chosen such that q(x,y) is
correctly normalized. We will make some assumptions about the Gaussians, for
which we first introduce some notations.

Dj :=
µj

∥µj∥2
, µ̃j := µj/

√
d, Bµ1 := min

j∈[r]
∥µ̃j∥2, Bµ2 := max

j∈[r]
∥µ̃j∥2, pB := min

j∈[r]
pj.

Assumption 3.15. Let 8 ⩽ τ ⩽ d be a parameter that will control our final error guarantee.
Assume

• Equiprobable labels: q(−1) = q(+1) = 1/2.

• For all j ∈ [r], Σj = σjId×d. Let σB := maxj∈[r] σj and σB+ := max{σB,Bµ2}.

• r ⩽ 2d, pB ⩾ 1
2d , Ω

(
1/d+

√
τσB+2 log d/d

)
⩽ Bµ1 ⩽ Bµ2 ⩽ d.

• The Gaussians are well-separated: for all i ̸= j ∈ [r], we have −1 ⩽ ⟨Di,Dj⟩ ⩽ θ,

where 0 ⩽ θ ⩽ min
{

1
2r , σB+

Bµ2

√
τ logd
d

}
.

Remark 3.16. The first two assumptions are for simplicity; they can be relaxed. We can
generalize our analysis to the mixture of Gaussians with unbalanced label probabilities and
general covariances. The third assumption is to make sure that each Gaussian has a good

44

amount of probability mass to be learned. The remaining assumptions are to make sure that
the Gaussians are well-separated and can be distinguished by the learning algorithm.

We are now ready to apply the framework to these data distributions, for which
we only need to compute the Gradient Feature set and the corresponding optimal
approximation loss.

Lemma 3.17 (Mixtures of Gaussians: Gradient Features). (Dj,+1) ∈ Sp,γ,BG for all
j ∈ [r], where

p =
Bµ1√

τ log dσB+ · dΘ(τσB+
2/B2

µ1)
, γ =

1
d0.9τ−1.5 , BG = pBBµ1

√
d−O

(σB+
d0.9τ

)
.

Let g∗(x) =
∑r
j=1

y(j)√
τ logdσB+

[
σ
(
⟨Dj, x⟩− 2

√
τ log dσB+

)]
whose hinge loss is at most

3
dτ

+ 4
d0.9τ−1

√
τ logd

.

Given the values on gradient feature parameters p,γ,BG and the optimal ap-
proximation loss OPTd,r,BF,Sp,γ,BG

, the framework immediately leads to the following
guarantee:

Theorem 3.18 (Mixtures of Gaussians: Main Result). Assume Assumption 3.15. For
any ϵ, δ ∈ (0, 1), when Algorithm 1 uses hinge loss with

m = poly
(

1
δ

, 1
ϵ

,dΘ(τσB+2/B2
µ1), r, 1

pB

)
⩽ ed, T = poly (m) , n = poly (m)

and proper hyper-parameters, then with probability at least 1 − δ, there exists t ∈ [T] such
that Pr[sign(gΞ(t)(x)) ̸= y] ⩽

√
2r

d0.4τ−0.8 + ϵ.

The theorem shows that gradient descent can learn to a small error via learn-
ing the gradient features, given proper hyper-parameters. In particular, we need
sufficient overparameterization (a sufficiently large numberm of neurons). When
σB+

2/B2
µ1 is a constant which is the prototypical interesting case, and we choose a

constant τ, thenm is polynomial in the key parameters 1
δ

, 1
ϵ

,d, r, 1
pB

, and the error

45

bound is inverse polynomial in d. The complete proof is given in Section B.5.2, with
the concrete values of the working hyper-parameters in Theorem B.35.

Frei et al. (2022c) studies (almost) linear separable cases while our setting
includes non-linear separable cases, e.g., XOR. Refinetti et al. (2021) mainly studies
neural network classification on 4 Gaussian clusters with XOR structured labels,
while our setting is much more general, e.g., our cluster number can extend up to
2d.

Mixtures of Gaussians: Beyond the Kernel Regime

As discussed in the introduction, it is important for the analysis to go beyond fixed
feature methods such as NTK (i.e., the kernel regime), so as to capture the feature
learning ability which is believed to be the key factor for the empirical success.
We first review the fixed feature methods. Following Daniely and Malach (2020),
suppose Ψ is a data-independent feature mapping of dimension N with bounded
features, i.e., Ψ : X → [−1, 1]N. For B > 0, the family of linear models on Ψ with
bounded norm B is HB = {h(x̃) : h(x̃) = ⟨Ψ(x̃),w⟩, ∥w∥2 ⩽ B}. This can capture
linear models on fixed finite-dimensional feature maps, e.g., NTK, and also infinite
dimensional feature maps, e.g., kernels like RBF, that can be approximated by
feature maps of polynomial dimensions Rahimi and Recht (2008); Kamath et al.
(2020); Shi et al. (2022c).

Our framework indeed goes beyond fixed features. Our framework can show the
advantage of network learning over kernel methods under the setting of Refinetti
et al. (2021) (4 Gaussian clusters with XOR structured labels). For large enough
d, our framework only needs roughly Ω (log d) neurons and Ω̃(d1.5) samples to
achieve arbitrary small constant error (see Theorem B.42), while fixed feature
methods needΩ(d2) features andΩ(d2) samples to achieve nontrivial errors (as
proved in Refinetti et al. (2021)). For the proof (detailed in Section B.5.3), we only
need to calculate the p,γ,BG of the data distribution and then inject these numbers
into Theorem 3.12.

46

3.4.2 Parity Functions

Parity functions are a canonical family of learning problems in computational
learning theory, usually for showing theoretical computational barriers Shalev-
Shwartz et al. (2017). The typical sparse parties over d-dim binary inputsϕ ∈ {±1}d

are
∏
i∈Aϕi where A ⊆ [d] is a subset of dimensions. Recent studies have shown

that when the distribution of inputs ϕ have structures rather than uniform, neural
networks can perform feature learning and finally learn parity functions to a small
error, while methods without feature learning, e.g., NTK, cannot achieve as good
results Daniely and Malach (2020); Malach et al. (2021); Shi et al. (2022c). This
thus has been a prototypical setting for studying the feature learning phenomena
in networks. Here we consider a generalization of this problem and show that our
framework can show successful learning via gradient descent.
Data Distributions. SupposeM ∈ Rd×D is an unknown dictionary withD columns
that can be regarded as patterns. For simplicity, assume d = D andM is orthonor-
mal. Let ϕ ∈ Rd be a hidden representation vector. Let A ⊆ [D] be a subset of size
rk corresponding to the class relevant patterns and r is an odd number. Then the
input is generated byMϕ, and some function on ϕA generates the label. WLOG,
let A = {1, . . . , rk}, A⊥ = {rk + 1, . . . ,d}. Also, we split A such that for all j ∈ [r],
Aj = {(j − 1)k + 1, . . . , jk}. Then the input x and the class label y are given by:
x = Mϕ,y = g∗(ϕA) = sign

(∑
j∈[r] XOR(ϕAj)

)
, where g∗ is the ground-truth

labeling function mapping from Rrk to Y = {±1}, ϕA is the sub-vector of ϕ with
indices in A, and XOR(ϕAj) =

∏
l∈Aj ϕl is the parity function. We still need to spec-

ify the distribution X of ϕ, which determines the structure of the input distribution:
X := (1 − 2rpA)XU +

∑
j∈[r] pA(Xj,+ + Xj,−). For all corresponding ϕA⊥ in X, we

have ∀l ∈ A⊥, independently: ϕl =

+1, w.p. po
−1, w.p. po
0, w.p. 1 − 2po

, where po controls the

signal noise ratio: if po is large, then there are many nonzero entries in A⊥ which
are noise interfering with the learning of the ground-truth labeling function on A.
For corresponding ϕA, any j ∈ [r], we have

47

• In Xj,+, ϕAj = [+1,+1, . . . ,+1]⊤ and ϕA\Aj only have zero elements.

• In Xj,−, ϕAj = [−1,−1, . . . ,−1]⊤ and ϕA\Aj only have zero elements.

• In XU, we have ϕA draw from {+1,−1}rk uniformly.

Assumption 3.19. Let 8 ⩽ τ ⩽ d be a parameter that will control our final error guarantee.
Assume k is an odd number and: k ⩾ Ω(τ log d), d ⩾ rk + Ω(τr log d), po =

O
(
rk
d−rk

)
, pA ⩾ 1

d
.

Remark 3.20. We set up the problem to be more general than the parity function learning
in existing work. If r = 1, the labeling function reduces to the traditional k-sparse parties of
d bits. The assumptions require k,d, and pA to be sufficiently large so as to provide enough
large signals for learning. Note that when k = d

16 , r = 1,po = 1
2 , our analysis also holds,

which shows our framework is beyond the kernel regime (discuss in detail in Section 3.4.2).

To apply our framework, again we only need to compute the Gradient Feature
set and the corresponding optimal loss. We first define the Gradient Features: For
all j ∈ [r], let Dj =

∑
l∈Aj

Ml

∥
∑
l∈Aj

Ml∥2
.

Lemma 3.21 (Parity Functions: Gradient Features). We have (Dj,+1), (Dj,−1) ∈
Sp,γ,BG for all j ∈ [r], where

p = Θ

(
1√

τr log d · dΘ(τr)

)
, γ =

1
dτ−2 , BG =

√
kpA −O

(√
k

dτ

)
.

(3.15)

With gradient features from Sp,γ,BG , let

g∗(x) =
r∑
j=1

k∑
i=0

(−1)i+1
√
k
[
σ

(
⟨Dj, x⟩− 2i− k− 1√

k

)
− 2σ

(
⟨Dj, x⟩− 2i− k√

k

)
+ σ

(
⟨Dj, x⟩− 2i− k+ 1√

k

)]
whose hinge loss is 0.

48

Given the values on gradient feature parameters and the optimal approximation
loss, the framework immediately leads to the following guarantee:

Theorem 3.22 (Parity Functions: Main Result). Assume Assumption 3.19. For any
ϵ, δ ∈ (0, 1), when Algorithm 1 uses hinge loss with

m = poly
(

1
δ

, 1
ϵ

,dΘ(τr),k, 1
pA

)
⩽ ed, T = poly (m) , n = poly (m)

and proper hyper-parameters, then with probability at least 1 − δ, there exists t ∈ [T] such
that Pr[sign(gΞ(t)(x)) ̸= y] ⩽ 3r

√
k

d(τ−3)/2 + ϵ.

The theorem shows that gradient descent can learn to a small error in this
problem. We also need sufficient overparameterization: When r is a constant (e.g.,
r = 1 in existing work), and we choose a constant τ,m is polynomial in 1

δ
, 1
ϵ

,d,k, 1
pA

,
and the error bound is inverse polynomial in d. The proof is in Section B.5.4, with
the concrete values of the working hyper-parameters in Theorem B.52.

Our setting is more general than that in Daniely and Malach (2020); Malach
et al. (2021) which corresponds toM = I, r = 1,pA = 1

4 ,po = 1
2 . Shi et al. (2022c)

study single index learning, where one feature direction is enough for a two-layer
network to recover the label, while our setting considers r directions D1, . . . ,Dr, so
the network needs to learn multiple directions to get a small error.

Parity Functions: Beyond the Kernel Regime

Again, we show that our framework indeed goes beyond fixed features under parity
functions. Our problem setting in Section 3.4.2 is general enough to include the
problem setting in Daniely and Malach (2020). Their lower bound for fixed feature
methods directly applies to our case and leads to the following:

Proposition 3.23. There exists a data distribution in the parity learning setting in Sec-
tion 3.4.2 with M = I, r = 1,pA = 1

4 ,k = d
16 ,po = 1

2 , such that all h ∈ HB have
hinge-loss at least 1

2 −
√
NB

2k
√

2 .

49

This means to get an inverse-polynomially small loss, fixed feature models
need to have an exponentially large size, i.e., either the number of features N or
the norm B needs to be exponential in k. In contrast, Theorem 3.22 shows our
gradient feature learning framework guarantees a small loss with a polynomially
large model, runtime, and sample complexity. Clearly, our framework is beyond
the fixed feature methods.
Parities on Uniform Inputs. When r = 1,pA = 0, our problem setting will degen-
erate to the classic sparse parity function on a uniform input distribution. This has
also been used for analyzing network learning Barak et al. (2022). For this case,
our framework can get a k2O(k) log(k) network width bound and a O(dk) sample
complexity bound, matching those in Barak et al. (2022). This then again confirms
the advantage of network learning over kernel methods that requires dΩ(k) dimen-
sions as shown in Barak et al. (2022). See the full statement in Theorem B.56 and
details in Section B.5.5.

3.5 Conclusion
This work proposed a general framework for analyzing two-layer neural network
learning by gradient descent and showed that it can lead to provable guarantees for
several prototypical problem settings for analyzing network learning. In particular,
our framework goes beyond fixed feature methods, e.g., NTK. It also sheds some
light on several interesting phenomena in network learning, e.g., simplicity bias
and the lottery ticket hypothesis. Future directions include: (1) How to extend the
framework to deeper networks? (2) While the current framework focuses on the
gradient features in the early gradient steps, whether feature learning also happens
in later steps and if so how to formalize that?

50

4 fourier circuits in neural networks and
transformers: a case study of modular arithmetic with
multiple inputs

Contribution statement. This chapter is joint work with Chenyang Li, Yingyu
Liang, Zhao Song, and Tianyi Zhou. The author Zhenmei Shi proposed the method,
contributed to part of the theoretical analysis, and completed all the experiments.
The results in this chapter have appeared in ICLR 2024 Workshop, and then is
submitted to AIStats 2025 (Li et al., 2024b).

4.1 Introduction
The field of artificial intelligence has experienced a significant transformation with
the development of large language models (LLMs), particularly through the intro-
duction of the Transformer architecture (Vaswani et al., 2017). This advancement
has revolutionized approaches to challenging tasks in natural language process-
ing, notably in machine translation (Prato et al., 2020; Gao et al., 2020) and text
generation (Luo et al., 2022). Consequently, models e.g., Mistral (Jiang et al.,
2023a), Llama (AI, 2024), Gemini (Team et al., 2023), Gemma (Team et al., 2024),
Claude3 (Anthropic, 2024), GPT4 (Achiam et al., 2023) and so on, have become
predominant in NLP.

Central to this study is the question of how these advanced models transcend
mere pattern recognition to engage in what appears to be logical reasoning and
problem-solving. This inquiry is not purely academic; it probes the core of “un-
derstanding” in artificial intelligence. While LLMs, such as Claude3 and GPT4,
demonstrate remarkable proficiency in human-like text generation, their capability
to comprehend and process mathematical logic is a topic of considerable debate.
This line of investigation is crucial, given AI’s potential to extend beyond text gener-
ation into deeper comprehension of complex subjects. Mathematics, often seen as

51

the universal language, presents a uniquely challenging domain for these models
(Yousefzadeh and Cao, 2023). Our research aims to determine whether Transform-
ers with attention, noted for their NLP efficiency, can also demonstrate an intrinsic
understanding of mathematical operations and reasoning.

In a recent surprising study of mathematical operations learning, Power et al.
(2022) train Transformers on small algorithmic datasets, e.g., a1 + a2 mod p and
we let p be a prime number, and show the “grokking” phenomenon, where models
abruptly transition from bad generalization to perfect generalization after a large
number of training steps. Nascent studies, such as those by Nanda et al. (2023a),
empirically reveal that Transformers can solve modular addition using Fourier-
based circuits. They found that the Transformers trained by Stochastic Gradient
Descent (SGD) not only reliably compute a1+a2 mod p, but also that the networks
consistently employ a specific geometric algorithm. This algorithm, which involves
composing integer rotations around a circle, indicates an inherent comprehension of
modular arithmetic within the network’s architecture. The algorithm relies on this
identity: for any a1,a2 and ζ ∈ Zp\{0}, the following two quantities are equivalent

(a1 + a2) mod p = arg max
c∈Zp

{cos(2πζ(a1 + a2 − c)/p)}.

Nanda et al. (2023a) further show that the attention and MLP module in the
Transformer imbues the neurons with Fourier circuit-like properties. To study why
networks arrive at Fourier-based circuits computational strategies, Morwani et al.
(2024) theoretically study one-hidden layer neural network learning on two inputs
modular addition task and certify that the trained networks will execute modular
addition by employing Fourier features aligning closely with the previous empirical
observations. However, the question remains whether neural networks can solve
more complicated mathematical problems.

Inspired by recent developments in mechanistic interpretability (Olah et al.,
2020; Elhage et al., 2021, 2022) and the study of inductive biases (Soudry et al.,
2018; Vardi, 2023) in neural networks, we extend our research to modular addition

52

with more (k) inputs.

(a1 + a2 + · · ·+ ak) mod p. (4.1)

This approach offers insights into why certain representations and solutions emerge
from neural network training. By integrating these insights with our empirical
findings, we aim to provide a comprehensive understanding of neural networks’
learning mechanisms, especially in solving the modular addition problem. We
also determine the necessary number of neurons for the network to learn this
Fourier method for modular addition. Our paper’s contributions are summarized
as follows:

• Expansion of Input for Modular Addition Problem: We extend the input
parameter range for the modular addition problem from a binary set to k-
element sets.

• Network’s Maximum Margin: For p-modular addition of k inputs, we give
the closed form of the maximum margin of a network (Lemma 4.10):

γ∗ =
2(k!)

(2k+ 2)(k+1)/2(p− 1)p(k−1)/2 .

• Neuron Count in One-Hidden-Layer Networks: We propose that in a general
case, a one-hidden-layer network having m ⩾ 22k−2 · (p − 1) neurons can
achieve the maximum L2,k+1-margin solution, each hidden neuron aligning
with a specific Fourier spectrum. This ensures the network’s capability to effec-
tively solve the modular addition in a Fourier-based method (Theorem 4.9).

• Empirical Validation of Theoretical Findings: We validate our theoretical
finding that: when m ⩾ 22k−2 · (p − 1), for each spectrum ζ ∈ {1, . . . , p−1

2 },
there exists a hidden-neuron utilizes this spectrum. It strongly supports our
analysis. (Figure 4.1 and Figure 4.2).

53

• Similar Findings in Transformer: We have a similar observation in one-
layer Transformer learning modular addition involving k inputs. For the
2-dimensional matrix WKWQ, where WK,WQ denotes the key and query
matrix, it shows the superposition of two cosine waveforms in each dimension,
each characterized by distinct frequencies (Figure 4.3).

• Grokking under Different k: We observe that as k increases, the grokking
phenomenon becomes weaker, as predicted by our analysis (Figure 4.4).

4.2 Related Work
Max Margin Solutions in Neural Networks. Bronstein et al. (2022) demonstrated
that neurons in a one-hidden-layer ReLU network align with clauses in max margin
solutions for read-once DNFs, employing a unique proof technique involving the
construction of perturbed networks. Morwani et al. (2024) utilize max-min duality
to certify maximum-margin solutions. Further, extensive research in the domain
of margin maximization in neural networks, including works by Gunasekar et al.
(2018b); Soudry et al. (2018); Gunasekar et al. (2018a); Wei et al. (2019); Lyu and Li
(2019); Ji and Telgarsky (2019a); Moroshko et al. (2020); Chizat and Bach (2020); Ji
and Telgarsky (2020); Lyu et al. (2021); Frei et al. (2022c, 2023a); Shi et al. (2023c);
Li et al. (2024a) and more, has highlighted the implicit bias towards margin maxi-
mization inherent in neural network optimization. They provide a foundational
understanding of the dynamics of neural networks and their inclination towards
maximizing margins under various conditions and architectures.

Algebraic Tasks Learning Mechanism Interpretability. The study of neural
networks trained on algebraic tasks has been pivotal in shedding light on their
training dynamics and inductive biases. Notable contributions include the work of
Power et al. (2022); Gromov (2023); Quirke and Barez (2023) on modular addition
and subsequent follow-up studies, investigations into learning parities (Daniely and
Malach, 2020; Barak et al., 2022; Shi et al., 2022c, 2024b, 2023d,b; Zhang et al., 2023d;
Xu et al., 2024e), and research into algorithmic reasoning capabilities (Saxton et al.,

54

2018; Hendrycks et al., 2021; Lewkowycz et al., 2022; Meng et al., 2022a; Damian
et al., 2022; Chughtai et al., 2023; Stander et al., 2023; Nanda et al., 2023b; Zhong et al.,
2023; Tigges et al., 2023; Hanna et al., 2023). The field of mechanistic interpretability,
focusing on the analysis of internal representations in neural networks, has also seen
significant advancements through the works of Cammarata et al. (2020); Olsson
et al. (2022); Merrill et al. (2023); Rubin et al. (2023); Varma et al. (2023); Doshi
et al. (2024); Shi et al. (2024a); Ke et al. (2024a); Chen et al. (2024b); Liang et al.
(2024c); Saxena et al. (2024) and others.

Grokking and Emergent Ability. The phenomenon known as “grokking” was
initially identified by Power et al. (2022) and is believed to be a way of studying
the emerging abilities of LLM (Wei et al., 2022c). This research observed a unique
trend in two-layer transformer models engaged in algorithmic tasks, where there
was a significant increase in test accuracy, surprisingly occurring well after these
models had reached perfect accuracy in their training phase. In Millidge (2022), it
was hypothesized that this might be the result of the SGD process that resembles a
random path along what is termed the optimal manifold. Adding to this, Nanda
et al. (2023a) aligns with the findings of Belinkov (2022), indicating a steady
advancement of networks towards algorithms that are better at generalization. Liu
et al. (2022); Xu et al. (2024d); Lyu et al. (2024) developed smaller-scale examples
of grokking and utilized these to map out phase diagrams, delineating multiple
distinct learning stages. Furthermore, Thilak et al. (2022); Murty et al. (2023)
suggested the possibility of grokking occurring naturally, even in the absence of
explicit regularization. They attributed this to an optimization quirk they termed
the slingshot mechanism, which might inadvertently act as a regularizing factor.

4.3 Problem Setup

4.3.1 Data and Network Setup

Data. Following Morwani et al. (2024), let Zp = [p] denote the modular group
on p integers, where p > 2 is a given prime number. The input space is X := Zkp

55

for some integer k, and the output space is Y := Zp. Then an input data point is
a = (a1, . . . ,ak) with ai ∈ Zp. When clear from context, we also let xi ∈ {0, 1}p be
the one-hot encoding of ai, and let x = (x1, . . . , xk) denote the input point.

Network. We consider single-hidden layer neural networks with polynomial
activation functions:

f(θ, x) :=
m∑
i=1

ϕ(θi, x), (4.2)

ϕ(θi, x) := (u⊤
i,1x1 + · · ·+ u⊤

i,kxk)
kwi,

where θ := {θ1, . . . , θm} ∈ R(k+1)×p, ϕ(θi, x) is one neuron, and θi := {ui,1, . . . ,ui,k,wi}
are the parameters of the neuron with ui,1, . . . ,ui,k,wi ∈ Rp. We use polynomial
activation functions due to the homogeneous requirement in Lemma 4.7 and easy
sum-to-product identities calculation in Fourier analysis. Using the notation a
instead of the one-hot encodings x, we can also write:

f(θ,a) :=
m∑
i=1

ϕ(θi,a),

ϕ(θi,a) := (ui,1(a1) + · · ·+ ui,k(ak))kwi,

where with ui,j(aj) being the aj-th component of ui,j. We consider the parame-
ter set: Θ := {∥θ∥2,k+1 ⩽ 1}, where ∥θ∥2,k+1 := (

∑m
i=1 ∥θi∥k+1

2)
1
k+1 , and ∥θi∥2 :=

(
∑k
j=1 ∥ui,j∥2

2 + ∥wi∥2
2)

1
2 .

Here ∥θ∥2,k+1 is the L2,k+1 matrix norm of θ (Definition C.2), and ∥θi∥2 is the
L2 vector norm of the concatenated vector of the parameters in θi. The training
objective over Θ is then as follows.

Definition 4.1. Given a dataset Dp and the cross-entropy loss l, the regularized training
objective is:

Lλ(θ) :=
1

|Dp|

∑
(x,y)∈Dp

l(f(θ, x),y) + λ∥θ∥2,k+1.

56

4.3.2 Margins of the Neural Networks

Now, we define the margin for a data point and the margin for a whole dataset.

Definition 4.2. We denote g : RU × X× Y→ R as the margin function, where for given
(x,y) ∈ Dp, g(θ, x,y) := f(θ, x)[y] − maxy′∈Y\{y} f(θ, x)[y′].

Definition 4.3. The margin for a given dataset Dp is denoted as h : RU → R where
h(θ) := min(x,y)∈Dp g(θ, x,y).

For parameter θ, its normalized margin is denoted as h(θ/∥θ∥2,k+1). For sim-
plicity, we define γ∗ to be the maximum normalized margin as the following:

Definition 4.4. The minimum of the regularized objective is denoted as θλ ∈ arg minθ∈RU Lλ(θ).
We define the normalized margin of θλ as γλ := h(θλ/∥θλ∥2,k+1) and the maximum nor-
malized margin as γ∗ := maxθ∈Θ h(θ), where Θ = {∥θ∥2,k+1 ⩽ 1}.

Let P(Dp) denote a set containing all distributions over Dp. Then γ∗ can be
rewritten as

γ∗ = max
θ∈Θ

h(θ) = max
θ∈Θ

min
(x,y)∈Dp

g(θ, x,y)

= max
θ∈Θ

min
q∈P(Dp)

E
(x,y)∼q

[g(θ, x,y)], (4.3)

where the first step is from Definition 4.4, the second step is from Definition 4.3,
and the last step is from the linearity of the expectation. Now, we introduce an
important concept of a duality stationary pair (θ∗,q∗).

Definition 4.5. We define a stationary pair (θ∗,q∗) when satisfying

q∗ ∈ arg min
q∈P(Dp)

E
(x,y)∼q

[g(θ∗, x,y)], (4.4)

θ∗ ∈ arg min
θ∈Θ

E
(x,y)∼q∗

[g(θ, x,y)].

This means that q∗ is a distribution that minimizes the expected margin based
on θ∗, and simultaneously, θ∗ is a solution that maximizes the expected margin

57

relative to q∗. The max-min inequality (Boyd and Vandenberghe, 2004) indicates
that presenting such a duality adequately proves θ∗ to be a maximum margin
solution. Recall that there is a “max” operation in Definition 4.2, which makes the
swapping of expectation and summation infeasible, meaning that the expected
network margin cannot be broken down into the expected margins of individual
neurons. To tackle this problem, the class-weighted margin is proposed, whose
intuition is similar to label smoothing. Let τ : Dp → ∆(Y) allocate weights to
incorrect labels for every data point. Given (x,y) inDp and for any y ′ ∈ Y, we have
τ(x,y)[y ′] ⩾ 0 and

∑
y ′∈Y\{y} τ(x,y)[y ′] = 1. We denote a proxy g ′ as the following

to solve the issue.

Definition 4.6. Draw (x,y) ∈ Dp. The class-weighted margin g′ is defined as

g′(θ, x,y) := f(θ, x)[y] −
∑

y′∈Y\{y}

τ(x,y)[y′]f(θ, x)[y′].

We have g′ uses a weighted sum rather than max, so g(θ, x,y) ⩽ g′(θ, x,y).
Following the linearity of expectation, we get the expected class-weighted margin
as

E
(x,y)

[g′(θ, x,y)] =
m∑
i=1

E
(x,y)

[
ϕ(θi, x)[y]

−
∑

y′∈Y\{y}

τ(x,y)[y′]ϕ(θi, x)[y′]
]
,

where we can move the summation
∑m
i=1 out of the expectation E[].

4.3.3 Connection between Training and the Maximum Margin
Solutions

We denote ν as the network’s homogeneity constant, where the equation f(αθ, x) =
ανf(θ, x) holds for any x and any scalar α > 0. Specifically, we focus on networks
with homogeneous neurons that satisfy ϕ(αθi, x) = ανϕ(θi, x) for any α > 0. Note

58

0 10 20 30 40

0.5
0.0
0.5

0 5 10 15 200

250

0 10 20 30 40
0.5
0.0
0.5

0 5 10 15 200

200

0 10 20 30 40
0.5
0.0
0.5

0 5 10 15 200

200

0 10 20 30 40
0.5
0.0
0.5

0 5 10 15 200

200

0 10 20 30 40
0.5
0.0
0.5

0 5 10 15 200

200

0 10 20 30 40

0

1

0 5 10 15 200

200

0 10 20 30 40
0.5
0.0
0.5

0 5 10 15 200

200

0 10 20 30 40

0.5
0.0
0.5

0 5 10 15 200

250

Figure 4.1: Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network withm = 2944
neurons is trained on k = 4-sum mod-p = 47 addition dataset. We even split the
whole datasets (pk = 474 data points) into the training and test datasets. Every
row represents a random neuron from the network. The left figure shows the
final trained embeddings, with red dots indicating the true weight values, and
the pale blue interpolation is achieved by identifying the function that shares the
same Fourier spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in Lemma 4.10.
See Figure C.1, C.3 in Appendix C.10.2 for similar results when k is 3 or 5.

that our one-hidden layer networks (Eq. equation 4.2) are k+ 1 homogeneous. As
the following Lemma states, when λ is small enough during training homogeneous

59

functions, we have the Lλ global optimizers’ normalized margin converges to γ∗.

Lemma 4.7 (Wei et al. (2019), Theorem 4.1). Let f be a homogeneous function. For any
norm ∥ · ∥, if γ∗ > 0, we have limλ→0 γλ = γ

∗.

Therefore, to comprehend the global minimize, we can explore the maximum-
margin solution as a surrogate, enabling us to bypass complex analyses in non-
convex optimization. Furthermore, Morwani et al. (2024) states that under the
following condition, the maximum-margin solutions and class-weighted maximum-
margin (g ′) solutions are equivalent to each other.

Condition 4.8 (Condition C.1 in page 8 in Morwani et al. (2024)). We haveg′(θ∗, x,y) =
g(θ∗, x,y) for all (x,y) ∈ spt(q∗), where spt is the support. It means: {y ′ ∈ Y\{y} :

τ(x,y)[y ′] > 0} ⊆ arg max
y ′∈Y\{y}

f(θ∗, x)[y ′].

Thus, under these conditions, we only need to focus on the class-weighted
maximum-margin solutions in our following analysis.

4.4 Main Result
We characterize the Fourier features to perform modular addition with k input in
the one-hidden-layer neuron network. We show that every neuron only focuses on
a distinct Fourier frequency. Additionally, within the network, there is at least one
neuron for each frequency. When we consider the uniform class weighting, where
Lλ(θ) is based on τ(a1, . . . ,ak)[c ′] := 1/(p − 1) ∀c ′ ̸= a1 + · · · + ak, we have the
following main result:

Theorem 4.9 (Main result, informal version of Theorem C.22). Let f(θ, x) be the
one-hidden layer networks defined in Eq equation 4.2. If m ⩾ 22k−1 · p−1

2 , then the max
L2,k+1-margin network satisfies:

• The maximum L2,k+1-margin for a dataset Dp is:

γ∗ =
2(k!)

(2k+ 2)(k+1)/2(p− 1)p(k−1)/2 .

60

• For each neuron ϕ({u1, . . . ,uk,w};a1, . . . ,ak), there is a constant scalar β ∈ R and
a frequency ζ ∈ {1, . . . , p−1

2 } satisfying

ui(ai) = β · cos(θ∗ui + 2πζai/p), ∀i ∈ [k]

w(c) = β · cos(θ∗w + 2πζc/p),

where θ∗u1
, . . . , θ∗uk , θ∗w ∈ R are some phase offsets satisfying θ∗u1

+ · · ·+ θ∗uk = θ
∗
w.

• For each frequency ζ ∈ {1, . . . , p−1
2 }, there exists one neuron using this frequency

only.

Proof sketch of Theorem 4.9. See formal proof in Appendix C.9.2. By Lemma 4.10,
we get γ∗ and the single-neuron class-weighted maximum-margin solution set
Ω

′∗
q . By satisfying Condition 4.8, we know it is used in the maximum-margin

solution. By Lemma 4.11, we can construct the network θ∗ that uses neurons in
Ω

′∗
q . By Lemma C.6, we know that it is the maximum-margin solution. Finally, by

Lemma C.20, we know that all frequencies are covered.

Theorem 4.9 tells us when the number of neurons is large enough, e.g., m ⩾

22k−1 · p−1
2 (the lower bound ofmmay not be the tightest in our analysis), the one

hidden neural network will exactly learn all Fourier spectrum/basis to recover the
modular addition operation. More specifically, each neuron will only focus on one
Fourier frequency. Our analysis provides a comprehensive understanding of why
neural networks trained by SGD prefer to learn Fourier-based circuits.

4.4.1 Technique Overview

In this section, we propose techniques overview of the proof for our main result. We
use i to denote

√
−1. Let f : Zp → C. Then, for each frequency j ∈ Zp, we define f

discrete Fourier transform (DFT) as f̂(j) :=
∑
ζ∈Zp f(ζ) exp(−2πi · jζ/p). LetΩ ′∗

q be
the single neuron class-weighted maximum-margin solution set (formally defined
in Definition C.13). We first show how we getΩ ′∗

q .

61

0 5 10 15 20
Frequency

0

25

50

75

100

125

150

Nu
m

be
r o

f n
eu

ro
ns

All frequency convered (p=47, k=4, m=2944)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Max normalized power

0.0%

10.0%

20.0%

30.0%

40.0%

Nu
m

be
r o

f n
eu

ro
ns

Initial distribution (p=47, k=4, m=2944)

(b)

Max margin distribution (p=47, k=4, m=2944)

15.0%

10.0%

5.0%

0.0%
0.0 0.2 0.4 0.6 0.8 1.0

Max normalized power

N
u
m

b
e
r
 o

f
n
e
u
r
o
n
s

(c)

Figure 4.2: All Fourier spectrum frequencies being covered and the maximum
normalized power of the embeddings (hidden layer weights). The one-hidden
layer network withm = 2944 neurons is trained on k = 4-sum mod-p = 47 addition
dataset. We denote û[i] as the Fourier transform of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2)

be the maximum normalized power. Mapping each neuron to its maximum normal-
ized power frequency, (a) shows the final frequency distribution of the embeddings.
Similar to our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized power of
the neural network with random initialization. (c) shows, in frequency space, the
embeddings of the final trained network are one-sparse, i.e., maximum normalized
power being almost 1 for all neurons. This is consistent with our max-margin
analysis results in Lemma 4.11. See Figure C.2 and C.4 in Appendix C.10.2 for
results when k is 3 or 5.

Lemma 4.10 (Informal version of Lemma C.15). If for any ζ ∈ {1, . . . , p−1
2 }, there

exists a scaling constant β ∈ R, such that ui(ai) = β · cos(θ∗ui + 2πζai/p) for any
i ∈ [k] and w(c) = β · cos(θ∗w + 2πζc/p), where θ∗u1

, . . . , θ∗uk , θ
∗
w ∈ R are some phase

offsets satisfying θ∗u1
+ · · · + θ∗uk = θ∗w. Then, we have Ω′∗

q = {(u1, . . . ,uk,w)}, and
γ∗ = 2(k!)

(2k+2)(k+1)/2(p−1)p(k−1)/2 .

Proof sketch of Lemma 4.10. See formal proof in Appendix C.6.5. The proof estab-
lishes the maximum-margin solution’s sparsity in the Fourier domain through
several key steps. Initially, by Lemma C.14, focus is directed to maximizing Eq. equa-
tion C.10. For odd p, Eq. equation C.10 can be reformulated with magnitudes and
phases of ûi and ŵ (discrete Fourier transform of ui andw), leading to an equation
involving cosine of their phase differences. Plancherel’s theorem is then employed
to translate the norm constraint to the Fourier domain. This allows for the optimiza-
tion of the cosine term in the sum, effectively reducing the problem to maximizing

62

the product of magnitudes of ûi and ŵ (Eq. equation C.14). By applying the
inequality of arithmetic and geometric means, we have an upper bound for the
optimization problem. To achieve the upper bound, equal magnitudes are required
for all ûi and ŵ at a single frequency, leading to Eq. equation C.16. The neurons
are finally expressed in the time domain, demonstrating that they assume a specific
cosine form with phase offsets satisfying certain conditions.

Next, we show the number of neurons required to solve the problem and the
properties of these neurons. We demonstrate how to use these neurons to construct
the network θ∗.

Lemma 4.11 (Informal version of Lemma C.18). Let cosζ(x) denote cos(2πζx/p).
Then, we have the maximum L2,k+1-margin solution θ∗ will consist of 22k−1 · p−1

2 neurons
θ∗i ∈ Ω

′∗
q to simulate p−1

2 type of cosine computation, where each cosine computation is
uniquely determined a ζ ∈ {1, . . . , p−1

2 }. In particular, for each ζ the cosine computation is
cosζ(a1 + · · ·+ ak − c),∀a1, . . . ,ak, c ∈ Zp.

Proof sketch of Lemma 4.11. See formal proof in Appendix C.7.3. Our goal is to show
that 22k−1 · p−1

2 neurons θ∗i ∈ Ω
′∗
q are able to simulate p−1

2 type of cos computation.
We have the following expansion function of cosζ(x), which denotes cos(2πζx/p).

cosζ(
k∑
i=1

ai) =
∑

b∈{0,1}k

k∏
i=1

cos1−bi(ai) · sinbi(ai)

· 1[
k∑
i=1

bi%2 = 0] · (−1)1 [
∑k
i=1 bi%4=2].

The above equation can decompose a cos(
∑

) to some basic elements. We have 2k

terms in the above equation. By using the following fact in Lemma C.16,

2k · k! ·
k∏
i=1

ai =
∑

c∈{−1,+1}k
(−1)(k−

∑k
i=1 ci)/2(

k∑
j=1

cjaj)
k,

63

where each term can be constructed by 2k−1 neurons. Therefore, we need 2k−12k

total neurons. To simulate p−1
2 type of simulation, we need 22k−1p−1

2 neurons. Then,
using the Lemma C.5, we construct the network θ∗. By using the Lemma C.6 from
Morwani et al. (2024), we get it is the maximum-margin solution.

4.5 Experiments
First, we conduct simulation experiments to verify our analysis for k = 3, 4, 5. Then,
we show that the one-layer transformer learns 2-dimensional cosine functions in
their attention weights. Finally, we show the grokking phenomenon under different
k. Please refer to Appendix C.10.1 for details about implementation.

One-hidden Layer Neural Network. We conduct simulation experiments to
verify our analysis. In Figure 4.1 and Figure 4.2, we use SGD to train a two-layer
network withm = 2944 = 22k−2 · (p− 1) neurons, i.e., Eq. equation 4.2, on k = 4-
sum mod-p = 47 addition dataset, i.e., Eq. equation 4.1. Figure 4.1 shows that the
networks trained with SGD have single-frequency hidden neurons, which support
our analysis in Lemma 4.10. Furthermore, Figure 4.2 demonstrates that the network
will learn all frequencies in the Fourier spectrum which is consistent with our
analysis in Lemma 4.11. Together, they verify our main results in Theorem 4.9 and
show that the network trained by SGD prefers to learn Fourier-based circuits. There
are more similar results when k is 3 or 5 in Appendix C.10.2.

One-layer Transformer. We find similar results in one-layer transformers. Let
E be input embedding andWP,WV ,WK,WQ be projection, value, key and query
matrix. Them-heads attention layer can be written as

WP

WV⊤

1 E · softmax
(
E⊤WK

1 W
Q⊤
1 E

)
. . .

WV⊤
m E · softmax

(
E⊤WK

mW
Q⊤
m E

)
 .

We denoteWKWQ⊤ asWKQ and call it attention matrix. In Figure 4.3, we train a
one-layer transformer withm = 160 heads attention and hidden dimension 128, i.e.,

64

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

20

10

0

10

20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

0.10

0.05

0.00

0.05

0.10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

0

1

2

3

4
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30 0.10

0.05

0.00

0.05

0.10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30 10

5

0

5

10

0 3 6 9 12 15 18 21 24 27

0
3

6
9

12
15

18
21

24
27

0

200

400

600

800

Figure 4.3: 2-dimension cosine shape of the trainedWKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention heads
m = 160 is trained on k = 4-sum mod-p = 31 addition dataset. We even split the
whole datasets (pk = 314 data points) into training and test datasets. Every row
represents a random attention head from the transformer. The left figure shows
the final trained attention weights being an apparent 2-dim cosine shape. The right
figure shows their 2-dim Fourier power spectrum. The results in the figures are
consistent with Figure 4.1. See Figure C.5 and Figure C.6 in Appendix C.10.3 for
similar results when k is 3 or 5.

above equation, on k = 4-sum mod-p = 31 addition dataset, i.e., Eq. equation 4.1.
Figure 4.3 shows that the SGD-trained one-layer transformer learns 2-dim cosine

65

100 101 102 103 104

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Ac

c
k=2

test acc
train acc

100 101 102 103

Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
k=3

100 101 102 103

Training Steps

0.2

0.4

0.6

0.8

1.0
k=4

100 101 102 103 104

Training Steps

0.2

0.4

0.6

0.8

1.0
k=5

Figure 4.4: Grokking (models abruptly transition from bad generalization to perfect
generalization after a large number of training steps) under learning modular
addition involving k = 2, 3, 4, 5 inputs. We train two-layer transformers with
m = 160 attention heads on k = 2, 3, 4, 5-sum mod-p = 97, 31, 11, 5 addition dataset
with 50% of the data in the training set under AdamW Loshchilov and Hutter
(2018) optimizer 1e-3 learning rate and 1e-3 weight decay. We use different p to
guarantee the dataset sizes are roughly equal to each other. The blue curves show
training accuracy, and the red ones show validation accuracy. There is a grokking
phenomenon in all figures. However, as k increases, the grokking phenomenon
becomes weak. See explanation in Section 4.5.

shape attention matrices, which is similar to the one-hidden layer neural networks
in Figure 4.1. This means that the attention layer has a learning mechanism similar
to neural networks in the modular arithmetic task. It prefers to learn (2-dim)
Fourier-based circuits when trained by SGD. There are more similar results when k
is 3 or 5 in Appendix C.10.3.

Grokking under Different k. To support the importance of our data setting,
we study the grokking phenomenon in our data distribution. Following the experi-
ments’ protocol in Power et al. (2022), we show there is the grokking phenomenon
under different k. We train two-layer transformers withm = 160 attention heads
and hidden dimension as 128 on k = 2, 3, 4, 5-sum mod-p = 97, 31, 11, 5 addition
dataset with 50% of the data in training. We use different p to guarantee the dataset
sizes are roughly equal to each other. Figure 4.4 shows that the grokking weakens as
the number of k increases, which is consistent with our analysis. When k increases,
the function class will become more complicated, as we may need more neurons
to achieve the max-margin solution. Thus, we use our Theorem 4.9 as a metric
to measure the data complexity. It implies that when the ground-truth function
class becomes “complicated”, the transformers need to train more steps to fit the

66

training datasets, and the generalization tends to be better. Brilliant recent works
by Lyu et al. (2024); Kumar et al. (2023) argue that, during learning, the network
will be first in the lazy training/NTK regime and then transfer to the rich/feature
learning regime sharply, leading to a grokking phenomenon. We use learning steps
required for regime switch as a metric of grokking strength.

NTK is a notorious overparameterized regime, which probably needs a much
larger number of neurons than our max-margin convergence case, i.e., much larger
thanΩ(22k) in Theorem 4.9. Thus, under the fixedm and increasing k, the model
may easily escape the NTK regime, or there is no longer an NTK regime. Thus, we
will see a weaker grokking phenomenon as the learning steps needed to transfer
from the NTK regime to the feature learning regime become fewer. With increasing
k, the model will have an “underfitting” issue in the NTK regime, meaning the
model must need feature learning to fit the task but cannot only fit the task by NTK.
However, the model still has an “overfitting” in the feature learning regime.

4.6 Discussion
Grokking in Transformers. The interpretability of grokking in Transformers
is explored in Nanda et al. (2023a). By examining various intermediate states
within the residual stream of the Transformer model, it is validated that the model
employs Fourier features to tackle the modular addition task. However, fully
comprehending how the Transformer model and LLMs perform modular addition
remains challenging based on the current work, particularly from a theoretical
standpoint. We contend that beginning with a simplistic model setup and achieving
a thorough and theoretical understanding of how the network utilizes Fourier
features to address the problem serves as a valuable starting point and it provides
a theoretical understanding of the grokking phenomenon. We believe that further
study on Transformers will be an interesting and important future direction.

Grokking, Benign Overfitting, and Implicit Bias. Recently, Xu et al. (2024d)
connects the grokking phenomenon to benign overfitting (Bartlett et al., 2020; Cao
et al., 2022; Tsigler and Bartlett, 2023; Frei et al., 2022a, 2023a). It shows how the

67

network undergoes a grokking period from catastrophic to benign overfitting. Lyu
et al. (2024); Kumar et al. (2023) uses implicit bias (Soudry et al., 2018; Gunasekar
et al., 2018a; Ji and Telgarsky, 2019a; Shah et al., 2020; Moroshko et al., 2020; Chizat
and Bach, 2020; Lyu et al., 2021; Jacot, 2023; Xu et al., 2023, 2024f) to explain grokking,
where grokking happens if the early phase bias implies an overfitting solution while
late phase bias implies a generalizable solution. The intuition from the benign
overfitting and the implicit bias well align with our observation in Section 4.5. It
is interesting and valuable to rigorously analyze the grokking or emergent ability
under different function class complexities, e.g., Eq equation 4.1. We leave this
challenge problem as a future work.

Connection to Parity and SQ Hardness. If we let p = 2, then (a1 + · · · +
ak) mod pwill degenerate to parity function, i.e., b1, . . . ,bk ∈ {±1} and determin-
ing

∏k
i=1 bi. Parity functions serve as a fundamental set of learning challenges in

computational learning theory, often used to demonstrate computational obsta-
cles (Shalev-Shwartz et al., 2017). In particular, (n,k)-sparse parity problem is noto-
rious hard to learn, i.e., Statistical Query (SQ) hardness (Blum et al., 1994). Daniely
and Malach (2020) showed that one-hidden layer networks need an Ω(exp(k))
number of neurons or anΩ(exp(k)) number of training steps to successfully learn
it by SGD. In our work, we are studying Eq. equation 4.2, which is a more general
function than parity and indeed is a learning hardness. Our Theorem 4.9 states that
we needΩ(exp(k)) number of neurons to represent the maximum-margin solution,
which well aligns with existing works. Our experiential results in Section 4.5 are
also consistent. Hence, our modular addition involving k inputs function class is a
good data model to analyze and test the model learning ability, i.e., approximation,
optimization, and generalization.

High Order Correlation Attention. Sanford et al. (2023); Alman and Song
(2023, 2024) state that, when k = 3, a1 + a2 + a3 mod p is hard to be captured
by traditional attention. Thus, they introduce high-order attention to capture
high-order correlation from the input sequence. However, in Section 4.5, we show
that one-layer transformers have a strong learning ability and can successfully
learn modular arithmetic tasks even when k = 5. This implies that the traditional

68

attention may be more powerful than we expect.

4.7 Conclusion
We study neural networks and transformers learning on (a1 + · · ·+ ak) mod p. We
theoretically show that networks prefer to learn Fourier circuits. Our experiments
on neural networks and transformers support our analysis. Finally, we study the
grokking phenomenon under this new data setting.

69

5 why larger language models do in-context learning
differently?

Contribution statement. This chapter is joint work with Junyi Wei, Zhuoyan Xu,
and Yingyu Liang. The author Zhenmei Shi proposed the method, contributed to
part of the theoretical analysis, and completed part of the experiments. The results
of this chapter have been published as a conference paper in ICML 2024 (Shi et al.,
2024b).

5.1 Introduction
As large language models (LLM), e.g., ChatGPT (OpenAI, 2022) and GPT4 (Achiam
et al., 2023), are transforming AI development with potentially profound impact
on our societies, it is critical to understand their mechanism for safe and efficient
deployment. An important emergent ability Wei et al. (2022c); An et al. (2023),
which makes LLM successful, is in-context learning (ICL), where models are given a
few exemplars of input–label pairs as part of the prompt before evaluating some new
input. More specifically, ICL is a few-shot Brown et al. (2020) evaluation method
without updating parameters in LLM. Surprisingly, people find that, through ICL,
LLM can perform well on tasks that have never been seen before, even without
any finetuning. It means LLM can adapt to wide-ranging downstream tasks under
efficient sample and computation complexity. The mechanism of ICL is different
from traditional machine learning, such as supervised learning and unsupervised
learning. For example, in neural networks, learning usually occurs in gradient
updates, whereas there is only a forward inference in ICL and no gradient updates.
Several recent works, trying to answer why LLM can learn in-context, argue that
LLM secretly performs or simulates gradient descent as meta-optimizers with just
a forward pass during ICL empirically Dai et al. (2022); Von Oswald et al. (2023);
Malladi et al. (2023) and theoretically Zhang et al. (2023c); Ahn et al. (2024a);
Mahankali et al. (2023); Cheng et al. (2023); Bai et al. (2024a); Hu et al. (2024a); Li

70

et al. (2023f); Guo et al. (2024); Wu et al. (2024c). Although some insights have
been obtained, the mechanism of ICL deserves further research to gain a better
understanding.

Recently, there have been some important and surprising observations Min et al.
(2022); Pan et al. (2023); Wei et al. (2023b); Shi et al. (2023a) that cannot be fully
explained by existing studies. In particular, Shi et al. (2023a) finds that LLM is not
robust during ICL and can be easily distracted by an irrelevant context. Furthermore,
Wei et al. (2023b) shows that when we inject noise into the prompts, the larger
language models may have a worse ICL ability than the small language models, and
conjectures that the larger language models may overfit into the prompts and forget
the prior knowledge from pretraining, while small models tend to follow the prior
knowledge. On the other hand, Min et al. (2022); Pan et al. (2023) demonstrate
that injecting noise does not affect the in-context learning that much for smaller
models, which have a more strong pretraining knowledge bias. To improve the
understanding of the ICL mechanism, to shed light on the properties and inner
workings of LLMs, and to inspire efficient and safe use of ICL, we are interested in
the following question:

Why do larger language models do in-context learning differently?

To answer this question, we study two settings: (1) one-layer single-head linear
self-attention network Schlag et al. (2021); Von Oswald et al. (2023); Akyurek et al.
(2023); Ahn et al. (2024a); Zhang et al. (2023c); Mahankali et al. (2023); Wu et al.
(2024c) pretrained on linear regression in-context tasks Garg et al. (2022); Raventos
et al. (2023); Von Oswald et al. (2023); Akyürek et al. (2022); Bai et al. (2024a);
Mahankali et al. (2023); Zhang et al. (2023c); Ahn et al. (2024a); Li et al. (2023d);
Hu et al. (2024a); Wu et al. (2024c), with rank constraint on the attention weight
matrices for studying the effect of the model scale; (2) two-layer multiple-head
transformers Li et al. (2023f) pretrained on sparse parity classification in-context
tasks, comparing small or large head numbers for studying the effect of the model
scale. In both settings, we give the closed-form optimal solutions. We show that
smaller models emphasize important hidden features while larger models cover

71

more features, e.g., less important features or noisy features. Then, we show that
smaller models are more robust to label noise and input noise during evaluation,
while larger models may easily be distracted by such noises, so larger models may
have a worse ICL ability than smaller ones.

We also conduct in-context learning experiments on five prevalent NLP tasks
utilizing various sizes of the Llama model families Touvron et al. (2023a,b), whose
results are consistent with previous work Min et al. (2022); Pan et al. (2023); Wei
et al. (2023b) and our analysis.

Our contributions and novelty over existing work:

• We formalize new stylized theoretical settings for studying ICL and the scaling
effect of LLM. See Section 5.4 for linear regression and Section 5.5 for parity.

• We characterize the optimal solutions for both settings (Theorem 5.4.1 and
Theorem 5.5.1).

• The characterizations of the optimal elucidate different attention paid to
different hidden features, which then leads to the different ICL behavior
(Theorem 5.4.2, Theorem 5.4.3, Theorem 5.5.2).

• We further provide empirical evidence on large base and chat models corrob-
orating our theoretical analysis (Figure 5.1, Figure 5.2).

Note that previous ICL analysis paper may only focus on (1) the approximation
power of transformers Garg et al. (2022); Panigrahi et al. (2023); Guo et al. (2024);
Bai et al. (2024a); Cheng et al. (2023), e.g., constructing a transformer by hands
which can do ICL, or (2) considering one-layer single-head linear self-attention
network learning ICL on linear regression Von Oswald et al. (2023); Akyürek et al.
(2022); Mahankali et al. (2023); Zhang et al. (2023c); Ahn et al. (2024a); Wu et al.
(2024c), and may not focus on the robustness analysis or explain the different
behaviors. In this work, (1) we extend the linear model linear data analysis to
the non-linear model and non-linear data setting, i.e., two-layer multiple-head
transformers leaning ICL on sparse parity classification and (2) we have a rigor-
ous behavior difference analysis under two settings, which explains the empirical

72

observations and provides more insights into the effect of attention mechanism in
ICL.

5.2 Related Work
Large language model. Transformer-based Vaswani et al. (2017) neural networks
have rapidly emerged as the primary machine learning architecture for tasks in
natural language processing. Pretrained transformers with billions of parameters
on broad and varied datasets are called large language models (LLM) or foundation
models Bommasani et al. (2021), e.g., BERT Devlin et al. (2019), PaLM Chowdhery
et al. (2022), LlamaTouvron et al. (2023a), ChatGPT (OpenAI, 2022), GPT4 (Achiam
et al., 2023) and so on. LLM has shown powerful general intelligence Bubeck et al.
(2023) in various downstream tasks. To better use the LLM for a specific down-
stream task, there are many adaptation methods, such as adaptor Hu et al. (2022);
Zhang et al. (2023b); Gao et al. (2023); Shi et al. (2023b), calibration Zhao et al.
(2021); Zhou et al. (2023a), multitask finetuning Gao et al. (2021a); Xu et al. (2023);
Von Oswald et al. (2023); Xu et al. (2024f), prompt tuning Gao et al. (2021a); Lester
et al. (2021), instruction tuning Li and Liang (2021); Chung et al. (2022); Mishra et al.
(2022), symbol tuning Wei et al. (2023a), black-box tuning Sun et al. (2022), chain-
of-thoughts Wei et al. (2022d); Yao et al. (2023); Zheng et al. (2024), scratchpad Nye
et al. (2021), reinforcement learning from human feedback (RLHF) Ouyang et al.
(2022) and many so on.

In-context learning. One important emergent ability Wei et al. (2022c) from
LLM is in-context learning (ICL) Brown et al. (2020). Specifically, when presented
with a brief series of input-output pairings (known as a prompt) related to a certain
task, they can generate predictions for test scenarios without necessitating any
adjustments to the model’s parameters. ICL is widely used in broad scenarios, e.g.,
reasoning Zhou et al. (2022), negotiation Fu et al. (2023), self-correction Pourreza
and Rafiei (2023), machine translation Agrawal et al. (2022) and so on. Many
works trying to improve the ICL and zero-shot ability of LLM Min et al. (2021);
Wang et al. (2022); Wei et al. (2022a); Iyer et al. (2022). There is a line of insightful

73

works to study the mechanism of transformer learning Geva et al. (2021); Xie et al.
(2022); Garg et al. (2022); Jelassi et al. (2022); Arora and Goyal (2023); Li et al.
(2023b,f); Allen-Zhu and Li (2023); Luo et al. (2023); Tian et al. (2023a,b); Zhou et al.
(2023b); Bietti et al. (2023); Xu et al. (2024e); Li et al. (2024a); Liang et al. (2024a,g,h)
and in-context learning Dai et al. (2022); Mahankali et al. (2023); Raventos et al.
(2023); Bai et al. (2024a); Ahn et al. (2024a); Von Oswald et al. (2023); Pan et al.
(2023); Li et al. (2023f,d,e); Akyürek et al. (2022); Zhang et al. (2023a,c); Hu et al.
(2024a); Cheng et al. (2023); Wibisono and Wang (2023); Wu et al. (2024c); Guo
et al. (2024); Reddy (2024) empirically and theoretically. On the basis of these
works, our analysis takes a step forward to show the ICL behavior difference under
different scales of language models.

5.3 Preliminary
Notations. We denote [n] := {1, 2, . . . ,n}. For a positive semidefinite matrix A, we
denote ∥x∥2

A := x⊤Ax as the norm induced by a positive definite matrix A. We
denote ∥ · ∥F as the Frobenius norm. diag() function will map a vector to a diagonal
matrix or map a matrix to a vector with its diagonal terms.

In-context learning. We follow the setup and notation of the problem in Zhang
et al. (2023c); Mahankali et al. (2023); Ahn et al. (2024a); Hu et al. (2024a); Wu
et al. (2024c). In the pretraining stage of ICL, the model is pretrained on prompts.
A prompt from a task τ is formed by N examples (xτ,1,yτ,1), . . . , (xτ,N,yτ,N) and
a query token xτ,q for prediction, where for any i ∈ [N] we have yτ,i ∈ R and
xτ,i, xτ,q ∈ Rd. The embedding matrix Eτ, the label vector yτ, and the input matrix
Xτ are defined as:

Eτ :=
(

xτ,1 xτ,2 . . . xτ,N xτ,q

yτ,1 yτ,2 . . . yτ,N 0

)
∈ R(d+1)×(N+1),

yτ :=[yτ,1, . . . ,yτ,N]
⊤ ∈ RN, yτ,q ∈ R,

Xτ :=[xτ,1, . . . , xτ,N]
⊤ ∈ RN×d, xτ,q ∈ Rd.

74

Given prompts represented as Eτ’s and the corresponding true labels yτ,q’s, the
pretraining aims to find a model whose output on Eτmatchesyτ,q. After pretraining,
the evaluation stage applies the model to a new test prompt (potentially from a
different task) and compares the model output to the true label on the query token.

Note that our pretraining stage is also called learning to learn in-context Min
et al. (2021) or in-context training warmup Dong et al. (2022) in existing work.
Learning to learn in-context is the first step to understanding the mechanism of
ICL in LLM following previous works Raventos et al. (2023); Zhou et al. (2023b);
Zhang et al. (2023c); Mahankali et al. (2023); Ahn et al. (2024a); Hu et al. (2024a);
Li et al. (2023f); Wu et al. (2024c).

Linear self-attention networks. The linear self-attention network has been
widely studied Schlag et al. (2021); Von Oswald et al. (2023); Akyürek et al. (2022);
Ahn et al. (2024a); Zhang et al. (2023c); Mahankali et al. (2023); Wu et al. (2024c);
Ahn et al. (2024b), and will be used as the learning model or a component of the
model in our two theoretical settings. It is defined as:

fLSA,θ(E) = [E + WPVE · E⊤WKQE
ρ

], (5.1)

where θ = (WPV , WKQ), E ∈ R(d+1)×(N+1) is the embedding matrix of the input
prompt, and ρ is a normalization factor set to be the length of examples, i.e., ρ = N

during pretraining. Similar to existing work, for simplicity, we have merged the
projection and value matrices into WPV , and merged the key and query matrices
into WKQ, and have a residual connection in our LSA network. The prediction of the
network for the query token xτ,q will be the bottom right entry of the matrix output,
i.e., the entry at location (d+ 1), (N+ 1), while other entries are not relevant to our
study and thus are ignored. So only part of the model parameters are relevant. To
see this, let us denote

WPV =

(
WPV

11 wPV
12

(wPV
21)⊤ wPV22

)
∈ R(d+1)×(d+1),

75

WKQ =

(
WKQ

11 wKQ
12

(wKQ
21)⊤ wKQ22

)
∈ R(d+1)×(d+1),

where WPV
11 , WKQ

11 ∈ Rd×d; wPV
12 , wPV

21 , wKQ
12 , wKQ

21 ∈ Rd; and wPV22 ,wKQ22 ∈ R. Then
the prediction is:

ŷτ,q =fLSA,θ(E)(d+1),(N+1) (5.2)

=

(
(wPV

21)⊤ wPV22

)
(EE⊤

ρ)

(
WKQ

11

(wKQ21)⊤

)
xτ,q.

5.4 Linear Regression
In this section, we consider the linear regression task for in-context learning which
is widely studied empirically Garg et al. (2022); Raventos et al. (2023); Von Oswald
et al. (2023); Akyürek et al. (2022); Bai et al. (2024a) and theoretically Mahankali
et al. (2023); Zhang et al. (2023c); Ahn et al. (2024a); Li et al. (2023d); Hu et al.
(2024a); Wu et al. (2024c).

Data and task. For each task τ, we assume for any i ∈ [N] tokens xτ,i, xτ,q
i.i.d.
∼

N(0,Λ), where Λ is the covariance matrix. We also assume a d-dimension task
weight wτ

i.i.d.
∼ N(0, Id×d) and the labels are given by yτ,i = ⟨wτ, xτ,i⟩ and yτ,q =

⟨wτ, xτ,q⟩.
Model and loss. We study a one-layer single-head linear self-attention trans-

former (LSA) defined in Equation (5.1) and we use ŷτ,q := fLSA,θ(E)(d+1),(N+1) as
the prediction. We consider the mean square error (MSE) loss so that the empirical
risk over B independent prompts is defined as

L̂(fθ) :=
1

2B

B∑
τ=1

(ŷτ,q − ⟨wτ, xτ,q⟩)2.

Measure model scale by rank. We first introduce a lemma from previous work

76

that simplifies the MSE and justifies our measurement of the model scale. For
notation simplicity, we denote U = WKQ

11 ,u = wPV22 .

Lemma 5.1 (Lemma A.1 in Zhang et al. (2023c)). Let Γ := (1+ 1
N
)Λ+ 1

N
tr(Λ)Id×d ∈

Rd×d. Let

L(fLSA,θ) = lim
Barrow∞ L̂(fLSA,θ)

=
1
2Ewτ,xτ,1,...,xτ,N,xτ,q[(ŷτ,q − ⟨wτ, xτ,q⟩)2],

ℓ̃(U,u) = tr[12u
2ΓΛUΛU⊤ − uΛ2U⊤],

we have L(fLSA,θ) = ℓ̃(U,u) + C, where C is a constant independent with θ.

Theorem 5.1 tells us that the loss only depends on uU. If we consider non-zero
u, w.l.o.g, letting u = 1, then we can see that the loss only depends on U ∈ Rd×d,

L(fLSA,θ) = tr[12ΓΛUΛU⊤ −Λ2U⊤].

Note that U = WKQ
11 , then it is natural to measure the size of the model by rank

of U. Recall that we merge the key matrix and the query matrix in attention
together, i.e., WKQ = (WK)⊤WQ. Thus, a low-rank U is equivalent to the constraint
WK, WQ ∈ Rr×d where r ≪ d. The low-rank key and query matrix are practical
and have been widely studied Hu et al. (2022); Chen et al. (2021); Bhojanapalli
et al. (2020); Fan et al. (2021); Dass et al. (2023); Shi et al. (2023c). Therefore, we
use r = rank(U) to measure the scale of the model, i.e., larger r representing larger
models. To study the behavior difference under different model scale, we will
analyze U under different rank constraints.

5.4.1 Low Rank Optimal Solution

Since the token covariance matrix Λ is positive semidefinite symmetric, we have
eigendecomposition Λ = QDQ⊤, where Q is an orthonormal matrix containing

77

eigenvectors of Λ and D is a sorted diagonal matrix with non-negative entries
containing eigenvalues of Λ, denoting as D = diag([λ1, . . . , λd]), where λ1 ⩾ · · · ⩾
λd ⩾ 0. Then, we have the following theorem.

Theorem 5.4.1 (Optimal rank-r solution for regression). Recall the loss function ℓ̃ in
Theorem 5.1. Let

U∗,u∗ = arg min
U∈Rd×d,rank(U)⩽r,u∈R

ℓ̃(U,u).

Then U∗ = cQV∗Q⊤,u = 1
c

, where c is any nonzero constant, and V∗ = diag([v∗1 , . . . , v∗d])
satisfies for any i ⩽ r, v∗i = N

(N+1)λi+tr(D)
and for any i > r, v∗i = 0.

Proof sketch of Theorem 5.4.1. We defer the full proof to Section D.2.1. The proof idea
is that we can decompose the loss function into different ranks, so we can keep the
direction by their sorted “variance”, i.e.,

arg min
U∈Rd×d,rank(U)⩽r,u∈R

ℓ̃(U,u) =
d∑
i=1

Tiλ
2
i(v

∗
i −

1
Ti
)2,

where Ti = (1 + 1
N
)λi +

tr(D)
N

. We have that v∗i ⩾ 0 for any i ∈ [d] and if v∗i > 0, we
have v∗i = 1

Ti
. Denote g(x) = x2(1

(1+ 1
N)x+

tr(D)
N

). We get the conclusion by g(x) is an
increasing function on [0,∞).

Theorem 5.4.1 gives the closed-form optimal rank-r solution of one-layer single-
head linear self-attention transformer learning linear regression ICL tasks. Let
fLSA,θ denote the optimal rank-r solution corresponding to the U∗,u∗ above. In
detail, the optimal rank-r solution fLSA,θ satisfies

W∗PV =

(
0d×d 0d
0⊤
d u

)
, W∗KQ =

(
U∗ 0d
0⊤
d 0

)
. (5.3)

What hidden features does the model pay attention to? Theorem 5.4.1 shows
that the optimal rank-r solution indeed is the truncated version of the optimal
full-rank solution, keeping only the most important feature directions (i.e., the

78

first r eigenvectors of the token covariance matrix). In detail, (1) for the optimal
full-rank solution, we have for any i ∈ [d], v∗i = N

(N+1)λi+tr(D)
; (2) for the optimal

rank-r solution, we have for any i ⩽ r, v∗i = N
(N+1)λi+tr(D)

and for any i > r, v∗i = 0.
That is, the small rank-rmodel keeps only the first r eigenvectors (viewed as hidden
feature directions) and does not cover the others, while larger ranks cover more
hidden features, and the large full rank model covers all features.

Recall that the prediction depends on U∗xτ,q = cQV∗Q⊤xτ,q; see Equation (5.2)
and (5.3). So the optimal rank-r model only uses the components on the first r
eigenvector directions to do the prediction in evaluations. When there is noise
distributed in all directions, a smaller model can ignore noise and signals along
less important directions but still keep the most important directions. Then it can
be less sensitive to the noise, as empirically observed. This insight is formalized in
the next subsection.

5.4.2 Behavior Difference

We now formalize our insight into the behavior difference based on our analysis
on the optimal solutions. We consider the evaluation prompt to haveM examples
(may not be equal to the number of examples N during pretraining for a general
evaluation setting), and assume noise in labels to facilitate the study of the behavior
difference (our results can be applied to the noiseless case by considering noise
level σ = 0). Formally, the evaluation prompt is:

Ê :=

(
x1 x2 . . . xM xq
y1 y2 . . . yM 0

)
∈ R(d+1)×(M+1)

=

(
x1 . . . xM xq

⟨w, x1⟩+ ϵ1 . . . ⟨w, xM⟩+ ϵM 0

)
,

where w is the weight for the evaluation task, and for any i ∈ [M], the label noise
ϵi

i.i.d.
∼ N(0,σ2).
Recall Q are eigenvectors of Λ, i.e., Λ = QDQ⊤ and D = diag([λ1, . . . , λd]). In

79

practice, we can view the large variance part of x (top r directions in Q) as a useful
signal (like words “positive”, “negative”), and the small variance part (bottom d−r

directions in Q) as the less important or useless information (like words “even”,
“just”).

Based on such intuition, we can decompose the evaluation task weight w ac-
cordingly: w = Q(s + ξ), where the r-dim truncated vector s ∈ Rd has si = 0
for any r < i ⩽ d, and the residual vector ξ ∈ Rd has ξi = 0 for any 1 ⩽ i ⩽ r.
The following theorem (proved in Section D.2.2) quantifies the evaluation loss at
different model scales rwhich can explain the scale’s effect.

Theorem 5.4.2 (Behavior difference for regression). Let w = Q(s + ξ) ∈ Rd where
s, ξ ∈ Rd are truncated and residual vectors defined above. The optimal rank-r solution
fLSA,θ in Theorem 5.4.1 satisfies:

L(fLSA,θ; Ê)

:=Ex1,ϵ1,...,xM,ϵM,xq(fLSA,θ(Ê) − ⟨w, xq⟩)2

=
1
M
∥s∥2

(V∗)2D3 +
1
M

(∥s + ξ∥2
D + σ2) tr((V∗)2D2)

+ ∥ξ∥2
D +

∑
i∈[r]

s2
iλi(λiv

∗
i − 1)2.

Implications. If N is large enough with Nλr ≫ tr(D) (which is practical as we
usually pretrain networks on long text), then

L(fLSA,θ; Ê)≈∥ξ∥2
D +

1
M

((r+ 1)∥s∥2
D + r∥ξ∥2

D + rσ2).

The first term ∥ξ∥2
D is due to the residual features not covered by the network,

so it decreases for larger r and becomes 0 for full-rank r = d. The second term
1
M
(·) is significant since we typically have limited examples in evaluation, e.g.,

M = 16≪ N. Within it, (r+ 1)∥s∥2
D corresponds to the first r directions, and rσ2

corresponds to the label noise. These increase for larger r. So there is a trade-off
between the two error terms when scaling up the model: for larger r the first term

80

decreases while the second term increases. This depends on whether more signals
are covered or more noise is kept when increasing the rank r.

To further illustrate the insights, we consider the special case when the model
already covers all useful signals in the evaluation task: w = Qs, i.e., the label
only depends on the top r features (like “positive”, “negative” tokens). Our above
analysis implies that a larger model will cover more useless features and keep more
noise, and thus will have worse performance. This is formalized in the following
theorem (proved in Section D.2.2).

Theorem 5.4.3 (Behavior difference for regression, special case). Let 0 ⩽ r ⩽ r ′ ⩽ d

and w = Qs where s is r-dim truncated vector. Denote the optimal rank-r solution as f1

and the optimal rank-r ′ solution as f2. Then,

L(f2; Ê) − L(f1; Ê)

=
1
M

(∥s∥2
D + σ2)(

r ′∑
i=r+1

(
Nλi

(N+ 1)λi + tr(D)
)2).

Implications. By Theorem 5.4.3, in this case,

L(f2; Ê) − L(f1; Ê) ≈ r
′ − r

M
∥s∥2

D︸ ︷︷ ︸
input noise

+
r ′ − r

M
σ2︸ ︷︷ ︸

label noise

.

We can decompose the above equation to input noise and label noise, and we know
that ∥s∥2

D + σ2 only depends on the intrinsic property of evaluation data and is
independent of the model size. When we have a larger model (larger r ′), we will
have a larger evaluation loss gap between the large and small models. It means
larger language models may be easily affected by the label noise and input noise
and may have worse in-context learning ability, while smaller models may be more
robust to these noises as they only emphasize important signals. Moreover, if
we increase the label noise scale σ2 on purpose, the larger models will be more
sensitive to the injected label noise. This is consistent with the observation in Wei
et al. (2023b); Shi et al. (2023a) and our experimental results in Section 5.6.

81

5.5 Sparse Parity Classification
We further consider a more sophisticated setting with nonlinear data which neces-
sitates nonlinear models. Viewing sentences as generated from various kinds of
thoughts and knowledge that can be represented as vectors in some hidden feature
space, we consider the classic data model of dictionary learning or sparse coding,
which has been widely used for text and images Olshausen and Field (1997); Vinje
and Gallant (2000); Blei et al. (2003). Furthermore, beyond linear separability, we
assume the labels are given by the (d, 2)-sparse parity on the hidden feature vector,
which is the high-dimensional generalization of the classic XOR problem. Parities
are a canonical family of highly non-linear learning problems and recently have
been used in many recent studies on neural network learning Daniely and Malach
(2020); Barak et al. (2022); Shi et al. (2022c, 2023d).

Data and task. Let X = Rd be the input space, and Y = {±1} be the label
space. Suppose G ∈ Rd×d is an unknown dictionary with d columns that can be
regarded as features; for simplicity, assume G is orthonormal. Let ϕ ∈ {±1}d be a
hidden vector that indicates the presence of each feature. The data are generated
as follows: for each task τ, generate two task indices tτ = (iτ, jτ) which determines
a distribution Tτ; then for this task, draw examples by ϕ ∼ Tτ, and setting x = Gϕ
(i.e., dictionary learning data), y = ϕiτϕjτ (i.e., XOR labels).

We now specify how to generate tτ and ϕ. As some of the hidden features are
more important than others, we let A = [k] denote a subset of size k corresponding
to the important features. We denote the important task set as S1 := A×A \ {(l, l) :
l ∈ A} and less important task set as S2 := [d]× [d] \ ({(l, l) : l ∈ [d]} ∪ S1). Then tτ
is drawn uniformly from S1 with probability 1 − pT, and uniformly from S2 with
probability pT, where pT ∈ [0, 1

2) is the less-important task rate. For the distribution
ofϕ, we assumeϕ[d]\{iτ,jτ} is drawn uniformly from {±1}d−2, and assumeϕ{iτ,jτ} has
good correlation (measured by a parameter γ ∈ (0, 1

4)) with the label to facilitate
learning. Independently, we have

Pr[(ϕiτ ,ϕjτ) = (1, 1)] = 1/4 + γ,

82

Pr[(ϕiτ ,ϕjτ) = (1,−1)] = 1/4,

Pr[(ϕiτ ,ϕjτ) = (−1, 1)] = 1/4,

Pr[(ϕiτ ,ϕjτ) = (−1,−1)] = 1/4 − γ.

Note that without correlation (γ = 0), it is well-known sparse parities will be hard
to learn, so we consider γ > 0.

Model. Following Wu et al. (2024c), we consider the reduced linear self-
attention fLSA,θ(X, y, xq) = y⊤X

N
WKQxq (which is a reduced version of Equation (5.1)),

and also denote WKQ as W for simplicity. It is used as the neuron in our two-layer
multiple-head transformers:

g(X, y, xq) =
∑
i∈[m]

aiσ[
y⊤X
N

W(i)xq],

where σ is ReLU activation, a = [a1, . . . , am]⊤ ∈ [−1, 1]m, W(i) ∈ Rd×d and m is the
number of attention heads. Denote its parameters as θ = (a, W(1), . . . , W(m)).

This model is more complicated as it uses non-linear activation, and also has
two layers with multiple heads.

Measure model scale by head number. We use the attention head numberm
to measure the model scale, as a largermmeans the transformer can learn more
attention patterns. We consider hinge loss ℓ(z) = max(0, 1 − z), and the population
loss with weight-decay regularization:

Lλ(g) =E[ℓ(yq · g(X, y, xq))] + λ(
∑
i∈[m]

∥W(i)∥2
F).

Suppose Narrow∞ and let the optimal solution of Lλ(g) be

g∗ = arg min
g

lim
λarrow0+

Lλ(g).

83

5.5.1 Optimal Solution

We first introduce some notations to describe the optimal. Let bin(·) be the integer
to binary function, e.g., bin(6) = 110. Let digit(z, i) denote the digit at the i-th
position (from right to left) of z, e.g., digit(01000, 4) = 1. We are now ready to
characterize the optimal solution (proved in Section D.3.1).

Theorem 5.5.1 (Optimal solution for parity). Consider k = 2ν1 ,d = 2ν2 , and let g∗1
and g∗2 denote the optimal solutions form = 2(ν1 + 1) andm = 2(ν2 + 1), respectively.

When 0 < pT <
1
4−γ

d(d−1)
2 (1

4+γ)+
1
4−γ

, g∗1 neurons are a subset of g∗2 neurons. Specifically,
for any i ∈ [2(ν2 + 1)], let V∗,(i) be diagonal matrix and

• For any i ∈ [ν2] and iτ ∈ [d], let a∗
i = −1 and V∗,(i)

iτ,iτ = (2 digit(bin(iτ − 1), i) −
1)/(4γ).

• For i = ν2 + 1 and any iτ ∈ [d], let a∗
i = +1 and V∗,(i)

iτ,iτ = −νj/(4γ) for g∗j .

• For i ∈ [2(ν2 + 1)] \ [ν2 + 1], let a∗
i = a∗

i−ν2−1 and V∗,(i) = −V∗,(i−ν2−1).

Let W∗,(i) = GV∗,(i)G⊤. Up to permutations, g∗2 has neurons (a∗, W∗,(1), . . . , W∗,(m))

and g∗1 has the {1, . . . ,ν1,ν2 + 1,ν2 + 2 . . . ,ν2 + ν1 + 1, 2ν2 + 2}-th neurons of g∗2 .

Proof sketch of Theorem 5.5.1. The proof is challenging as the non-linear model and
non-linear data. We defer the full proof to Section D.3.1. The high-level intuition
is transferring the optimal solution to patterns covering problems. For small pT,
the model will “prefer” to cover all patterns in S1 first. When the model becomes
larger, by checking the sufficient and necessary conditions, it will continually learn
to cover non-important features. Thus, the smaller model will mainly focus on
important features, while the larger model will focus on all features.

Example for Theorem 5.5.1. When ν2 = 3, the optimal has a1 = a2 = a3 = −1,
a4 = +1 and,

V(1) = 1/4γ · diag([−1,+1,−1,+1,−1,+1,−1,+1])

84

V(2) = 1/4γ · diag([−1,−1,+1,+1,−1,−1,+1,+1])

V(3) = 1/4γ · diag([−1,−1,−1,−1,+1,+1,+1,+1])

V(4) = 3/4γ · diag([−1,−1,−1,−1,−1,−1,−1,−1])

and V(i+4) = −V(i), ai+4 = ai for i ∈ [4].
On the other hand, the optimal g∗1 for ν1 = 1 has the {1, 4, 5, 8}-th neurons of g∗2 .
By carefully checking, we can see that the neurons in g∗1 (i.e., the {1, 4, 5, 8}-th

neurons of g∗2) are used for parity classification task from S1, i.e, label determined
by the first k = 2ν1 = 2 dimensions. With the other neurons (i.e., the {2, 3, 6, 7}-th
neurons of g∗2), g∗2 can further do parity classification on the task from S2, label
determined by any two dimensions other than the first two dimensions.

What hidden features does the model pay attention to? Theorem 5.5.1 gives
the closed-form optimal solution of two-layer multiple-head transformers learning
sparse-parity ICL tasks. It shows the optimal solution of the smaller model indeed
is a sub-model of the larger optimal model. In detail, the smaller model will mainly
learn all important features, while the larger model will learn more features. This
again shows a trade-off when increasing the model scale: larger models can learn
more hidden features which can be beneficial if these features are relevant to the
label, but also potentially keep more noise which is harmful.

5.5.2 Behavior Difference

Similar to Theorem 5.4.3, to illustrate our insights, we will consider a setting where
the smaller model learns useful features for the evaluation task while the larger
model covers extra features. That is, for evaluation, we uniformly draw a task
tτ = (iτ, jτ) from S1, and then drawM samples to form the evaluation prompt in the
same way as during pretraining. To present our theorem (proved in Section D.3.2
using Theorem 5.5.1), we introduce some notations. Let

D1 =
[

diag(V∗,(1)), . . . , diag(V∗,(ν1)), diag(V∗,(ν2+1)),

. . . , diag(V∗,(ν2+ν1+1)), diag(V∗,(2ν2+2))
]
∈ Rd×2(ν1+1)

85

0.0
20.0
40.0
60.0
80.0

100.0
Ac

cu
ra

cy
(%

) glue-rte

0.0
20.0
40.0
60.0
80.0

100.0 glue-sst2

0.0
20.0
40.0
60.0
80.0

100.0 glue-qqp

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0

Ac
cu

ra
cy

(%
) glue-wnli

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0 subj

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0 Average
open_llama-2-3b
llama-2-7b-chat
llama-2-13b-chat
llama-2-70b-chat
Random

Figure 5.1: Larger models are easier to be affected by noise (flipped labels) and
override pretrained biases than smaller models for different datasets and model
families (chat/with instruct turning). Accuracy is calculated over 1000 evaluation
prompts per dataset and over 5 runs with different random seeds for each evaluation,
usingM = 16 in-context exemplars.

0.0
20.0
40.0
60.0
80.0

100.0

Ac
cu

ra
cy

(%
)

glue-rte

0.0
20.0
40.0
60.0
80.0

100.0 glue-sst2

0.0
20.0
40.0
60.0
80.0

100.0 glue-qqp

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0

Ac
cu

ra
cy

(%
)

glue-wnli

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0 subj

0 25 50 75 100
% flipped_labels

0.0
20.0
40.0
60.0
80.0

100.0 Average
open_llama-2-3b
llama-2-7b
llama-2-13b
llama-2-70b
Random

Figure 5.2: Larger models are easier to be affected by noise (flipped labels) and
override pretrained biases than smaller models for different datasets and model
families (original/without instruct turning). Accuracy is calculated over 1000
evaluation prompts per dataset and over 5 runs with different random seeds for
each evaluation, usingM = 16 in-context exemplars.

D2 = [diag(V∗,(1)), . . . , diag(V∗,(2ν2+2))] ∈ Rd×2(ν2+1),

86

0 20 40 60 80 1000.0

0.2

0.4

0.6
La

be
l-i

np
ut

 a
tte

nt
io

n
Correct + Relevant

0 20 40 60 80 1000.0

0.2

0.4

0.6
Correct + Irrelevant

0 20 40 60 80 100
Indices of the prompts

0.0

0.2

0.4

0.6

La
be

l-i
np

ut
 a

tte
nt

io
n

Wrong + Relevant

0 20 40 60 80 100
Indices of the prompts

0.0

0.2

0.4

0.6
Wrong + Irrelevant

models
Llama-2-13b-hf
Llama-2-70b-hf

Figure 5.3: The magnitude of attention between the labels and input sentences in
Llama 2-13b and 70b on 100 evaluation prompts; see the main text for the details.
x-axis: indices of the prompts. y-axis: the norm of the last row of attention maps in
the final layer. Correct: original label; wrong: flipped label; relevant: original input
sentence; irrelevant: irrelevant sentence from other datasets. The results show that
larger models focus on both sentences, while smaller models only focus on relevant
sentences.

where for any i ∈ [2(ν2 + 1)], V∗,(i) is defined in Theorem 5.5.1. Let ϕ̂τ,q ∈ Rd

satisfy ϕ̂τ,q,iτ = ϕτ,q,iτ , ϕ̂τ,q,jτ = ϕτ,q,jτ and all other entries being zero. For a
matrix Z and a vector v, let PZ denote the projection of v to the space of Z, i.e.,
PZ(v) = Z(Z⊤Z)−1Z⊤v.

Theorem 5.5.2 (Behavior difference for parity). Assume the same condition as Theo-
rem 5.5.1. For j ∈ {1, 2}, Let θj denote the parameters of g∗j . For l ∈ [M], let ξl be uniformly
drawn from {±1}d, and Ξ =

∑
l∈[M] ξl

M
. Then, for any δ ∈ (0, 1), with probability at least

87

1 − δ over the randomness of test data, we have

g∗j (Xτ, yτ, xτ,q) = h(θj, 2γϕ̂τ,q + PDj(Ξ)) + ϵj

:=
∑
i∈[m]

a∗
iσ[diag(V∗,(i))⊤(2γϕ̂τ,q + PDj(Ξ))]+ϵj

where ϵj = O(
√
νj
M

log 1
δ
) and we have

• 2γϕ̂τ,q is the signal useful for prediction: 0 = ℓ(yq · h(θ1, 2γϕ̂τ,q)) = ℓ(yq ·
h(θ2, 2γϕ̂τ,q)).

• PD1(Ξ)) and PD2(Ξ)) is noise not related to labels, and E[∥PD1(Ξ))∥
2
2]

E[∥PD2(Ξ))∥
2
2]
= ν1+1
ν2+1 .

Implications. Theorem 5.5.2 shows that during evaluation, we can decompose
the input into two parts: signal and noise. Both the larger model and smaller model
can capture the signal part well. However, the smaller model has a much smaller
influence from noise than the larger model, i.e., the ratio is ν1+1

ν2+1 . The reason is that
smaller models emphasize important hidden features while larger ones cover more
hidden features, and thus, smaller models are more robust to noise while larger
ones are easily distracted, leading to different ICL behaviors. This again sheds light
on where transformers pay attention to and how that affects ICL.

Remark 5.2. Here, we provide a detailed intuition about Theorem 5.5.2. Ξ is the input
noise. When we only care about the noise part, we can rewrite the smaller model as
g1 = h(θ1,PD1(Ξ)), and the larger model as g2 = h(θ2,PD2(Ξ)), where they share the same
h function. Our conclusion says that E[∥PD1(Ξ)∥2

2]/E[∥PD2(Ξ)∥2
2] = (ν1 + 1)/(ν2 + 1),

which means the smaller model’s “effect” input noise is smaller than the larger model’s
“effect” input noise. Although their original input noise is the same, as the smaller model
only focuses on limited features, the smaller model will ignore part of the noise, and the

“effect” input noise is small. However, the larger model is the opposite.

88

5.6 Experiments
Brilliant recent work Wei et al. (2023b) runs intensive and thorough experiments
to show that larger language models do in-context learning differently. Following
their idea, we conduct similar experiments on binary classification datasets, which
is consistent with our problem setting in the parity case, to support our theory
statements.

Experimental setup. Following the experimental protocols in Wei et al. (2023b);
Min et al. (2022), we conduct experiments on five prevalent NLP tasks, leveraging
datasets from GLUE Wang et al. (2018) tasks and Subj Conneau and Kiela (2018).
Our experiments utilize various sizes of the Llama model families Touvron et al.
(2023a,b): 3B, 7B, 13B, 70B. We follow the prior work on in-context learning Wei
et al. (2023b) and useM = 16 in-context exemplars. We aim to assess the models’
ability to use inherent semantic biases from pretraining when facing in-context
examples. As part of this experiment, we introduce noise by inverting an escalating
percentage of in-context example labels. To illustrate, a 100% label inversion for
the SST-2 dataset implies that every “positive” exemplar is now labeled “negative”.
Note that while we manipulate the in-context example labels, the evaluation sample
labels remain consistent. We use the same templates as Min et al. (2021), a sample
evaluation for SST-2 whenM = 2:

sentence: show us a good time
The answer is positive.

sentence: as dumb and cheesy
The answer is negative.

sentence: it ’s a charming and often
affecting journey
The answer is

89

5.6.1 Behavior Difference

Figure 5.1 shows the result of model performance (chat/with instruct turning)
across all datasets with respect to the proportion of labels that are flipped. When
0% label flips, we observe that larger language models have better in-context abilities.
On the other hand, the performance decrease facing noise is more significant for
larger models. As the percentage of label alterations increases, which can be viewed
as increasing label noise σ2, the performance of small models remains flat and
seldom is worse than random guessing while large models are easily affected by
the noise, as predicted by our analysis. These results indicate that large models can
override their pretraining biases in-context input-label correlations, while small
models may not and are more robust to noise. This observation aligns with the
findings in Wei et al. (2023b) and our analysis.

We can see a similar or even stronger phenomenon in Figure 5.2: larger models
are more easily affected by noise (flipped labels) and override pretrained biases
than smaller models for the original/without instruct turning version (see the
“Average” sub-figure). On the one hand, we conclude that both large base models
and large chat models suffer from ICL robustness issues. On the other hand, this
is also consistent with recent work suggesting that instruction tuning will impair
LLM’s in-context learning capability.

5.6.2 Ablation Study

To further verify our analysis, we provide an ablation study. We concatenate an
irrelevant sentence from GSM-IC (Shi et al., 2023a) to an input-label pair sentence
from SST-2 in GLUE dataset. We use “correct” to denote the original label and
“wrong” to denote the flipped label. Then, we measure the magnitude of correlation
between label-input, by computing the norm of the last row of attention maps
across all heads in the final layer. We do this between “correct”/“wrong” labels
and the original/irrelevant inserted sentences. Figure 5.3 shows the results on
100 evaluation prompts; for example, the subfigure Correct+Relevant shows the
correlation magnitude between the “correct” label and the original input sentence

90

in each prompt. The results show that the small model Llama 2-13b mainly focuses
on the relevant part (original input) and may ignore the irrelevant sentence, while
the large model Llama 2-70b focuses on both sentences. This well aligns with our
analysis.

5.7 More Discussions about Noise
There are three kinds of noise covered in our analysis:

Pretraining noise. We can see it as toxic or harmful pretraining data on the
website (noisy training data). The model will learn these features and patterns. It
is covered by ξ in the linear regression case and S2 in the parity case.

Input noise during inference. We can see it as natural noise as the user’s wrong
spelling or biased sampling. It is a finite sampling error as x drawn from the
Gaussian distribution for the linear regression case and a finite sampling error as x
drawn from a uniform distribution for the parity case.

Label noise during inference. We can see it as adversarial examples, or mislead-
ing instructions, e.g., deliberately letting a model generate a wrong fact conclusion
or harmful solution, e.g., poison making. It is σ in the linear regression case and S2

in the parity case.
For pretraining noise, it will induce the model to learn noisy or harmful fea-

tures. During inference, for input noise and label noise, the larger model will pay
additional attention to these noisy or harmful features in the input and label pair,
i.e., y ·x, so that the input and label noise may cause a large perturbation in the final
results. If there is no pretraining noise, then the larger model will have as good
robustness as the smaller model. Also, if there is no input and label noise, the larger
model will have as good robustness as the smaller model. The robustness gap only
happens when both pretraining noise and inference noise exist simultaneously.

91

5.8 Conclusion
In this work, we answered our research question: why do larger language models do
in-context learning differently? Our theoretical study showed that smaller models
emphasize important hidden features while larger ones cover more hidden features,
and thus the former are more robust to noise while the latter are more easily
distracted, leading to different behaviors during in-context learning. Our empirical
results provided positive support for the theoretical analysis. Our findings can help
improve understanding of LLMs and ICL, and better training and application of
these models.

92

6 domain generalization via nuclear norm
regularization

Contribution statement. This chapter is joint work with Yifei Ming, Ying Fan,
Frederic Sala, and Yingyu Liang. The author Zhenmei Shi proposed the method,
contributed to part of the theoretical analysis, and completed all the experiments.
The results of this chapter have been published as a conference paper in CPAL
2024 (Shi et al., 2023c).

6.1 Introduction
Making machine learning models reliable under distributional shifts is crucial for
real-world applications such as autonomous driving, health risk prediction, and
medical imaging. This motivates the area of domain generalization, which aims to
obtain models that generalize to unseen domains, e.g., different image backgrounds
or different image styles, by learning from a limited set of training domains. To
improve model robustness under domain shifts, a plethora of algorithms have been
recently proposed Zhang et al. (2018); Bahng et al. (2020); Wang et al. (2020b);
Luo et al. (2020); Yao et al. (2022a). In particular, methods that learn invariant
feature representations (class-relevant patterns) or invariant predictors Arjovsky
et al. (2019) across domains demonstrate promising performance both empirically
and theoretically Ganin et al. (2016); Li et al. (2018c); Sun and Saenko (2016); Li
et al. (2018b).

Despite this, it remains challenging to improve on empirical risk minimization
(ERM) when evaluating a broad range of real-world datasets Gulrajani and Lopez-
Paz (2021); Koh et al. (2021). Notice that ERM is a reasonable baseline method since
it must use invariant features to achieve optimal in-distribution performance. It has
been empirically shown Rosenfeld et al. (2022) that ERM already learns “invariant"
features sufficient for domain generalization, which means these features are only
correlated with the class label, not domains or environments.

93

Although competitive in domain generalization tasks, the main issue ERM
faces is that the invariant features it learns can be arbitrarily mixed: environmental
features are hard to disentangle from invariant features. Various regularization
techniques that control empirical risks across domains have been proposed Arjovsky
et al. (2019); Krueger et al. (2021); Rosenfeld et al. (2021), but few directly regularize
ERM, motivating this work.

One desired property to improve ERM is disentangling the invariant features
from the mixtures. A natural way to achieve this is to identify the subset of solutions
from ERM with minimal information retrieved from training domains by control-
ling the rank. This avoids domain overfitting. We are interested in the following
question: can ERM benefit from rank regularization of the extracted feature for better
domain generalization performance?

To answer this question, we propose a simple yet effective algorithm, ERM-NU
(Empirical Risk Minimization with Nuclear Norm Regularization), for improving
domain generalization without acquiring domain annotations. Our method is
inspired by works in low-rank matrix completion and recovery with nuclear norm
minimization Candes and Romberg (2006); Candès et al. (2011); Chandrasekaran
et al. (2011); Candes and Recht (2012); Korlakai Vinayak et al. (2014); Gu et al.
(2014). Given latent feature representations from pre-trained models via ERM,
ERM-NU aims to extract class-related (domain-invariant) features by fine-tuning
the network with nuclear norm regularization. Specifically, we propose to minimize
the nuclear norm of the backbone features, which is a convex envelope to the rank
of the feature matrix Recht et al. (2010).

Our main contributions and findings are as follows:

• ERM-NU offers competitive empirical performance: We evaluate the per-
formance of ERM-NU on synthetic datasets and five benchmark real-world
datasets. Despite its simplicity, NU demonstrates strong performance and
improves on existing methods on some large-scale datasets such as TerraInc
and DomainNet.

• We provide theoretical guarantees when applying ERM-NU to domain gener-

94

collection

of features

...

inputs from
multiple domains

Image

Encoder

(a) Left: Causal graph inspired by Rosenfeld
et al. (2021). Shaded variables are observed.
Right: Training pipeline. We collect input
features from multiple domains.

(b) Left: ERM Solutions (green lines). Right:
ERM solution with the smallest nuclear norm
of extracted feature (zc only).

Figure 6.1: Causal graph of our data assumption (6.1a), and the effect of nuclear
norm regularization in ERM (6.1b) where we use a linear g for a simple illustration.
From Figure 6.1b, nuclear norm regularization can select a subset of ERM solutions
that extract the smallest possible information (in the sense of rank) from x for
classification, which can reduce the effect of environmental features for better
generalization performance while still preserving high classification accuracy.

alization tasks: We show that even training with infinite data from in-domain
(ID) tasks, ERM with weight decay may perform worse than random guessing
on out-of-domain (OOD) tasks, while ERM with bounded rank (correspond-
ing to ERM-NU) can guarantee 100% test accuracy on the out-of-domain
task.

• Nuclear norm regularization (NU) is simple, efficient and broadly applicable:
NU is computationally efficient as it does not require annotations from training
domains. As a regularization, NU is also potentially orthogonal to other
methods that are based on ERM: we get a consistent improvement of NU on
ERM, Mixup Yan et al. (2020) and SWAD Cha et al. (2021) as baselines.

6.2 Method
We first provide the problem setup and a brief background of the nuclear norm
and then introduce our method.

95

6.2.1 Preliminaries

We useX andY to denote the input and label space, respectively. Following Koh et al.
(2021); Yao et al. (2022a); Rosenfeld et al. (2021), we consider data distributions
consisting of environments (domains) E = {1, . . . ,E}. For a given environment e ∈ E

and label y ∈ Y, the data generation process is the following: latent environmental
features (e.g., image style or background information) ze and invariant features (e.g.,
windows pattern for house images) zc are sampled where invariant features only
depend on y, while environmental features depend on e and y (i.e., environmental
features and the label may have correlations), zc ⊥ ze. The input data is generated
from the latent features x = g(zc, ze) by some injective function g. See illustration
in Figure 6.1a. We assume that the training data is drawn from a mixture of Etr ⊂ E

domains and test data is drawn from some unseen domain in Ets ⊂ E. In the
domain shift setup, training domains are disjoint from test domains: Etr ∩ Ets = ∅.
In this work, as we do not require domain annotations for training data, we remove
notation involving E for simplicity and denote the training data distribution as Did

and the unseen domain test data distribution as Dood.
We consider population risk. Our objective is to learn a feature extactorΦ : X→

Rd that maps input data to a d-dimensional feature embedding (usually fine-tuned
from a pre-trained backbone, e.g. ResNet He et al. (2016) pre-trained on ImageNet)
and a classifier f̂ to minimize the risk on unseen environments,

L(f̂,Φ) := E(x,y)∼Dood

[
ℓ(f̂(Φ(x)),y)

]
, (6.1)

where the function ℓ can be any loss appropriate to classification, e.g., cross-entropy.
The nuclear norm Fan (1951) (trace norm) of a matrix is the sum of the singular

values of the matrix. Suppose a matrix M ∈ Rm×n, we have the nuclear norm

∥M∥∗ :=

min{m,n}∑
i

σi(M),

where σi(M) is the i-th largest singular value. From Recht et al. (2010), we know

96

that the nuclear norm is the tightest convex envelope of the rank function of a
matrix within the unit ball, i.e, the nuclear norm is smaller than the rank when the
operator norm (spectral norm) ∥M∥2 = σ1(M) ⩽ 1. As the matrix rank function is
highly non-convex, nuclear norm regularization is often used in optimization to
achieve a low-rank solution, as it has good convergence guarantees, while the rank
function does not.

6.2.2 Method description

Intuition. Intuitively, to guarantee low risk on Dood, Φ needs to rely only on
invariant features for prediction. It must not use environmental features in order to
avoid spurious correlations to ensure domain generalization. As environmental
features depend on the label y and the environment e in Figure 6.1a, our main
hypothesis is that environmental features have a lower correlation with the label than the
invariant features. If our hypothesis is true, we can eliminate environmental features
by constraining the rank of the learned representations from the training data while
minimizing the empirical risk, i.e., the invariant features will be preserved (due to
empirical risk minimization) and the environmental features will be removed (due
to rank minimization).

Objectives. We consider fine-tuning the backbone (feature extractor)Φwith a
linear prediction head. Denote the linear head as ∈ Rd×m, where m is the class
number. The goal of ERM is to minimize the expected risk

L(,Φ) := E(x,y)∼Din

[
ℓ(⊤Φ(x),y)

]
.

Consider the latent vectorΦ(x) ∈ Rd. This vector may contain both environment-
related and class-related features. In order to obtain just the class-related features,
we would like forΦ to extract as little information as possible while simultaneously
optimizing the ERM loss. See illustration in Figure 6.1b. Note that, we assume
that the correlation between environmental features and labels is lower than the
correlation between invariant features and labels. Let X be a batch of training data

97

points (batch size > d). To minimize information and so rule out environmental
features, we minimize the rank ofΦ(X). Our objective is

min
,Φ

L(,Φ) + λrank(Φ(X)). (6.2)

As the nuclear norm is a convex envelope to the rank of a matrix, our convex
relaxation objective is

min
,Φ

L(,Φ) + λ∥Φ(X)∥∗, (6.3)

where λ is the regularization weight.

Takeaways. We summarize the advantages of nuclear norm minimization as
follows:

• Simple and efficient: our method can be easily implemented. For example,
ERM-NU only needs two more lines of code than ERM, as shown below.

• Broadly applicable: without requiring domain labels, our method can be
used in conjunction with a broad range of existing domain generalization
algorithms.

• Empirically effective and theoretically sound: our method demonstrates
promising performance on synthetic and real-world tasks (Section 6.3) with
theoretical insights presented in Section 6.4.

1 def forward (self , x, y):
2 # calculate classification loss
3 feature = self. featurizer (x)
4 preds = self. classifier (feature)
5 loss = F. cross_entropy (preds , y)
6 # add nuclear norm regularization
7 _,s,_ = torch.svd(feature)
8 loss += self. lambda * torch.sum(s)
9 return loss

98

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x2

ERM ID Accuracy: 0.99

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0
ERM OOD Accuracy: 0.76

y = -1
y = 1

Figure 6.2: ID and OOD classification results with ERM on the synthetic dataset
with two classes (shown in yellow and navy blue). We visualize the decision
boundary. While the model achieves nearly perfect accuracy on ID training set, the
performance drastically degrades on the OOD test set.

1.0 0.5 0.0 0.5 1.0
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x2

ERM-NU ID Accuracy: 1.00

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0
ERM-NU OOD Accuracy: 0.94

y = -1
y = 1

Figure 6.3: ID and OOD classification results with ERM-NU on the synthetic dataset.
Nuclear norm regularization significantly reduces the OOD error rate.

6.3 Experiments
In this section, we start by presenting a synthetic task in Section 6.3.1 to help
visualize the effects of nuclear norm regularization. Next, in Section 6.3.2, we
demonstrate the effectiveness of our approach with real-world datasets. We pro-

99

Algorithm VLCS PACS OfficeHome TerraInc DomainNet Average
MMD† (CVPR 18) Li et al. (2018b) 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 58.8
Mixstyle‡ (ICLR 21) Zhou et al. (2021a) 77.9 ± 0.5 85.2 ± 0.3 60.4 ± 0.3 44.0 ± 0.7 34.0 ± 0.1 60.3
GroupDRO† (ICLR 19) Sagawa et al. (2019) 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 60.7
IRM† (ArXiv 20) Arjovsky et al. (2019) 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 61.6
ARM† (ArXiv 20) Zhang et al. (2020) 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 61.7
VREx† (ICML 21) Krueger et al. (2021) 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 61.9
CDANN† (ECCV 18) Li et al. (2018c) 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 62.0
AND-mask∗ (ICLR 20)Parascandolo et al. (2020) 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 62.0
DANN† (JMLR 16) Ganin et al. (2016) 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 62.6
RSC† (ECCV 20) Huang et al. (2020) 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 62.7
MTL† (JMLR 21) Blanchard et al. (2021) 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 62.9
Mixup† (ICLR 18) Zhang et al. (2018) 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 63.4
MLDG† (AAAI 18) Li et al. (2018a) 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 63.6
Fish (ICLR 22) Shi et al. (2022a) 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 63.9
Fishr∗ (ICML 22) Rame et al. (2022) 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 64.0
SagNet† (CVPR 21) Nam et al. (2021) 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 64.2
SelfReg (ICCV 21) Kim et al. (2021) 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 41.5 ± 0.2 64.2
CORAL† (ECCV 16) Sun and Saenko (2016) 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 64.5
SAM‡ (ICLR 21) Foret et al. (2021) 79.4 ± 0.1 85.8 ± 0.2 69.6 ± 0.1 43.3 ± 0.7 44.3 ± 0.0 64.5
mDSDI (NeurIPS 21) Bui et al. (2021) 79.0 ± 0.3 86.2 ± 0.2 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 65.1
MIRO (ECCV 22) Cha et al. (2022) 79.0 ± 0.0 85.4 ± 0.4 70.5 ± 0.4 50.4 ± 1.1 44.3 ± 0.2 65.9

ERM† Vapnik (1999) 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 63.3
ERM-NU (ours) 78.3 ± 0.3 85.6 ± 0.1 68.1 ± 0.1 49.6 ± 0.6 43.4 ± 0.1 65.0
SWAD‡ (NeurIPS 21) Cha et al. (2021) 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 71.3 ± 0.3 52.2 ± 0.3 47.1 ± 0.1 67.8

Table 6.1: OOD accuracy for five realistic domain generalization datasets. The
results marked by †, ‡, ∗ are the reported numbers from Gulrajani and Lopez-Paz
(2021), Cha et al. (2021), Rame et al. (2022) respectively. We highlight our methods
in bold. The results of Fish, SelfReg, mDSDI and MIRO are the reported ones
from each paper. Average accuracy and standard errors are reported from three
trials. Nuclear norm regularization is simple, effective, and broadly applicable.
It significantly improves the performance over ERM and a competitive baseline
SWAD across all datasets considered.

vide further discussions and ablation studies in Section 6.3.3. Code is available at
https://github.com/zhmeishi/DG-NU.

6.3.1 Synthetic tasks

To visualize the effects of nuclear norm regularization, we start with a synthetic
dataset with binary labels and two-dimensional inputs. Our expectation is that un-
regularized ERM will perform well for ID but struggle for OOD data, whereas nu-

100

clear norm-regularized ERM will excel in both settings. Assume inputs x = [x1, x2],
where x1 is the invariant feature and x2 is the environmental feature. Specifically,
x1 is drawn from a uniform distribution conditioned on y ∈ {−1, 1} for both ID
(training) and OOD (test) datasets:

x1 | y = 1 ∼ U[0, 1], x1 | y = −1 ∼ U[−1, 0]

The environmental feature x2 also follows a uniform distribution but is conditioned
on both y and a Bernoulli random variable b ∼ Ber(0.7). For ID data, x2 | y = 1 ∼

U[0, 1] with probability (w.p.) 0.7, while x2 | y = 1 ∼ U[−1, 0] w.p. 0.3. In contrast,
for OOD data, x2 | y = 1 ∼ U[−1, 0] w.p. 0.7, and x2 | y = 1 ∼ U[0, 1] w.p. 0.3. We
provide a more general setting in Section 6.4.

We visualize the ID and OOD datasets in Figure 6.2, where samples from y = −1
and y = 1 are shown in yellow and navy blue dots, respectively. We consider a
simple linear feature extractorΦ(x) = Ax with A ∈ R2×2. The models are trained
with ERM and ERM-NU objectives using gradient descent until convergence. The
results are shown in Figure 6.2 and Figure 6.3, respectively. To better illustrate
the effects of nuclear norm minimization, we show the decision boundary along
with the accuracy on ID and OOD datasets. For ID dataset, training with both
objective yield nearly perfect accuracy. For OOD dataset, the model trained with
ERM only achieves an accuracy of 0.76, as a result of utilizing the environmental
feature. In contrast, training with ERM-NU successfully mitigates the reliance on
environmental features and significantly improves the OOD accuracy to 0.94. In
Section 6.4, we further provide theoretical analysis to better understand the effects
of nuclear norm regularization.

6.3.2 Real-world tasks

In this section, we demonstrate the effects of nuclear norm regularization across
real-world datasets and compare with a broad range of algorithms.

101

Experimental setup. Nuclear norm regularization is simple, flexible, and can
be plugged into ERM-like algorithms. To verify its effectiveness, we consider
adding the regularizer over ERM and SWAD (dubbed as ERM-NU and SWAD-
NU, respectively). For a fair comparison with baseline methods, we evaluate our
algorithm on the DomainBed testbed Gulrajani and Lopez-Paz (2021), an open-
source benchmark that aims to rigorously compare different algorithms for domain
generalization. The testbed consists of a wide range of datasets for multi-domain
image classification tasks, including PACS Li et al. (2017) (4 domains, 7 classes, and
9,991 images), VLCS Fang et al. (2013) (4 domains, 5 classes, and 10,729 images),
Office-Home Venkateswara et al. (2017), Terra Incognita Beery et al. (2018) (4
domains, 10 classes, and 24,788 images), and DomainNet Peng et al. (2019) (6
domains, 345 classes, and 586,575 images). Following the evaluation protocol in
DomainBed, we report all performance scores by “leave-one-out cross-validation”,
where averaging over cases that use one domain as the test (OOD) domain and
all others as the training (ID) domains. For the model selection criterion, we use
the “training-domain validation set” strategy, which refers to choosing the model
maximizing the accuracy on the overall validation set, 20% of training domain
data. For each dataset and model, we report the test domain accuracy of the
best-selected model (average over three independent runs with different random
seeds). Following common practice, we use ResNet-50 He et al. (2016) as the
feature backbone. We use the output features of the penultimate layer of ResNet-50
(2048-dim) for nuclear norm regularization and fine-tune the whole model. The
default value of weight scale λ is set as 0.01 and distributions for random search as
10Uniform (−2.5,−1.5). The default batch size is 32 and the distribution for random search
is 2Uniform (5,6). During training, we perform batch-wise nuclear norm regularization,
similar to Arjovsky et al. (2019) which uses batch-wise statistics for invariant risk
minimization.

Nuclear norm regularization achieves strong performance across a wide range of
datasets. We present an overview of the OOD accuracy for DomainBed datasets
across various algorithms in Table 6.1. We observe that: (1) incorporating nuclear

102

norm regularization consistently improves the performance of ERM and SWAD
across all datasets considered. In particular, compared to ERM, ERM-NU yields
an average accuracy improvement of 1.7%. (2) SWAD-NU demonstrates highly
competitive performance relative to other baselines, including prior invariance-
learning approaches such as IRM, VREx, and DANN. Notably, the approach does
not require domain labels, which further underscores the versatility of nuclear
norm regularization for real-world datasets.

Nuclear norm regularization significantly improves baselines. Across a range
of realistic datasets, nuclear norm regularization enhances competitive baselines.
To examine whether NU is effective with baselines other than SWAD, in Figure 6.4,
we plot the average difference in accuracy with and without nuclear norm regular-
ization for ERM, Mixup, and SWAD. Detailed results for individual datasets can
be seen in Table 6.2. Encouragingly, adding nuclear norm regularization improves
the performance over all three baselines across the five datasets. In particular, the
average accuracy is improved by 3.5 with ERM-NU over ERM on Terra Incognita,
and 3.1 with Mixup-NU over Mixup on DomainNet. This further suggests the
effectiveness of nuclear norm regularization in learning invariant features. See full
results in Appendix E.2.

6.3.3 Ablations and discussions

Analyzing the regularization strength with stable rank. We aim to better un-
derstand the strength of nuclear norm regularization on OOD accuracy. Due to
the precision of floating point numbers and numerical perturbation, it is common
to use stable rank (numerical rank) to approximate the matrix rank in numerical
analysis. Suppose a matrix M ∈ Rm×n, the stable rank is defined as:

StableRank(M) :=
∥M∥2

F

∥M∥2
2

,

103

VLCS PACS OfficeHome Terra Incog. DomainNet
Dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
cc

 D
iff

+0.8

+0.1

+1.6

+3.5

+2.5

+0.1 +0.2

+0.5

+1.7

+3.1

+0.7

+0.4

+0.7

+2.2

+0.6

ERM-NU
Mixup-NU
SWAD-NU

Figure 6.4: Nuclear norm regularization enhances competitive baselines across a
range of realistic datasets, as demonstrated by the average difference in accuracy
with nuclear norm regularization for ERM, Mixup, and SWAD. Detailed results for
individual datasets can be seen in Table 6.2.

where ∥∥2 is the operator norm (spectral norm) and ∥∥F is the Frobenius norm. The
stable rank is analogous to the classical rank of a matrix but considerably more
well-behaved. For example, the stable rank is a continuous and Lipschitz function
while the rank function is discrete.

In Figure 6.5, we calculate the stable rank of the OOD data feature representation
of the ERM-NU model trained with different nuclear norm regularization weight λ
and we plot the OOD accuracy simultaneously. We have three observations. (1)
The stable rank will decrease when we have a stronger nuclear norm regularizer,
which is consistent with our method intuition. (2) As nuclear norm regularization
weight increases, the OOD accuracy will increase first and then decrease. In the
first stage, as we increase nuclear norm regularization weight, the environmental
features start to be ruled out and the OOD accuracy improves. In the second stage,
when nuclear norm regularization strength is large enough, some invariant features
will be ruled out, which will hurt the generalization. (3) Although the ResNet-50 is
a 2048-dim feature extractor, the stable rank of the OOD data feature representation
is pretty low, e.g, on average the stable rank is smaller than 100. On the other hand,

104

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.75

0.76

0.77

0.78

0.79

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

30

35

40

45

50

55

60

65

70

St
ab

le
 R

an
k

(a) VLCS

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.81

0.82

0.83

0.84

0.85

0.86

0.87

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

50

52

54

56

58

60

62

64

St
ab

le
 R

an
k

(b) PACS

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.65

0.66

0.67

0.68

0.69

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

60

70

80

90

100

110

120

St
ab

le
 R

an
k

(c) OfficeHome

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.44

0.46

0.48

0.50

0.52

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

35.0

37.5

40.0

42.5

45.0

47.5

50.0

St
ab

le
 R

an
k

(d) TerraIncognita

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.40

0.41

0.42

0.43

0.44

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

60

70

80

90

100

110

120

130

140

St
ab

le
 R

an
k

(e) DomainNet

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Nuclear Norm Regularization Strength

0.615

0.620

0.625

0.630

0.635

0.640

0.645

0.650

0.655

OO
D

Ac
cu

ra
cy

average accuracy on OOD tasks
average stable rank on OOD tasks

50

60

70

80

90

St
ab

le
 R

an
k

(f) Average

Figure 6.5: Stable rank and OOD accuracy of ERM-NU with varying nuclear norm
regularization weight λ (x-axis) on different datasets.

when the dataset becomes more “complicated”, the stable rank will increase. For
example, when λ = 0.0, the stable rank of DomainNet features (6 domains, 345
classes) is over 100, while the stable rank of VLCS (4 domains, 5 classes) features is

105

only around 50.

Exploring alternative regularizers. We use SWAD Cha et al. (2021) as a base-
line, which aims to find flat minima that suffers less from overfitting by a dense
and overfit-aware stochastic weight sampling strategy. We consider different reg-
ularizers with SWAD: CORAL Sun and Saenko (2016) tries to minimize domain
shift by aligning the second-order statistics of input data from training and test
domains. MIRO Cha et al. (2022), one of the SOTA regularization methods in
domain generalization, uses mutual information to reduce the distance between
the pre-training model and the fine-tuned model. The performance comparison is
shown in Table 6.3, where we observe that nuclear norm regularization consistently
achieves competitive performance compared to alternative regularizers.

6.4 Theoretical Analysis
Next, we present a simple but insightful theoretical result showing that, for a more
general setting defined in Section 6.3.1, the ERM-rank solution to the Equation equa-
tion 6.2 is much more robust than the ERM solution on OOD tasks.

Data distributions. Consider the binary classification setting. Let X be the input
space, and Y = {±1} be the label space. Let z̃ : X→ Rd be a feature pattern encoder
of the input data x, i.e., z̃(x) ∈ Rd. For any j ∈ [d], we assume the feature embedder
(defined in Section 6.2) Φ(x)j = wjz̃j(x) where wj is a scalar and z̃j is a specific
feature pattern encoder, i.e, z̃j(x) being the j-th dimension of z̃(x). Suppose x are
drawn from some distribution condition on label y, then we have z̃(x) drawn from
some distribution condition on label y. We denote z = z̃(x)y for simplicity. We
assume, for any j, j ′ ∈ [d], zj, zj ′ are independent when j ̸= j ′.

Let R ⊆ [d] be a subset of size r corresponding to the class-relevant patterns
(invariant features zc in Figure 6.1a) and U = [d] \ R be a subset of size d − r

corresponding to the spurious patterns (environmental features ze in Figure 6.1a).
For invariant features, we assume, for any j ∈ R, zj ∼ [0, 1] uniformly, so E[zj] = 1

2 .

106

Next, we define in-domain (ID) tasks and out-of-domain (OOD) tasks. We first
need to define Dγ where γ ∈ (− 1

2 , 1
2). A random variable z ∼ Dγ means, z ∼ [0, 1]

uniformly with probability 1
2 + γ and z ∼ [−1, 0] uniformly with probability 1

2 − γ,
so E[z] = γ. In ID tasks, for any environmental features j ∈ U, we assume that
zj ∼ Dγ, where γ ∈

(
3√
r
, 1

2

)
. We denote this distribution as Did. In OOD tasks, for

any j ∈ U, we assume that zj ∼ D−γ. We denote this distribution as Dood.

Explanation and intuition for our data distributions. There is an upper bound for
γ because the environmental features have a smaller correlation with the label than
the invariant features, e.g., when γ = 1

2 we cannot distinguish invariant features
and environmental features. We also have a lower bound for γ to distinguish the
environmental features and noise. When γ = 0, the ID task and the OOD task
will be identical (no distribution shift). We can somehow use γ to measure the
“distance" between the ID task and the OOD task. The intuition about the definition
of Did and Dood is that the environmental features may have different correlations
with labels in different tasks, while the invariant features keep the same correlations
with labels through different tasks.

Objectives. We simplify the fine-tuning process, setting = [1, 1, . . . , 1]⊤ and the
trainable parameter to be w (varying the impact of each feature). Thus, the network
output is fw(x) =

∑d
j=1 wjz̃j(x). We consider two objective functions. The first is

traditional ERM with weight decay (ℓ2 norm regularization). The ERM-ℓ2 objective
function is

min
w

Lλ(w) := L(w) +
λ

2∥w∥
2
2, (6.4)

where L(x,y)(w) = ℓ(yfw(x)) is the loss on an example (x,y) and ℓ(z) is the logistic
loss ℓ(z) = ln(1 + exp(−z)).

The second objective we consider is ERM with bounded rank. Note that for
a batch input data X with batch size > d, it is full rank with probability 1. Thus,
we say the total feature rank is ∥w∥0 ⩽ d (∥w∥0 indicates the number of nonzero

107

elements in w). Thus, the ERM-rank objective function is

min
w

L(w) subject to ∥w∥0 ⩽ Brank, (6.5)

where Brank is a rank upper bound. The ERM-rank objective function is equivalent
to Equation (6.2).

Theoretical results. First, we analyze the property of the optimal solution of
ERM-ℓ2 on the ID task. Following the idea from Lemma B.1 of Shi et al. (2023b),
we have the Lemma below.

Lemma 6.1. Consider the ID setting with ERM-ℓ2 objective function. Then the optimal
w∗ for ERM-ℓ2 objective function following conditions (1) for any j ∈ R, w∗

j =: α; (2) for
any j ∈ U, w∗

j := β; (3) 0 < β < α < 1√
r
, α
β
< 3

4γ .

In Lemma 6.1, we show that the ERM-ℓ2 objective will encode all features corre-
lated with labels, even when the correlation between spurious features and labels
is weak (e.g. γ = O

(
1/
√
r
)
). However, the optimal solution of the ERM-rank

objective will only encode the features which have a strong correlation with labels
(intrinsic features), shown in Lemma 6.2.

Lemma 6.2. Consider ID setting with ERM-rank objective function. Denote Rrank is
any subset of R with size |Rrank| = Brank, we have an optimal w∗ for ERM-rank objective
function following conditions (1) for any j ∈ Rrank, w∗

j > 0 and (2) for any j /∈ Rrank,
w∗
j = 0.

Based on the property of two optimal solutions, we can show the performance
gap between these two optimal solutions on the OOD task, considering the spurious
features may change their correlation to the labels in different tasks.

Proposition 6.3. Assume 1 ⩽ Brank ⩽ r, λ > Ω
(

√
r

exp
(√

r
5

)
)

,d > r
γ2 + r, r > C, where C

is some constant < 20. The optimal solution for the ERM-rank objective function on the ID
tasks has 100% OOD test accuracy, while the optimal solution for the ERM-ℓ2 objective

108

function on the ID tasks has OOD test accuracy at most exp
(
− r

10

)
× 100% (much worse

than random guessing).

Discussions. The assumption of λ and dmeans that the regularization strength
cannot be too small and the environmental features signal level should be compati-
ble with invariant features signal level. Then, Proposition 6.3 shows that even with
infinite data, the optimal solution for ERM-ℓ2 on the ID tasks cannot produce better
performance than random guessing on the OOD task. However, the optimal solu-
tion for ERM-rank on the ID tasks can still produce 100% test accuracy. The proof
idea is that, by using the gradient equal to zero and the properties of the logistic
loss, the ERM-ℓ2 objective will encode all features correlated with labels, even when
the correlation between spurious features and label is weak (e.g. γ = O

(
1/
√
r
)
).

Moreover, there is a positive correlation between the feature encoding strength and
the corresponding feature-label correlation (Lemma 6.1 (3)). Then, we can show
that the value of β is compatible with the value of α in Lemma 6.1. Thus, when
the OOD tasks have a different spurious feature distribution, the optimal solution
of ERM-ℓ2 objective may thoroughly fail, i.e., much worse than random guessing.
However, the optimal solution of the ERM-rank objective will only encode the
features which have a strong correlation with labels (intrinsic features). Thus, it
can guarantee 100% test accuracy on OOD tasks. See the full proof in Appendix E.1.

6.5 Related Works
Nuclear norm minimization. Nuclear norm is commonly used to approximate
the matrix rank Recht et al. (2010). Nuclear norm minimization has been widely
used in many areas where the solution is expected to have a low-rank structure.
It has been widely applied for low-rank matrix approximation, completion, and
recovery Candes and Romberg (2006); Candès et al. (2011); Chandrasekaran et al.
(2011); Candes and Recht (2012) with applications such as graph clustering Ko-
rlakai Vinayak et al. (2014); Demirel et al. (2022), community detection Li et al.
(2021), compressed sensing Dong et al. (2014), recommendations system Koren

109

et al. (2009) and robust Principal Component Analysis Lu et al. (2019). Nuclear
norm regularization can also be used in multi-task learning to learn shared repre-
sentations across multiple tasks, which can lead to improved generalization and
reduce overfitting Kumar and Daume III (2012). Nuclear norm has been used
in computer vision as well to solve problems such as image denoising Gu et al.
(2014) and image restoration Yair and Michaeli (2018). In this work, we focus on
utilizing nuclear norm-based regularization for domain generalization. We provide
extensive experiments on synthetic and realistic datasets and theoretical analysis
to better understand its effectiveness.
Contextual bias in computer vision. There has been rich literature studying the
classification performance in the presence of pre-defined contextual bias and spu-
rious correlations Torralba (2003); Beery et al. (2018); Barbu et al. (2019); Bahng
et al. (2020); Ming et al. (2022). The reliance on contextual bias such as image
backgrounds, texture, and color for object detection has also been explored Zhu
et al. (2017); Baker et al. (2018); Geirhos et al. (2019); Zech et al. (2018); Xiao et al.
(2021); Sagawa et al. (2019); Shi et al. (2022b); Yang et al. (2019). In contrast, our
study requires no prior information on the type of contextual bias and is broadly
applicable to different categories of bias.
Domain generalization and group robustness. The task of domain generalization
aims to improve the classification performance of models on new test domains.
A plethora of algorithms are proposed in recent years: learning domain invari-
ant Ganin et al. (2016); Li et al. (2018c); Sun and Saenko (2016); Li et al. (2018b);
Meng et al. (2022b) and domain specific features Bui et al. (2021), minimizing
the weighted combination of risks from training domains Sagawa et al. (2019),
mixing risk penalty terms to facilitate invariance prediction Arjovsky et al. (2019);
Krueger et al. (2021), prototype-based contrastive learning Yao et al. (2022b), meta-
learning Dou et al. (2019), and data-centric approaches such as generation Zhou
et al. (2020) and mixup Zhang et al. (2018); Wang et al. (2020b); Luo et al. (2020);
Yao et al. (2022a). Recent works also demonstrate promising results with pre-
trained models Cha et al. (2022); Kirichenko et al. (2023); Li et al. (2023a); Zhang
et al. (2022b); Dubois et al. (2022). Beyond domain generalization, another closely-

110

related task is to improve the group robustness in the presence of spurious correla-
tions Sagawa et al. (2019); Liu et al. (2021a); Zhang et al. (2022a). However, recent
works often assume access to group labels for a small dataset or require multiple
stages of training. In contrast, our approach is simple and efficient, requiring no
access to domain labels or multi-stage training, and can improve over ERM-like
algorithms on a broad range of real-world datasets.

6.6 Conclusions
In this work, we propose nuclear norm minimization, a simple yet effective regular-
ization method for improving domain generalization without acquiring domain
annotations. Key to our method is minimizing the nuclear norm of the feature
embeddings as a convex proxy for rank minimization. Empirically, we show that
our method is broadly applicable with ERM and other competitive algorithms for
domain generalization and achieves competitive performance across synthetic and a
wide range of real-world datasets. Theoretically, we show that it outperforms ERM
with ℓ2 regularization in the linear setting. We hope our work will inspire effective
algorithm design and promote a better understanding of domain generalization.

111

Algorithm C L S V Average
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
ERM-NU 97.9 ± 0.4 65.1 ± 0.3 73.2 ± 0.9 76.9 ± 0.5 78.3
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
Mixup-NU 97.9 ± 0.2 64.1 ± 1.4 73.1 ± 0.9 74.8 ± 0.5 77.5
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD-NU 99.1 ± 0.4 63.6 ± 0.4 75.9 ± 0.4 80.5 ± 1.0 79.8

(a) VLCS
Algorithm A C P S Average
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
ERM-NU 87.4 ± 0.5 79.6 ± 0.9 96.3 ± 0.7 79.0 ± 0.5 85.6
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
Mixup-NU 86.7 ± 0.3 78.0 ± 1.3 97.3 ± 0.3 77.3 ± 2.0 84.8
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD-NU 89.8 ± 1.1 82.8 ± 1.0 97.7 ± 0.3 83.7 ± 1.1 88.5

(b) PACS
Algorithm A C P R Average
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
ERM-NU 63.3 ± 0.2 54.2 ± 0.3 76.7 ± 0.2 78.2 ± 0.3 68.1
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
Mixup-NU 64.3 ± 0.5 55.9 ± 0.6 76.9 ± 0.4 78.0 ± 0.6 68.8
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
SWAD-NU 67.5 ± 0.3 58.4 ± 0.6 78.6 ± 0.9 80.7 ± 0.1 71.3

(c) OfficeHome
Algorithm L100 L38 L43 L46 Average
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
ERM-NU 52.5 ± 1.2 45.0 ± 0.5 60.2 ± 0.2 40.7 ± 1.0 49.6
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
Mixup-NU 55.1 ± 3.1 45.8 ± 0.7 56.4 ± 1.2 41.1 ± 0.6 49.6
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD-NU 58.1 ± 3.3 47.7 ± 1.6 60.5 ± 0.8 42.3 ± 0.9 52.2

(d) Terra Incognita
Algorithm clip info paint quick real sketch Average
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
ERM-NU 60.9 ± 0.0 21.1 ± 0.2 49.9 ± 0.3 13.7 ± 0.2 62.5 ± 0.2 52.5 ± 0.4 43.4
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
Mixup-NU 59.5 ± 0.3 20.5 ± 0.1 49.3 ± 0.4 13.3 ± 0.5 59.6 ± 0.3 51.5 ± 0.2 42.3
SWAD 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD-NU 66.6 ± 0.2 23.2 ± 0.2 54.3 ± 0.2 16.2 ± 0.2 66.1 ± 0.6 56.2 ± 0.2 47.1

(e) DomainNet

Table 6.2: Nuclear norm regularization improves the domain generalization perfor-
mance over various baselines such as ERM, Mixup, and SWAD.

112

Algorithm VLCS PACS DomainNet Average
SWAD Cha et al. (2021) 79.1 ± 0.1 88.1 ± 0.1 46.5 ± 0.1 71.2
SWAD-CORAL Sun and Saenko (2016) 78.9 ± 0.1 88.3 ± 0.1 46.8 ± 0.0 71.3
SWAD-MIRO Cha et al. (2022) 79.6 ± 0.2 88.4 ± 0.1 47.0 ± 0.0 71.7
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 47.1 ± 0.1 71.8

Table 6.3: Alternative regularizers with SWAD on the DomainBed benchmark. Full
Table is in Appendix E.2.

113

7 the trade-off between universality and label
efficiency of representations from contrastive learning

Contribution statement. This chapter is joint work with Jiefeng Chen, Kunyang Li,
Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh Jha. The author Zhenmei Shi
proposed the method, contributed to part of the theoretical analysis, and completed
part of the experiments. The results of this chapter have been published as a
conference paper in ICLR 2023 (Shi et al., 2023b).

7.1 Introduction
Representation pre-training is a recent successful approach that utilizes large-scale
unlabeled data to address the challenges of scarcity of labeled data and distri-
bution shift. Different from the traditional supervised learning approach using
a large labeled dataset, representation learning first pre-trains a representation
function using large-scale diverse unlabeled datasets by self-supervised learning
(e.g., contrastive learning), and then learns predictors on the representation using
small labeled datasets for downstream target tasks. The pre-trained model is com-
monly referred to as a foundation model (Bommasani et al., 2021), and has achieved
remarkable performance in many applications, e.g., BERT (Devlin et al., 2019),
GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), and Flamingo (Alayrac
et al., 2022). To this end, we note that there are two properties that are key to
their success: (1) label efficiency: with the pre-trained representation, only a small
amount of labeled data is needed to learn accurate predictors for downstream target
tasks; (2) universality: the pre-trained representation can be used across various
downstream tasks.

In this work, we focus on contrastive learning with linear probing that learns a
linear predictor on the representation pre-trained by contrastive learning, which
is an exemplary pre-training approach (e.g., (Saunshi et al., 2019; Chen et al.,
2020d)). We highlight and study a fundamental trade-off between label efficiency

114

and universality, though ideally, one would like to have these two key properties
simultaneously. Since pre-training with large-scale diverse unlabeled data is widely
used in practice, such a trade-off merits deeper investigation.

Theoretically, we provide an analysis of the features learned by contrastive
learning, and how the learned features determine the downstream prediction
performance and lead to the trade-off. We propose a hidden representation data model,
which first generates a hidden representation containing various features, and then
uses it to generate the label and the input. We first show that contrastive learning
is essentially generalized nonlinear PCA that can learn hidden features invariant to
the transformations used to generate positive pairs. We also point out that additional
assumptions on the data and representations are needed to obtain non-vacuous
guarantees for prediction performance. We thus consider a setting where the data
are generated by linear functions of the hidden representation, and formally prove
that the difference in the learned features leads to the trade-off. In particular, pre-
training on more diverse data learns more diverse features and is thus useful for
prediction on more tasks. But it also down-weights task-specific features, implying
larger sample complexity for predictors and thus worse prediction performance on
a specific task. This analysis inspires us to propose a general method – contrastive
regularization – that adds a contrastive loss to the training of predictors to improve
the accuracy on downstream tasks.

Empirically, we first perform controlled experiments to reveal the trade-off.
Specifically, we first pre-train on a specific dataset similar to that of the target task,
and then incrementally add more datasets into pre-training. In the end, the pre-
training data includes both datasets similar to the target task and those not so
similar, which mimics the practical scenario that foundation models are pre-trained
on diverse data to be widely applicable for various downstream tasks. Fig. 7.1
gives an example of this experiment: As we increase task diversity for contrastive
learning, it increases the average accuracy on all tasks from 18.3% to 20.1%, while it
harms the label efficiency of an individual task, on CIFAR-10 the accuracy drops
from 88.5% to 76.4%. We also perform experiments on contrastive regularization,
and demonstrate that it can consistently improve over the typical fine-tuning method

115

105

Number of unlabeled data

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

Figure 7.1: Illustration of the trade-off between universality and label efficiency. x-axis:
from left to right, incrementally add CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32
(I) for pre-training MoCo v2. For example, “CS” means CINIC-10+SVHN. The average test
accuracy of prediction on all 4 datasets (red line) increases with more diverse pre-training
data, while that on the target task CIFAR-10 (blue line) decreases. (The variance of the
blue line is too small to be seen.) Please refer to Section 7.3.1 for details.

across multiple datasets. In several cases, the improvement is significant: 1.3% test
accuracy improvement for CLIP on ImageNet, 4.8% for MoCo v3 on GTSRB (see
Table 7.1 and 7.2 for details). With these results, we believe that it is of importance to
bring the community’s attention to this trade-off and the forward path of foundation
models.

Our main contributions are summarized as follows:

• We propose a hidden representation data model and prove that contrastive
learning is essentially generalized nonlinear PCA, and can encode hidden
features invariant to the transformations used in positive pairs (Section 7.2.1).

• We formally prove the trade-off in a simplified setting with linear data (Sec-
tion 7.2.2).

• We empirically demonstrate the trade-off across different methods and datasets
for contrastive learning with linear probing (Section 7.3.1 and 7.3.2).

116

• We propose a contrastive regularization method for training the predictor on
a target task (Section 7.2.2), which achieves consistent improvement in our
experiments (Section 7.3.3).

Related Work on Representation Pre-training. This paradigm pre-trains a repre-
sentation function on a large dataset and then uses it for prediction on various down-
stream tasks (Devlin et al., 2019; Kolesnikov et al., 2020; Brown et al., 2020; Newell
and Deng, 2020). The representations are also called foundation models (Bom-
masani et al., 2021). There are mainly two kinds of approaches: (1) supervised
approaches (e.g., (Kolesnikov et al., 2020)) that pre-train on large labeled datasets;
(2) self-supervised approaches (e.g., (Newell and Deng, 2020)) that pre-train on
large and diverse unlabeled datasets. Recent self-supervised pre-training can com-
pete with or outperform supervised pre-training on the downstream prediction
performance (Ericsson et al., 2021). Practical examples like BERT (Devlin et al.,
2019), GPT-3 (Brown et al., 2020), CLIP (Radford et al., 2021), DALL·E (Ramesh
et al., 2022), PaLM (Chowdhery et al., 2022) and Flamingo (Alayrac et al., 2022)
have obtained effective representations universally useful for a wide range of down-
stream tasks.

A popular method is contrastive learning, i.e., to distinguish matching and
non-matching pairs of augmented inputs (e.g., (van den Oord et al., 2018; Chen
et al., 2020d; He et al., 2020b; Grill et al., 2020; Chen and He, 2021; Zbontar et al.,
2021; Gao et al., 2021b)). Some others solve “pretext tasks” like predicting masked
parts of the inputs (e.g.,(Doersch et al., 2015; Devlin et al., 2019)).
Related Work on Analysis of Self-supervised Pre-training. There exist abundant
studies analyzing self-supervised pre-training (Saunshi et al., 2019; Tsai et al., 2020;
Yang et al., 2020; Wang and Isola, 2020; Garg and Liang, 2020; Zimmermann et al.,
2021; Tosh et al., 2021; HaoChen et al., 2021; Wen and Li, 2021; Liu et al., 2021b;
Kotar et al., 2021; Van Gansbeke et al., 2021; Lee et al., 2021; Saunshi et al., 2022;
Shen et al., 2022; Kalibhat et al., 2022; Sun et al., 2023b,a; Wang et al., 2024). They
typically focus on pre-training or assume the same data distribution in pre-training
and prediction. Since different distributions are the critical reason for the trade-off

117

we focus on, we provide a new analysis. Some studies have connected contrastive
learning to component analysis (Balestriero and LeCun, 2022; Tian, 2022; Ko et al.,
2022). Our analysis focuses on the trade-off, while also showing a connection to
PCA based on our notion of invariant features and is thus fundamentally different.
Recently, Cole et al. have attempted to identify successful conditions for contrastive
learning and pointed out that diverse pre-training data can decrease prediction
performance compared to pre-training on the specific task data. However, they do
not consider universality and provide no systematic study. Similarly, Bommasani
et al. call for more research on specialization vs. diversity in pre-training data
but provide no study. We aim to provide a better understanding of the trade-off
between universality and label efficiency.

7.2 Theoretical Analysis
Our experiments in Section 7.3.1 demonstrate a trade-off between the universality
and label efficiency of contrastively pre-trained representations when used for
prediction on a distribution different from the pre-training data distribution. See
Fig. 7.1 for an example. Intuitively, from the unlabeled data, pre-training can learn
semantic features useful for prediction on even different data distributions. To
analyze this, we need to formalize the notion of useful semantic features. So we
introduce a hidden representation data model where a hidden representation (i.e., a
set of semantic features) is sampled and then used for generating the data. Similar
models have been used in some studies (HaoChen et al., 2021; Zimmermann et al.,
2021), while we introduce the notion of spurious and invariant features and obtain
a novel analysis for contrastive learning.

Using this theoretical model of data, Section 7.2.1 investigates what features are
learned by contrastive learning. We show that contrastive learning can be viewed as
a generalization of Principal Components Analysis, and it encodes the invariant features
not affected by the transformations but removes the others. We also show that further
assumptions on the data and the representations are needed necessary for any non-
vacuous bounds for downstream prediction. So Section 7.2.2 considers a simplified

118

setting with linear data. We show that when pre-trained on diverse datasets (mod-
eled as a mixture of unlabeled data from different tasks), it encodes all invariant
features from the different tasks and thus is useful for all tasks. On the other hand,
it essentially emphasizes those that are shared among the tasks, but down-weights
those that are specific to a single task. Compared to pre-training only on unlabeled
data from the target task, this then leads to a larger sample complexity and thus
worse generalization for prediction on the target task. Therefore, we show that the
trade-off between universality and label efficiency occurs due to the fact that when
many useful features from diverse data are packed into the representation, those for a specific
target task can be down-weighted and thus worsen the prediction performance on it. Based
on this insight, we propose a contrastive regularization method for using represen-
tations in downstream prediction tasks, which achieves consistent improvement
over the typical fine-tuning method in our experiments in Section 7.3.3.
Contrastive Learning. Let X ⊆ Rd denote the input space, Y the label space, and
Z ⊆ Rk the output vector space of the learned representation function. LetΦ denote
the hypothesis class of representations ϕ : X→ Z, and Fϕ the hypothesis class of
predictors on ϕ. A task is simply a data distribution over X × Y. In pre-training,
using transformations on unlabeled data from the tasks, we have some pre-train
distribution Dpre over positive pairs (x, x+) and negative examples x−, where x, x+

are obtained by applying random transformations on the same input (e.g., cropping
or color jitter for images), and x− is an independent example. The contrastive loss
is ℓ
(
ϕ(x)⊤(ϕ(x+) − ϕ(x−))

)
where ℓ(t) is a suitable loss function. Typically, the

logistic loss ℓ(t) = log(1 + exp(−t)) is used, while our analysis also holds for other
loss functions. A representation ϕ is learned by:

min
ϕ∈Φ

E(x,x+,x−)∼Dpre

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − ϕ(x−))

)]
. (7.1)

(We simply consider the population loss since pre-training data are large-scale.)
Then a predictor f is learned on top of ϕ usingm labeled points {(xi,yi)}mi=1 from a

119

specific target task D:

min
f∈Fϕ

1
m

m∑
i=1

ℓc(f(ϕ(xi)),yi) (7.2)

where ℓc is a prediction loss (e.g. cross-entropy). Usually, f is a linear classifier
(Linear Probing) with a bounded norm: Fϕ = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ⩽ B},
where ∥ · ∥ denotes the ℓ2 norm.
Hidden Representation Data Model. We now consider the pre-train distribution
Dpre over (x, x+, x−). To capture that pre-training can learn useful features, we
assume a hidden representation for generating the data: first sample a hidden
representation z ∈ Z from a distribution Dz over some hidden representation
space Z ⊆ Rd, and then generate the input x and the label y from z. (The space
Z models semantic features, and can be different from the learned representation
space Z.) The dimensions of z are partitioned into two disjoint subsets of [d] :=
{1, · · · ,d}: spurious features U that are affected by the transformations, and invariant
features R that are not. Specifically, let DU,DR denote the distributions of zU and
zR, respectively, and let x = g(z) denote the generative function for x. Then the
positive pairs (x, x+) are generated as follows:

z = [zR; zU] ∼ Dz, z+U ∼ DU, z+ = [zR; z+U], x = g(z), x+ = g(z+). (7.3)

That is, x, x+ are from the same zR but two random copies of zU that model the
random transformations. Finally, x− is an i.i.d. sample from the same distribution
as x: z− ∼ Dz, x− = g(z−).

7.2.1 What Features are Learned by Contrastive Learning?

To analyze prediction performance, we first need to analyze what features are
learned in pre-training.
Contrastive Learning is Generalized Nonlinear PCA. Recall that given data x from
a distribution D, Principal Components Analysis (PCA) (Pearson, 1901; Hotelling,

120

1933) aims to find a linear projection function ϕ on some subspace such that the
variance of the projected data ϕ(x) is maximized, i.e., it is minimizing the following
PCA objective:

−Ex∼D[∥ϕ(x) − Ex ′∼D[ϕ(x
′)]∥2] = −Ex∼D[∥ϕ(x) − ϕ0∥2] (7.4)

where ϕ0 := E[ϕ(x ′)] is the mean of the projected data. Nonlinear PCA replaces lin-
ear representation functions ϕ with nonlinear ones. We next show that contrastive
learning is a generalization of nonlinear PCA on the smoothed representation after
smoothing out the transformations.

Theorem 7.1. If ℓ(t) = −t, then the contrastive loss is equivalent to the PCA objective on
ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2] (7.5)

where ϕzR := E[ϕ(x) | zR] = E[ϕ(g(z)) | zR]. If additionally ϕ(x) is linear in x, then
it is equivalent to the linear PCA objective −E

[
∥ϕ(x̄) − ϕ0∥2] on data x̄ := E[x|zR] =

E[g(z)|zR].

So contrastive learning is essentially nonlinear PCA when ℓ(t) = −t, and further
specializes to linear PCA when the representation is linear. As PCA finds directions
with large variances, the analogue is that contrastive learning encodes important
invariant features but not spurious ones.
Contrastive Learning Encodes Invariant Features and Removes Spurious Fea-
tures. For a formal statement we need some weak assumptions on the data, the
representations, and the loss:

(A1) zR can be recovered from x, i.e., the inputs x = g(z) from different zR’s are
disjoint.

(A2) The representation functions are the regular functions with ∥ϕ(x)∥ = Br (∀x)
for some Br > 0. Being regular means there are a finite L and a partition

121

of Z into a finite number of subsets, such that in each subset all ϕ ◦ g have
Lipschitz constants bounded by L.

(A3) The loss ℓ(t) is convex, decreasing, and lower-bounded.

The first condition means the invariant features zR can be extracted from x (note
that g need not be invertible). The regular condition on the representation is to
exclude some pathological cases like the Dirichlet function; essentially reasonable
functions relevant for practice satisfy this condition, e.g., when g is Lipschitz and
ϕ are neural networks with the ReLU activation. Also, note that the logistic loss
typically used in practice satisfies the last condition.

We say a function f(z) is independent of a subset of input dimensions zS, if there
exists a function f ′ such that f(z) = f ′(z−S) with probability 1, where z−S denotes
the set of all zj with j ̸∈ S. We say the representation ϕ encodes a feature zi, if
ϕ ◦ g : Z→ Z is not independent of zi as long as the generative function g(z) is not
independent of zi.

Theorem 7.2. Under Assumptions (A1)(A2)(A3), the optimal representation ϕ∗ satis-
fies:

(1) ϕ∗ does not encode the spurious features zU: ϕ∗ ◦ g(z) is independent of zU.

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the repre-
sentations’ norm Br ⩾ Bi, then ϕ∗ encodes zi. Furthermore, if Z is finite, then Bi is
monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z

−
i], the probability that in zR

and z−R , the i-th feature varies while the others remain the same.

So contrastive learning aims to remove the spurious features and preserve the
invariant features. Then the transformations should be chosen such that they will
not affect the useful semantic features, but change those irrelevant to the label.
Interestingly, the theorem further suggests that contrastive learning tends to favor
the more “spread-out” invariant features zi, as measured by Pr[zR\{i} = z−R\{i}, zi ̸=
z−i]. As we increase the representation capacity Br, Br passes the threshold Bi for

122

D1

S

D2

DT

UR

.

.

.

P1

P2

PT

Figure 7.2: Illustration of the features in our data distributions.

more features zi, so ϕ∗ first encodes the more spread-out invariant features and
then the others.

This further suggests the following intuition for the trade-off. When pre-trained
on diverse data modeled as a mixture from multiple tasks with different invariant
features, the representation encodes all the invariant features and thus is useful for
prediction on all the tasks. When pre-trained on only a specific task, features specific
to this task are favored over those that only show up in other tasks, which leads to
smaller sample complexity for learning the predictor and thus better prediction.
However, to formalize this, some inductive bias assumptions about the data and the
representation are necessary to get any non-vacuous guarantee for the prediction
(see discussion in Appendix F.1.1). Therefore, Section 7.2.2 introduces additional
assumptions and formalizes the trade-off.

7.2.2 Analyzing the Trade-Off: Linear Data

To analyze the prediction performance, we first need to model the relation between
the pre-training data and the target task. We model the diverse pre-training data as
a mixture of data from T different tasks Dt’s, while the target task is one of the tasks.
All tasks share a public feature set S of size s, and each task Dt additionally owns a
private disjoint feature set Pt of size r−s, i.e., Pt∩S = ∅ and Pt1 ∩Pt2 = ∅ for t1 ̸= t2

(Fig. 7.2). The invariant features for Dt are then Rt = S ∪ Pt. All invariant features
are R = ∪Tt=1Rt, and spurious features are U = [d] \ R. In task Dt, the (x, x+) are

123

generated as follows:

zRt ∼ N(0, I), zR\Rt = 0, zU ∼ N(0, I), z = [zR; zU], x = g(z), (7.6)

z+U ∼ N(0, I), z+ = [zR; z+U], x+ = g(z+), (7.7)

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple
independent negative examples are used, and thus we consider the following
contrastive loss minϕ∈Φ E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
for a convex and

decreasing ℓ(t) to pre-train a representation ϕ. Then, when using ϕ for prediction
in the target task Dt, the predictor class should contain a predictor matching the
ground-truth label:

Fϕ,t = {f(z) = u⊤z : u ∈ Rk, ∥u∥ ⩽ Bϕ,t} (7.8)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x)

on Dt.
Now, given the necessity of inductive biases for non-vacuous guarantees (see

Appendix F.1.1), and inspired by classic dictionary learning and recent analysis on
such data (e.g., Olshausen and Field (1997); Wen and Li (2021); Shi et al. (2022c)),
we assume linear data and linear representations:

• x is linear in z: x = g(z) =MzwhereM ∈ Rd×d is an orthonormal dictionary.
Since linear probing has strong performance on pre-trained representations,
we thus assume that the label in each task t is linear in its invariant features
y = (u∗

t)
⊤zRt for some u∗

t ∈ Rr.

• The representations are linear functions with weights of bounded spectral/Frobe-
nius norms:

Φ = {ϕ(x) =Wx :W∈Rk×d, ∥W∥⩽1, ∥W∥F⩽
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recov-
ering the invariant features in the target task, i.e., there exists ϕ ∈ Φ such that

124

ϕ(x) = [zRt ; 0].

We compare two representations: a specific one pre-trained on unlabeled data
from the target task Dt, and a universal one pre-trained on an even mixture of data
from T tasks. (Appendix F.2 provides analysis for more general cases like uneven
mixtures.) This captures the situation that the pre-training data contains some data
similar to the target task and also other less similar data. Let vt,1 =

∑
j∈S(u

∗
t)

2
j and

vt,2 =
∑
j∈Pt(u

∗
t)

2
j be the weights on the shared and task-specific invariant features,

respectively. Also, assume the prediction loss ℓc is L-Lipschitz.

Proposition 7.3. The representation ϕ∗ obtained on an even mixture of data from all
the tasks {Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1], β = min

(
1, r−αs
T(r−s)

)
, where ej’s are the basis vectors and Q is any

orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ usingm labeled data points from Dt has
risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)]

⩽ 4L

√
1
m

(
vt,1

α
+
vt,2

β

)(√
sα+ (r− s)β+O

(√
r

sα+ (r− s)β

))
+ 8
√

2 ln(4/δ)
m

.

Proposition 7.4. The representation ϕ∗
t obtained on data from Dt satisfies ϕ∗

t ◦ g(z) =
Q
(∑

j∈Rt zjej
)

where ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗

t ,t on ϕ∗
t usingm labeled data points from Dt has

risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t(x),y)] ⩽ 4L

√
r

m
∥u∗
t∥+ 8

√
2 ln(4/δ)
m

.

While on taskDi(i ̸= t), any linear predictor onϕ∗
t has error at least minu EDi

[ℓc(u
⊤zS,y)].

Difference in Learned Features Leads to the Trade-off. The key of the analysis (in
Appendix F.2) is about what features are learned in the representations. Pre-trained

125

on all T tasks, ϕ∗ is a rotation of the weighted features, where the shared features
are weighted by

√
α and task-specific ones are weighted by

√
β. Pre-trained on

one task Dt, ϕ∗
t is a rotation of the task-specific features Rt. So compared to ϕ∗

t , ϕ∗

encodes all invariant features but down-weights the task-specific features Pt.
The difference in the learned features then determines the prediction perfor-

mance and results in a trade-off between universality and label efficiency: compared
to ϕ∗

t , ϕ∗ is useful for more tasks but has worse performance on the specific task Dt.
For illustration, suppose r = 2s, and the shared and task-specific features are equally
important for the labels on the target task: vt,1 = vt,2 = ∥u∗

t∥2/2. In Appendix F.2.3
we show that ϕ∗ has α = 1,β = 1

T
and the error is O

(
L
√
Tr
m
∥u∗
t∥
)

, while the
error using ϕ∗

t is O
(
L
√

r
m
∥u∗
t∥
)
. Therefore, the error when using representations

pre-trained on data from T tasks is O(
√
T) worse than that when just pre-training

on data from the target task. On the other hand, the former can be used in all T
tasks and the prediction error diminishes with the labeled data numberm. While
the latter only encodes Rt and the only useful features on the other tasks are zS,
then even with infinite labeled data the error can be large (⩾ minu E[ℓc(u⊤zS,y)],
the approximation error using only the common features zS for prediction).
Improving the Trade-off via Contrastive Regularization. The above analysis
provides some guidance on improving the trade-off, in particular, improving the
target prediction accuracy when given a pre-trained representation ϕ∗. It suggests
that whenϕ∗ is pre-trained on diverse data, one can update it by contrastive learning
on some unlabeled data from the target task, which can get better features and
better predictions. This is indeed the case for the illustrative example above. We
can show that updatingϕ∗ by contrastive learning on Dt can increase the weights β
on the task-specific features zPt , and thus improve the generalization error (formal
analysis in Appendix F.2.4).

In practice, typically one will learn the classifier and also fine-tune the repre-
sentation with a labeled dataset {(xi,yi)}mi=1 from the target task. We thus propose
contrastive regularization for fine-tuning: for each data point (x,y), generate con-
trastive pairs R = {(x̃, x̃+, x̃−)} by applying transformations, and add the contrastive

126

loss on these pairs as a regularization term to the classification loss:

ℓc(f(ϕ(x)),y) +
λ

|R|

∑
(x̃,x̃+,x̃−)∈R

ℓ
(
ϕ(x̃)⊤(ϕ(x̃+) − ϕ(x̃−))

)
. (7.9)

This method is simple and generally applicable to different models and algorithms.
Similar ideas have been used in graph learning (Ma et al., 2021), domain general-
ization (Kim et al., 2021) and semi-supervised learning (Lee et al., 2022), while
we use it in fine-tuning for learning predictors. Our experiments in Section 7.3.3
show that it can consistently improve the prediction performance compared to the
typical fine-tuning approach.

7.3 Experiments
We conduct experiments to answer the following questions. (Q1) Does the trade-
off between universality and label efficiency exist when training on real datasets?
(Q2) What factors lead to the trade-off? (Q3) How can we alleviate the trade-off,
particularly in large foundation models? Our experiments provide the following
answers: (A1) The trade-off widely exists in different models and datasets when
pre-training on large-scale unlabeled data and adapting with small labeled data (see
Section 7.3.1). This justifies our study and aligns with our analysis. (A2) Different
datasets own many private invariant features leading to the trade-off, e.g., FaceScrub
and CIFAR-10 do not share many invariant features (see Section 7.3.2). It supports
our analysis in Section 7.2.2. (A3) Our proposed method, Finetune with Contrastive
Regularization, can improve the trade-off consistently (see Section 7.3.3).

7.3.1 Verifying the Existence of the Trade-off

Evaluation & Methods. We first pre-train a ResNet18 backbone (He et al., 2016)
with different contrastive learning methods and then do Linear Probing (LP, i.e.,
train a linear classifier on the feature extractor) with the labeled data from the
target task. We report the test accuracy on a specific target task and the average test

127

105

Number of unlabeled data

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

0.14

0.16

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(b) MNIST

105

Number of unlabeled data

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(c) Fer2013

Figure 7.3: Trade-off between universality and label efficiency for MoCo v2. Appendix F.3.5
shows similar results for more methods and datasets. x-axis: incrementally add datasets for
pre-training MoCo v2. (a) Pre-training data: CINIC-10 (C), SVHN (S), GTSRB (G), and
ImageNet32 (I). E.g., “CS” on the x-axis means CINIC-10+SVHN. Target task: CIFAR-10.
Red line: average test accuracy of Linear Probing on all 4 datasets. Blue line: test accuracy
on the target task. (b) EMNIST-Digits&Letters (E), Fashion-MNIST (F), GTSRB (G),
ImageNet32 (I). Target: MNIST. (c) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32
(I). Target: Fer2013. Note that training does not follow the online learning fashion, e.g., the
model will pre-train from scratch (random initialization) on the CSG datasets, rather than
using the model pre-trained on the CS datasets.

accuracy on all pre-training datasets (i.e., using them as the downstream tasks).
Appendix F.3.2 presents full details and additional results, while Fig. 7.3 shows the
results for the method MoCo v2. The size and diversity of pre-training data are
increased on the x-axis by incrementally adding unlabeled training data from: (a)
CINIC-10, SVHN, GTSRB, ImageNet32 (using only a 500k subset); (b) EMNIST-
Digits&Letters, Fashion-MNIST, GTSRB, ImageNet32; (c) FaceScrub, CIFAR-10,
SVHN, ImageNet32. We further perform larger-scale experiments: (1) on ImageNet
(see Fig. 7.4); (2) on ImageNet22k and GCC-15M (see Appendix F.3.2).
Results. The results show that when the pre-training data becomes more diverse,
the average test accuracy on all pre-training datasets increases (i.e., universality
improves), while the test accuracy on the specific target task decreases (i.e., label
efficiency drops). This shows a clear trade-off between universality and label
efficiency. It supports our claim that diverse pre-training data allow learning
diverse features for better universality, but can down-weight the features for a
specific task resulting in worse prediction. Additional results in the appendix

128

105 106

Number of unlabeled data

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

B BV BV+ ALL

(a) MoCo v3 (backbone ViT-S)

105 106

Number of unlabeled data

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.46

0.48

0.50

0.52

0.54

0.56

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

B BV BV+ ALL

(b) SimSiam (backbone ResNet50)

Figure 7.4: Trade-off between universality and label efficiency on ImageNet. x-axis:
from left to right, incrementally add ImageNet-Bird (B), ImageNet-Vehicle (V), ImageNet-
Cat/Ball/Shop/Clothing/Fruit (+), and ImageNet (ALL) for pre-training (a) MoCo v3
with backbone ViT-S (b) SimSiam with backbone ResNet50. For example, “BV” means
ImageNet-Bird + ImageNet-Vehicle. Target: ImageNet-Bird.

Face
Scrub

CIFAR10 SVHN Image
Net32

Union

Fa
ce

Sc
ru

b
CI

FA
R1

0
SV

HN
Im

ag
e

Ne
t3

2
Un

io
n

1 0.058 0.07 0.15 0.39

1 0.11 0.23 0.11

1 0.19 0.14

1 0.3

1
0.0

0.2

0.4

0.6

0.8

1.0

Face
Scrub

+CIFAR10 +SVHN +Image
Net32

Fa
ce

Sc
ru

b
+C

IFA
R1

0
+S

VH
N

+I
m

ag
e

Ne
t3

2

1 0.49 0.47 0.39

1 0.64 0.56

1 0.63

1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.5: Linear CKA similarity among Fer2013 features from MoCo v2 pre-trained on
different datasets. Left: each representation in the first four columns/rows is pre-trained on
a single dataset. “Union" indicates the model pre-trained on the union of the four disjoint
datasets. Right: from left column to right, from top row to bottom, we incrementally add
datasets for pre-training.

show similar trends (e.g., for methods NNCLR and SimSiam). This validates our
theoretical analysis of the trade-off.

129

Pre-training dataset
Method CINIC-10 +SVHN +GTSRB +ImageNet32

LP 88.41±0.01 85.18±0.01 82.07±0.01 75.64±0.03
FT 93.58±0.14 93.35±0.10 93.42±0.13 92.92±0.06

Ours 94.51±0.02 94.26±0.01 94.32±0.13 93.66±0.12

Table 7.1: Test accuracy on CIFAR-10 with different evaluation methods on MoCo v2
by using all CIFAR-10 training data. From left to right: incrementally add datasets for
pre-training.

7.3.2 Inspecting the Trade-off: Feature Similarity

Here we compute the similarity of the features learned from different pre-training
datasets for a target task. For each pre-trained model, we extract a set of features
for the target task Fer2013 using the pre-trained representation function. Then
we compute the similarities between the extracted features based on different pre-
training dataset pairs using linear Centered Kernel Alignment (CKA) (Kornblith
et al., 2019), a widely used tool for high-dimensional feature comparison. Figure 7.5
reports the results (rows/columns are pre-training data; numbers/colors show
the similarity). The left figure shows that the features from different pre-training
datasets have low similarities. This is consistent with our setup in Section 7.2.2 that
different tasks only share some features and each owns many private ones. The
right figure shows a decreasing trend of similarity along each row. This indicates
that when gradually adding more diverse pre-training data, the learned representa-
tion will encode more downstream-task-irrelevant features, and become less similar
to that prior to adding more pre-training data. Additional results with similar ob-
servations, finer-grained investigation into the trade-off, and some ablation studies
are provided in Appendix F.3.3.

7.3.3 Improving the Trade-off: Finetune with Contrastive
Regularization

Evaluation & Methods. We pre-train ResNet18 by MoCo v2 as in Section 7.3.1
and report the test accuracy on CIFAR-10 when the predictor is learned by: Linear
Probing (LP), Finetune (FT), and Finetune with Contrastive Regularization (Ours).

130

LP follows the training protocol in Section 7.3.1. FT and Ours learn a linear predictor
and update the representation, and use the same data augmentation for a fair
comparison. FT follows MAE (He et al., 2022), while Ours uses MoCo v2 contrastive
loss and regularization coefficient λ = 0.1. More details and results are given in
Appendix F.3.4.
Results. Table 7.1 shows that our method can consistently outperform the other
baselines. In particular, it outperforms the typical fine-tuning method by about
0.7% – 1%, even when the latter also uses the same amount of data augmentation.
This confirms the benefit of contrastive regularization. To further support our claim,
Fig. F.8 in Appendix F.3.4 visualizes the features of different methods by t-SNE,
showing that contrastive regularization can highlight the task-specific features and
provide cleaner clustering, and thus improve the generalization, as discussed in
our theoretical analysis.

CLIP MoCo v3 SimCSE
Method ImageNet SVHN GTSRB CIFAR-10 SVHN GTSRB IMDB AGNews

LP 77.84±0.02 63.44±0.01 86.56±0.01 95.82±0.01 61.92±0.01 75.37±0.01 86.49±0.16 87.76±0.66
FT 83.65±0.01 78.22±0.18 90.74±0.06 96.17±0.12 65.36±0.33 76.45±0.29 92.31±0.26 93.57±0.23

Ours 84.94±0.09 78.72±0.37 92.01±0.28 96.71±0.10 66.29±0.20 81.28±0.10 92.85±0.03 93.94±0.02

Table 7.2: Test accuracy for different evaluation methods on different datasets using
all training data and using foundation models from CLIP, MoCo v3, and SimCSE. Data
augmentation is not used for LP (Linear Probing). For FT (Finetune) and Ours (our
method), 10 augmentations to each training images are used for CLIP, MoCo v3, and unique
augmentation in each training step is used for SimCSE. More results are in Appendix F.3.4.

Larger Foundation Models. We further evaluate our method on several pop-
ular real-world large representation models (foundation models). On some of
these models, the user may be able to fine-tune the representation when learning
predictors. On very large foundation models, the user typically extracts feature
embeddings of their data from the models and then trains a small predictor, called
adapter (Hu et al., 2022; Sung et al., 2022), on these embeddings. We evaluate CLIP
(ViT-L (Dosovitskiy et al., 2020) as the representation backbone), MoCo v3 (ViT-B
backbone), and SimCSE (Gao et al., 2021b) (BERT backbone). They are trained
on (image, text), (image, image), and (text, text) pairs, respectively, so cover a
good spectrum of methods. For CLIP and MoCo v3, the backbone is fixed. LP

131

uses a linear classifier, while FT and Ours insert a two-layer ReLU network as an
adapter between the backbone and the linear classification layer. Ours uses the
SimCLR contrastive loss on the output of the adapter. For SimCSE, all methods use
linear classifiers. LP fixes the backbone, while FT and Ours train the classifier and
fine-tune the backbone simultaneously. Ours uses the SimCSE contrastive loss on
the backbone feature. We set the regularization coefficient λ = 1.0.

Table 7.2 again shows that our method can consistently improve the downstream
prediction performance for all three models by about 0.4% – 4.8%, and quite signifi-
cantly in some cases (e.g., 1.3% for CLIP on ImageNet, 4.8% for MoCo v3 on GTSRB).
This shows that our method is also useful for large foundation models, even when
the foundation models cannot be fine-tuned and only the extracted embeddings
can be adapted. Full details and more results are provided in Appendix F.3.4.

7.4 Conclusion and Future Work
In this work, we have shown and analyzed the trade-off between universality
and label efficiency of representations in contrastive learning. There are many
interesting open questions for future work. (1) What features does the model learn
from specific pre-training and diverse pre-training datasets beyond linear data? (2)
Do the other self-supervised learning methods have a similar trade-off? (3) Can
we address the trade-off better to gain both properties at the same time?

132

8 bypassing the exponential dependency: looped
transformers efficiently learn in-context by multi-step
gradient descent

Contribution statement. This chapter is joint work with Bo Chen, Xiaoyu Li,
Yingyu Liang, and Zhao Song. The author Zhenmei Shi proposed the method,
contributed to part of the theoretical analysis. The results in this chapter is submitted
to AIStats 2025 (Chen et al., 2024b).

8.1 Introduction
Large Language Models (LLMs) have gained immense success and have been
widely used in our daily lives, e.g., GPT4 (Achiam et al., 2023), Claude 3.5 (An-
thropic., 2024), and so on, based on its Transformer architecture (Vaswani et al.,
2017). One core emergent ability of LLMs is In-Context Learning (ICL) (Brown
et al., 2020). During ICL, the user provides an input sequence (prompts) containing
some question-answer pairs as in-context examples and the goal query that the user
cares about, where the examples and query are drawn from an unknown task. The
LLMs can in-context learn from these examples and generate the correct answer for
the goal query without any parameter update. Notably, these unknown tasks may
never seen by LLMs during their pre-training and post-training, e.g., synthetic task
(Wei et al., 2023a). Thus, many believe that the in-context learning mechanism is
different from supervised learning or unsupervised learning, where the latter may
focus on feature learning, while the ICL may perform some algorithm to learn. For
instance, the Transformer can implement algorithm selection (Bai et al., 2024a) or
gradient descent (Dong et al., 2022; Von Oswald et al., 2023) by in-context learning
forward pass.

Many works have tried to understand how Transformers perform single-step
gradient descent (Zhang et al., 2023c; Ahn et al., 2024a; Mahankali et al., 2023; Cheng

133

et al., 2023; Bai et al., 2024a; Huang et al., 2023; Li et al., 2023c; Guo et al., 2024; Wu
et al., 2024c). They study one-layer linear Transformer in-context learning on linear
regression tasks and show that the one-layer linear Transformer can perform single
gradient updates based on the in-context examples during a forward pass. Recent
work (Gatmiry et al., 2024) has further shown that a linear looped Transformer
can implement multi-step gradient descent updates with multiple forward passes,
meaning that Transformers can express multi-step algorithms during in-context
learning. However, their theoretical results require an exponential number of in-
context examples, exp(Ω(T)), where T is the number of loops or passes, to achieve
a reasonably low error for linear regression tasks. This violates the intuition that
more gradient descent updates lead to better performance.

Thus, it is natural to ask the following question:

Is it necessary to use an exponential number of examples for Transformers to implement
multi-step gradient descent during in-context learning?

In this work, we study linear looped Transformers (Definition 8.7) in-context
learning on linear vector generation tasks (Definition 8.5), which is as hard as linear
regression. We show that the linear looped Transformer can efficiently perform
multi-step gradient descent as long as in-context examples are well-conditioned.
We present our main result in the following theorem.

Theorem 8.1 (Main result. Informal version of Theorem 8.16). Let T be the number
of loops, n be the number of in-context examples, and d be the feature dimension. Let
(X,y) ∈ Rn×d × Rn be the in-context examples. Let κ be the condition number of X⊤X

(Definition 8.12). Then, given a query α ∈ R, the linear looped Transformer can predict
a vector output with error ⩽ |α| · exp(− T

2κ) by explicitly performing multi-step gradient
descent in its hidden states.

In Theorem 8.1, as long as the condition number is constant, we can see that the
linear looped Transformer will perform better when the loop number is increasing,
i.e., the error will exponentially decay to 0. Informally, for a small constant ϵ,
if we draw X from Gaussian distribution, the condition number of X⊤X will be

134

1 ⩽ κ ⩽ 1 + O(ϵ) when n ⩾ Ω(d/ϵ2). Thus, informally, we only need O(d)
numbers of in-context examples to guarantee a good performance. Furthermore,
our preliminary experiments (Section 8.6) validate the above arguments and our
theoretical analysis.

The main intuition of our analysis is that we find that a linear looped Trans-
former can explicitly perform gradient descent in its hidden states (Lemma 8.13
and Theorem 8.14). Thus, the error analysis can be directly solved by the standard
convex optimization technique (Theorem 8.25).

Our contributions:

• We study linear looped Transformers in-context learning on linear vector
generation tasks (Definition 8.4), which is as hard as linear regression.

• We find that linear looped Transformers can explicitly perform gradient de-
scent in their hidden states (Lemma 8.13 and Theorem 8.14).

• We demonstrate that linear looped Transformers can efficiently perform multi-
step gradient descent as long as in-context examples are well-conditioned,
e.g., n = O(d), where the error will exponentially decay to 0 after T loops
(Theorem 8.16).

• Our preliminary experiments on synthetic data validate our main theoretical
results (Section 8.6).

Roadmap. This paper is structured as follows: we begin with a review of related
work in Section 8.2, followed by essential definitions and foundational concepts in
Section 8.3. Section 8.4 delves into the gradient computation analysis within the
Looped Transformer architecture, examining both individual layer computations
and the full looped structure. In Section 8.5, we analyze the error convergence of
looped transformers under strong convexity and smoothness conditions, provid-
ing an upper bound on error after T gradient descent iterations for linear vector
generation. Section 8.6 presents our experimental results and findings. Finally, we
conclude in Section 8.7.

135

8.2 Related Work
This section briefly reviews the related research work on Large Language Models
(LLM), In-Context Learning (ICL), and looped transformers. These topics have a
close connection to our work.

Large Language Models. Neural networks based on the Transformer architec-
ture (Vaswani et al., 2017) have swiftly become the dominant paradigm in machine
learning for natural language processing applications. Expansive Transformer mod-
els, trained on diverse and extensive datasets and comprising billions of parameters,
are called large language models (LLM) or foundation models (Bommasani et al.,
2021). Examples include BERT (Devlin et al., 2019), PaLM (Chowdhery et al.,
2022), Llama (Touvron et al., 2023a), ChatGPT (OpenAI, 2022), GPT4 (Achiam
et al., 2023), among others. These LLMs have demonstrated remarkable general
intelligence capabilities (Bubeck et al., 2023) across various downstream tasks.

Researchers have developed numerous adaptation techniques to optimize LLM
performance for specific applications. These include methods such as adapters (Hu
et al., 2022; Zhang et al., 2023b; Gao et al., 2023; Shi et al., 2023b), calibration ap-
proaches (Zhao et al., 2021; Zhou et al., 2023a), multitask fine-tuning strategies (Gao
et al., 2021a; Xu et al., 2023; Von Oswald et al., 2023; Xu et al., 2024f), prompt tuning
techniques (Gao et al., 2021a; Lester et al., 2021), scratchpad approaches (Nye et al.,
2021), instruction tuning methodologies (Li and Liang, 2021; Chung et al., 2022;
Mishra et al., 2022), symbol tuning (Wei et al., 2023a), black-box tuning (Sun et al.,
2022), reinforcement learning from the human feedback (RLHF) (Ouyang et al.,
2022), chain-of-thought reasoning (Wei et al., 2022d; Khattab et al., 2022; Yao et al.,
2023; Zheng et al., 2024) and various other strategies. And here are more related
works aiming at enhancing model efficiency without compromising performance,
such as (Chen et al., 2024c; Liang et al., 2024d,b; Hu et al., 2023; Wu et al., 2024b; Hu
et al., 2024c; Xu et al., 2024a; Wu et al., 2024a; Liang et al., 2024e; Hu et al., 2024a,d,b;
Li et al., 2024e; Song et al., 2023c; Shi et al., 2024a; Ke et al., 2024b; Chen et al., 2024d;
Li et al., 2024d; Chen et al., 2024a; Li et al., 2024f; Liang et al., 2024f).

136

In-context Learning. A significant capability that has emerged from Large Lan-
guage Models (LLMs) is in-context learning (ICL) (Brown et al., 2020; Wei et al.,
2022b; Shi et al., 2024b). This feature allows LLMs to generate predictions for new
scenarios when provided with a concise set of input-output examples (referred to
as a prompt) for a specific task, without requiring any modification to the model’s
parameters. ICL has found widespread application across various domains, in-
cluding reasoning (Zhou et al., 2022), self-correction (Pourreza and Rafiei, 2023),
machine translation (Agrawal et al., 2022), and many so on.

Numerous studies have focused on enhancing the ICL and zero-shot capabilities
of LLMs (Min et al., 2021; Wang et al., 2022; Wei et al., 2022a; Iyer et al., 2022). A
substantial body of research has been dedicated to investigating the underlying
mechanisms of transformer learning (Geva et al., 2021; Xie et al., 2022; Garg et al.,
2022; Jelassi et al., 2022; Arora and Goyal, 2023; Li et al., 2023b,f; Allen-Zhu and Li,
2023; Luo et al., 2023; Tian et al., 2023a,b; Zhou et al., 2023b; Bietti et al., 2023; Xu et al.,
2024e; Li et al., 2024a,b; Liang et al., 2024a,g,h) and in-context learning (Mahankali
et al., 2023; Raventos et al., 2023; Dong et al., 2022; Ahn et al., 2024a; Pan et al.,
2023; Li et al., 2023c,e; Akyurek et al., 2023; Zhang et al., 2023a,c; Huang et al.,
2023; Cheng et al., 2023; Wibisono and Wang, 2023; Wu et al., 2024c; Guo et al.,
2024; Reddy, 2024) through both empirical and theoretical approaches. Building
upon these insights, our analysis extends further to elucidate ICL implementing
multi-step gradient descent.

Looped Transformer. The concept of recursive inductive bias was first introduced
by Dehghani et al. (2018) into Transformers. Looping Transformers are also related
to parameter-efficient weight-tying Transformers (Chi et al., 2021; Gatmiry et al.,
2024) theoretically showed that the recursive structure of Looped Transformers
enables them to function as Turing machines. Yang et al. (2023) demonstrate that
increasing the number of loop iterations can improve performance on some tasks.
Recent studies (Artur Back and Fountoulakis, 2024; Giannou et al., 2024) have
provided theoretical insights into the emulation capabilities of specific algorithms
and their convergence during training, with a particular emphasis on in-context

137

learning. However, the expressive capacity of Looped Transformers or Looped
Neural Newrok Liang et al. (2024c); Ke et al. (2024a) in function approximation
and their associated approximation rates remain largely unexplored territories.

8.3 Preliminary
In this section, we present some preliminary concepts and definitions of our pa-
per. In Section 8.3.1, we introduce some basic notations used in our paper. In
Section 8.3.2, we defined some important variables to set up our problem.

8.3.1 Notations

For any integer n, we define [n] = {1, 2, . . . ,n}. For two vectors x ∈ Rn and y ∈ Rn,
we use ⟨x,y⟩ to denote the inner product between x,y, i.e., ⟨x,y⟩ =

∑n
i=1 xiyi. For

each a,b ∈ Rn, we use a ◦ b ∈ Rn to denote the Hardamard product, i.e. the
i-th entry of (a ◦ b) is aibi for all i ∈ [n]. We use 1n to denote a length-n vector
where all the entries are ones. We use ∥x∥p to denote the ℓp norm of a vector
x ∈ Rn, i.e. ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i)

1/2, and ∥x∥∞ := maxi∈[n] |xi|. For
n > d, for any matrix A ∈ Rn×d, we use ∥A∥ to denote the spectral norm of A, i.e.
∥A∥ := supx∈Rd ∥Ax∥2/∥x∥2. For a matrix A, we use λmin(A) and λmax(A) to denote
the minimum and maximum eigenvalue of A, respectively.

8.3.2 In-context Learning

First, we introduce some definitions of in-context examples and their labels.

Definition 8.2 (In-context prompt data). Let X ∈ Rn×d be the input data with n tokens
and each token with feature dimension d, i.e, X = [x1, x2, . . . , xn]⊤, where xi ∈ Rd for any
i ∈ [n].

Definition 8.3 (In-context prompt label). Assume θ∗ uniformly draw form d dimension
unit sphere Sd, where ∥θ∗∥2 = 1. Let labels be y := Xθ∗ ∈ Rn.

138

Note that the θ∗ is unseen to the model. Then, our vector generation tasks are
defined as follows.

Definition 8.4 (In-context task). Given in-context prompt examples/data X ∈ Rn×d

with their labels y = Xθ∗, where θ∗ is unseen to model, and given a query α ̸= 0 ∈ R, the
task is to output/generate a vector q such that ⟨q, θ∗⟩ is as close to α as possible. Thus, the
prediction error is

|⟨q, θ∗⟩− α|.

We remark that our vector generation task is as hard as the linear regression
task, as they are dual problems. Solving any one of them requires to estimate the
θ∗.

Combining all above, we have the ICL prompt/input data for the model.

Definition 8.5 (Input data). Let input be

Z(0) :=

[
X y

q(0)⊤ α

]
∈ R(n+1)×(d+1).

In Definition 8.5, the model will iteratively update q(0) ∈ Rd and make it as the
generation output. In this work, we initialize q(0) as 0d.

8.3.3 Linear Looped Transformer

In line with recent work by Gatmiry et al. (2024) and Ahn et al. (2024a), we consider
a linear self-attention model, formally defined as follows:

Definition 8.6 (Linear attention). Let Q,P ∈ Rd×d be the query-key matrix and the
value-output matrix. Let Z ∈ Rn×d be input data. The linear attention is defined as

Attn(Z;Q,P) := (M ◦ (ZQZ⊤))ZP,

139

whereM =

[
0n×n 0n×1

11×n 0

]
is a casual attention mask for text generation.

In Definition 8.6, we combine the query matrix and key matrix asQ and combine
the value matrix and output matrix as P for simplicity following previous works
(Zhang et al., 2023c; Gatmiry et al., 2024).

Building upon this, we introduce the concept of a Linear Looped Transformer
(Gatmiry et al., 2024):

Definition 8.7 (Linear looped transformer). Let T be the loop number. Let η(t) > 0 for
any t ∈ {0, 1, . . . , T − 1}. The linear looped transformer TF(Z(0);Q,P) is defined as

Z(t) := Z(t−1) − η(t−1)Attn(Z(t−1);Q,P), ∀t ∈ [T]

TF(Z(0);Q,P) := −Z
(T)
n+1,1:d

⊤
.

The Looped Transformer is to simulate a real multiple-layer Transformer with
residual connections (He et al., 2016), where η represents the weights of the residual
components.

Remark 8.8. Our settings are more practical than Gatmiry et al. (2024) in the following
sense.

• We have a more practical casual attention mask used in generation. Our mask requires
Hardamard product, the same as the standard attention, while Gatmiry et al. (2024)
uses matrix product mask.

• Our model does not have prior knowledge ofX distribution, while the model in Gatmiry
et al. (2024) knows the distribution of X, i.e., distribution free. In practice, the LLMs
do not know any information about in-context examples.

8.3.4 Linear Regression with Gradient Descent

In this section, we introduce some key concept of linear regression with gradient
descent.

140

Definition 8.9 (Linear regression). Given X ∈ Rn×d, y ∈ Rn, and θ ∈ Rd, the linear
regression loss function is defined as

ℓ(θ) := 0.5∥y− Xθ∥2
2.

Then, the gradient formulation is

∇θℓ(θ) = X⊤Xθ− X⊤y ∈ Rd. (8.1)

For any t ∈ N+, let η(t) > 0 and by Gradient Descent, we have

θ(t) := θ(t−1) − η(t−1)(X⊤Xθ(t−1) − X⊤y). (8.2)

We define the optimizer below.

Definition 8.10. Let θ̃ = (X⊤X)−1X⊤y be the optimizer of ℓ(θ).

In this work, we consider n > d, assuming X⊤X is inevitable. Then, we have
θ∗ = θ̃.

Lemma 8.11 (Forklore). In the realizable setting (no noise term), if n > d, then θ∗ = θ̃.

Finally, we define the condition number, which will be used in our final conver-
gence bound.

Definition 8.12. We define the condition number of input data as κ := λmax(X⊤X)
λmin(X⊤X)

.

8.4 Gradient Computation in Looped Transformer
In this section, we present a comprehensive analysis of the gradient computation
process within the Looped Transformer architecture. Our investigation begins with
an examination of computations in individual layers and subsequently extends to
the full looped structure. This approach allows us to build a nuanced understanding
of the Looped Transformer’s behavior, starting from its fundamental components.

141

We commence our analysis by establishing a crucial result regarding the output
of a single layer in our Looped Transformer model. This foundational lemma serves
as a cornerstone for our subsequent derivations and provides valuable insights into
the model’s inner workings.

Lemma 8.13 (Single layer output). Let Z(0) be defined in Definition 8.5. Let Q =

Id+1,d+1. Let P =

[
Id×d 0d×1

01×d 0

]
. Let causal attention mask be M =

[
0n×n 0n×1

11×n 0

]
.

Then, we have

Attn(Z(0);Q,P) =
[

0n×d 0n×1

q(0)⊤X⊤X+ αy⊤X 0

]
.

Proof. We can show that

Attn(Z(0);Q,P)

= (M ◦ (Z(0)Q(Z(0)⊤)))Z(0)P

= (M ◦

[
X y

q(0)⊤ α

][
X⊤ q(0)

y⊤ α

]
)Z(0)P

= (M ◦

[
XX⊤ + yy⊤ Xq(0) + αy

q(0)⊤X⊤ + αy⊤ q(0)⊤q(0) + α2

]
)Z(0)P

=

[
0n×n 0n×1

q(0)⊤X⊤ + αy⊤ 0

]
Z(0)P

=

[
0n×n 0n×1

q(0)⊤X⊤ + αy⊤ 0

][
X y

q(0)⊤ α

]
P

=

[
0n×d 0n×1

q(0)⊤X⊤X+ αy⊤X q(0)⊤X⊤y+ αy⊤y

]
P

=

[
0n×d 0n×1

q(0)⊤X⊤X+ αy⊤X 0

]

where the first step follows from Definition 8.6, the second step follows from

142

Definition 8.5, and the rest steps directly follow from the matrix multiplication.

This result illuminates the specific form of the attention mechanism’s output in
a single layer, which is essential for understanding the model’s overall behavior,
where the output only has non-zero terms in the position of q(0) and the format is
close to Eq. equation 8.1.

Having characterized the behavior of a single layer, we now extend our analysis
to encompass the full-looped transformer structure. Turning our attention to the
core of our analysis with the groundwork laid for single-layer computations. The
following theorem establishes a crucial relationship between the transformer’s
output and the iteratively updated parameters:

Theorem 8.14. Let α ̸= 0 ∈ R. Let θ(0) = − 1
α
q(0) . Let θ(i) correspondingly be defined

in Definition 8.9 for any i ∈ {2, 3, . . . , T }. Let TF(Z(0);Q,P) be defined in Definition 8.7.
We have

TF(Z(0);Q,P) = αθ(T).

Proof. We will prove this theorem by induction on t, where t ∈ [T]. From Lemma 8.13,
we have:

Attn(Z(0);Q,P) =
[

0n×d 0n×1

q(0)⊤X⊤X+ αy⊤X 0

]
.

For t = 1, we can calculate:

Z(1) = Z(0) − η(0)Attn(Z(0);Q,P)

=

[
X y

q(0)⊤ α

]
− η(0)

[
0n×d 0n×1

q(0)⊤X⊤X+ αy⊤X 0

]

=

[
X y

q(0)⊤ − η(0)(q(0)⊤X⊤X+ αy⊤X) α

]

143

Where the first step follows from Definition 8.7, the second step follows from
Definition 8.5 and Definition 8.6, the third step follows from basic algebra. Then
we extract q(0)⊤ − η(0)(q(0)⊤X⊤X+ αy⊤X), we have

q(0)⊤ − η(0)(q(0)⊤X⊤X+ αy⊤X)

= − α(−
1
α
q(0)⊤ − η(0)(−

1
α
q(0)⊤X⊤X− y⊤X))

= − α(θ(0)⊤ − η(0)(θ(0)⊤X⊤X− y⊤X))

= − αθ(1)⊤.

where the first step follows from basic algebra, the second step follows from we
defined θ(0) = − 1

α
q(0), the third step follows from basic algebra. Thus, q(1) =

−αθ(1), so θ(1) = − 1
α
q(1).

Similarly, by math induction, we can have θ(T) = − 1
α
q(T). Thus, we finish the

proof by TF(Z(0);Q,P) := −q(T).

To further refine our understanding of the Looped Transformer’s performance,
we introduce a bound on the final prediction error:

Lemma 8.15. The final prediction error satisfies

|⟨TF(Z(0);Q,P), θ∗⟩− α| ⩽ |α| · ∥θ(T) − θ∗∥2.

Proof. By Definition 8.4, we have q = TF(Z(0);Q,P), θ∗⟩. Then, we have

|⟨TF(Z(0);Q,P), θ∗⟩− α| = |⟨αθ(T), θ∗⟩− α|

= |α| · |⟨θ(T), θ∗⟩− ⟨θ∗, θ∗⟩|

= |α| · |⟨θ(T) − θ∗, θ∗⟩|

⩽ |α| · ∥θ(T) − θ∗∥2.

where the first step is from Definition 8.4 and Theorem 8.14, the second step follows
∥θ∗∥2 = 1, the third step is from the linear properties of inner product, and the
fourth step is from Cauchy-Schwarz inequality.

144

This result provides a quantitative measure of the model’s accuracy, linking it
directly to the number of iterations and multi-step gradient descent results of linear
regression in Eq. equation 8.2.

Finally, we present our main theoretical contribution, which encapsulates the
core findings of our work:

Theorem 8.16 (Main result. Formal version of Theorem 8.1). Let κ be the condition
number defined in Definition 8.12. Let T be the number of loops. Let the initial point
q(0) = 0d. Then, we have the final prediction error satisfies

|⟨TF(Z(0);Q,P), θ∗⟩− α| ⩽ |α| · exp(− T

2κ).

Proof. The proof directly follows Lemma 8.15 and Theorem 8.25.

In Theorem 8.16, as long as the condition number is constant, we can see that the
linear looped Transformer will perform better when the loop number is increasing,
i.e., the error will exponentially decay to 0. Usually, we only need O(d) numbers of
in-context examples to guarantee a constant κ.

The above theorem offers a comprehensive characterization of the Looped Trans-
former’s behavior, providing a tight bound on the prediction error that decays
exponentially with the number of iterations. The intuition is that the Linear Looped
Transformer can explicitly perform gradient descent in its hidden states. Further-
more, our theoretical finding is also supported by our experiments in Section 8.6.

Comparison with Previous Works. We restate the results in Gatmiry et al. (2024).

Theorem 8.17 (Theorem 4.1 in Gatmiry et al. (2024)). Under condition 8Td2
√
n

⩽ 1
22T ,

we have the optimal linear regression error is ⩽ 8Td222T
√
n

.

In their work, the linear looped transformer has an error bound 8Td222T/
√
n,

while our bound is |α| · exp(− T
2κ). As the looped number T increases, our error

bounds will exponentially decay, while theirs is exponentially increase. Note that
our linear vector generation task and their linear regression task are dual problems.

145

Our results align with the common intuition that more steps of gradient descent
lead to better performance.

8.5 Error Convergence
In this section, we explore the convergence properties of looped transformers, fo-
cusing on their behavior under conditions of strong convexity and smoothness. We
begin by defining these key concepts and then proceed to establish their implica-
tions.

8.5.1 Convexity and Smoothness Analysis

We first introduce some crucial definitions.

Definition 8.18 (Strong convexity). Let f : Rd → R ∪ {+∞} and µ > 0. We say that f
is µ-strongly convex if, for every x,y ∈ Rd, and every t ∈ (0, 1) we have that

µ
γ(1 − γ)

2 ∥x− y∥2
2 + f(γx+ (1 − γ)y)

⩽ γf(x) + (1 − γ)f(y).

We say that µ is the strong convexity constant of f.

Definition 8.19 (L-smooth). Let f : Rd → R and L > 0. We say that f is L-smooth if it
is differentiable and if∇f : Rd → Rd is L-Lipschitz for all x,y ∈ Rd

∥∇f(x) −∇f(y)∥2 ⩽ L∥x− y∥2.

To quantitatively analyze the parameter dynamics in our linear vector generation
task, we first derive the Lipschitz and convexity constants for the model introduced
in Definition 8.9.

146

Lemma 8.20. Given X ∈ Rn×d, y ∈ Rn, and θ ∈ Rd in Definition 8.9, we have

L = ∥X⊤X∥

where L is the Lipschitz constant defined in Definition 8.19.

Proof. From Definition 8.9, we have

ℓ(θ) = 0.5∥y− Xθ∥2
2.

The gradient will be

∇θℓ(θ) = X⊤Xθ− X⊤y ∈ Rd.

Then for θ1, θ2 ∈ Rd, we have

∥∇ℓθ1(θ1) −∇ℓθ2(θ2)∥2 = ∥X⊤X(θ1 − θ2)∥2

⩽ ∥X⊤X∥ · ∥θ1 − θ2∥2

where the first step follows from Definition 8.9, and the second step follows from
properties of norm. From Definition 8.19, we observe that

L = ∥X⊤X∥,

where ∥X⊤X∥ is the spectral norm of X⊤X denoting the maximum eigenvalue.

The following two lemmas are closely related and build upon each other to
establish the strong convexity constant for a specific optimization problem.

Lemma 8.21 (Forklore). For X ∈ Rn×d and v ∈ Rd, we have

v⊤(X⊤X)v ⩾ λmin(X
⊤X)∥v∥2

2.

147

Lemma 8.22. Given X ∈ Rn×d, y ∈ Rn, and θ ∈ Rd in Definition 8.9, we have

µ = λmin(X
⊤X)

where µ is the strong convexity constant defined in Definition 8.18

Proof. For any θ1, θ2 ∈ Rd and t ∈ (0, 1), we have

ℓ(γθ1 + (1 − γ)θ2)

= 0.5∥y− X(γθ1 + (1 − γ)θ2)∥2
2

= 0.5∥γ(y− Xθ1) + (1 − γ)(y− Xθ2)∥2
2

⩽ 0.5(γ∥y− Xθ1∥2
2 + (1 − γ)∥y− Xθ2∥2

2)

− 0.5γ(1 − γ)∥X(θ1 − θ2)∥2
2

= 0.5(γ∥y− Xθ1∥2
2 + (1 − γ)∥y− Xθ2∥2

2)

− 0.5γ(1 − γ)(θ1 − θ2)
TXTX(θ1 − θ2)

⩽ 0.5(γ∥y− Xθ1∥2
2 + (1 − γ)∥y− Xθ2∥2

2)

− 0.5γ(1 − γ)λmin(X
TX)∥θ1 − θ2∥2

2

where the first step follows from Definition 8.9, the rest step follow from basic
algebra and Lemma 8.21. From Definition 8.18, we observe that

µ = λmin(X
⊤X)

where λmin(X
⊤X) denotes the minimum eigenvalue of X⊤X.

8.5.2 Main Result

We first commence with a statement of Lemma 8.23, which furnishes a convergence
rate for gradient descent on strongly convex and smooth functions.

Lemma 8.23 (Theorem 3.6 in Garrigos and Gower (2023)). Let ℓ : Rd → R be a
differentiable function and assume ℓ is µ-strongly convex and L-smooth. Let {θ(t)}t∈N be

148

the sequence generated by the gradient descent algorithm, with a stepsize η ∈ (0, 1
L
]. Then

for θ∗ = arg minθ ℓ(θ) and for all t ∈ N, we have

∥θ(t) − θ∗∥2
2 ⩽ (1 − ηµ)t∥θ(0) − θ∗∥2

2.

Fact 8.24 (Folklore). For any n, T ∈ N+, we have

(1 −
1
n
)T ⩽ e−T/n.

We now present a rigorous upper bound on the error magnitude of the gradient
descent algorithm’s output after T iterations, elucidating the convergence properties
of this optimization method in the context of linear vector generation.

Theorem 8.25. If the following holds:

• Let T be the loop number.

• Let X ∈ Rn×d, y ∈ Rn, and θ ∈ Rd be defined in Definition 8.9.

• Let the condition number κ = λmax(X⊤X)
λmin(X⊤X)

.

• The step size η = 1
L

.

• Let µ and L be defined in Definition 8.18 and Definition 8.19.

• For ℓ(θ) defined in Definition 8.9, we have ℓ(θ) is L-smooth and µ strong convex,
where L = ∥X⊤X∥ and µ = λmin(X

⊤X).

• The initial point θ(0) satisfies ∥θ(0) − θ∗∥2 ⩽ R.

Then, we have

∥θ∗ − θ(T)∥2
2 ⩽ e

−T/κR2.

Proof. First, we have

∥θ(t) − θ∗∥2
2 ⩽ (1 − ηµ)t∥θ(0) − θ∗∥2

2

149

⩽ (1 −
µ

L
)t∥θ(0) − θ∗∥2

2

where the first step follows from Lemma 8.23, the second step follows from we
choose η(t) = 1

L
. Then consider the term µ

L
, we have

µ

L
=
λmin(X

⊤X)

∥X⊤X∥
=

1
κ

where the first step follows from Lemma 8.20 and Lemma 8.22, the second step
follows the definition of condition number κ = λmax(X⊤X)

λmin(X⊤X)
.

Then substituting this back, we have

∥θ(T) − θ∗∥2
2 ⩽ (1 −

1
κ
)T∥θ(0) − θ∗∥2

2

⩽ e−T/κ∥θ(0) − θ∗∥2
2

⩽ e−T/κR2

where the first step follows from basic algebra, the second step follows from (1 −

1/κ)κ < e−1 (Fact 8.24), and the last step follows from ∥θ(0) − θ∗∥2 ⩽ R.

Theorem 8.25 tells us that GD can well solve linear regression tasks. In particular,
when the input data has a good condition number, the approximation error will
exponentially decay to 0. We use the above insights in the proof of our main results
(Theorem 8.16).

8.6 Experiments
In this section, we aim to verify our theory by evaluating the convergence behavior
of gradient descent for linear vector generation. We designed our experiment to
examine the impact of varying sample sizes on convergence rates while keeping the
feature dimension fixed. Our results demonstrate that empirical convergence rates
consistently outperform theoretical upper bounds across all sample sizes, with

150

significant improvement in convergence speed as the condition number decreases,
validating our theoretical predictions.

0 50 100 150 200
T

60

50

40

30

20

10

0

lo
g(

er
ro

r/i
ni

tia
l_e

rro
r)

Convergence rate comparison (d=4)
Emp n=16, =4.57

Theory n=16, =4.57

Emp n=32, =3.13

Theory n=32, =3.13

Emp n=64, =2.07

Theory n=64, =2.07

Emp n=128, =1.62

Theory n=128, =1.62

Figure 8.1: The convergence rate comparison for gradient descent in linear vec-
tor generation with a fixed dimension d = 4 and varying sample sizes n ∈
{16, 32, 64, 128} and their corresponding condition number κ. The ‘Emp’ means the
empirical error of our experiments. The ‘Theory’ means the theoretical bound in
Theorem 8.16. The y-axis is the logarithm of normalized error and the x-axis is
the number of loops T . Both empirical (solid lines) and theoretical (dashed lines)
results are presented for each n. The plot demonstrates that as the sample size n
increases, the condition number will decrease, so the convergence rate improves.
Thus, with larger n values, there will be a steeper slope and faster convergence to
the optimal solution.

Experiment Setup. In this experiment, we aimed to investigate the convergence
behavior of multi-step gradient descent for Linear Looped Transformer (Defini-
tion 8.7) in-context learning the linear vector generation task (Definition 8.4). We
randomly draw each entry of X ∈ Rn×d from standard Gaussian distribution,
N(0, 1), and response variables y = Xθ∗, where θ∗ ∈ Rd was randomly chosen. Our
experiments focused on scenarios with d fixed at 4 and n varying in {16, 32, 64, 128}.
For each (n,d) combination, we implemented gradient descent with T = 200 itera-

151

tions and learning rate η = 1/L, where L = ∥X⊤X∥. To ensure statistical robustness,
we conducted 10 independent trials for each configuration. Convergence was mea-
sured by tracking ∥θ(t) − θ∗∥2

2, where θ∗ is the optimal least squares solution. To
facilitate comparison across different problem sizes, we normalized error plots by
the initial error, plotting log(∥θ(t)−θ∗∥2

2/∥θ(0)−θ∗∥2
2) against t. This normalization

enabled a clear comparison of relative decay rates, irrespective of initial error mag-
nitudes, thus providing insights into the impact of condition number on gradient
descent convergence in the linear vector generation task.

Result Interpretation. Our experiment investigates the convergence behavior of
gradient descent for linear vector generation with varying sample sizes n and a
fixed feature dimension d = 4. Figure 8.1 illustrates the convergence rates for differ-
ent n values {16, 32, 64, 128}, comparing empirical results with theoretical bounds
in Theorem 8.16. A key aspect of this experiment is the condition number κ, which
decreases as the number of examples increases. The average κ values for the dif-
ferent sample sizes are {4.57, 3.13, 2.07, 1.62}, corresponding to n = {16, 32, 64, 128}
respectively. This inverse relationship between n and κ is noteworthy, as it sig-
nificantly influences the convergence rates. The results demonstrate that as the
sample size n increases, the convergence rate improves substantially. This is ev-
ident from the steeper slopes of both empirical and theoretical lines for larger n
values. Importantly, the empirical convergence rates consistently outperform the
theoretical upper bounds across all sample sizes, with the gap between empirical
and theoretical performance narrowing as n increases. This observation aligns with
our theoretical expectations in Theorem 8.16 and highlights the crucial role of the
condition number in determining convergence behavior.

8.7 Conclusion
In this work, we have demonstrated that linear looped Transformers can efficiently
implement multi-step gradient descent for in-context learning, requiring only a
reasonable number of examples when input data is well-conditioned. This finding

152

relieves the previous assumptions of an exponential number of in-context examples
and offers new insights into the capabilities of Transformer architectures. Our
theoretical analysis and preliminary experiments pave the way for more efficient
inference algorithms in large language models and open avenues for future research
in this domain.

153

9 discovering the gems in early layers: accelerating
long-context llms with 1000x input token reduction

Contribution statement. This chapter is joint work with Yifei Ming, Xuan-Phi
Nguyen, Yingyu Liang, and Shafiq Joty. The author Zhenmei Shi proposed the
method, contributed to all theoretical analysis, and completed all the experiments.
The results in this chapter is submitted to ICLR 2025 (Shi et al., 2024a).

9.1 Introduction
Large Language Models (LLMs) have demonstrated impressive abilities (Wei
et al., 2022c; Bubeck et al., 2023) and found widespread application in various AI
systems, such as ChatGPT (Schulman et al., 2022), Gemini (Team et al., 2023), and
Claude (Anthropic, 2024), and so on. They are also a fundamental component in
building language-based AI agents that can orchestrate plans and execute complex
tasks through interaction with external tools. A key requirement for many of
these applications is the ability to process long-context inputs. This ability can
also potentially eliminate the need of a retriever in retrieval augmented generation
(RAG) (Xu et al., 2024b) or enhance its performance (Jiang et al., 2024c). Therefore,
significant efforts have been made recently to build LLMs that support long context
inputs. For instance, LLaMA 3.1 (AI, 2024), Mistral (Jiang et al., 2023a), and Phi
3.5 (Abdin et al., 2024) now support input sequences of up to 128K tokens, while
Gemini can handle inputs of up to 1M tokens. However, processing such lengthy
inputs comes at a substantial cost in terms of computational resources and time.
Therefore, accelerating the LLM generation speed while simultaneously reducing
GPU memory consumption for long-context inputs is essential to minimize response
latency and increase throughput for LLM API calls.

One prominent optimization for fast text generation in decoder-only LLMs (i.e.,
using a causal attention mask) is the KV cache. Specifically, there are two phases
involved in auto-regressive generation. Given a long context input, the first is the

154

prompt computation phase, when the LLM computes the KV cache for all layers,
storing the intermediate attention keys and values of the input tokens. Next, in
the iterative generation phase, the LLM generates tokens iteratively using the pre-
computed KV cache, avoiding redundant computations. GPU memory usage and
running time scale linearly with the KV cache size, meaning that the computational
is high for long inputs.

To reduce GPU memory usage and running time during the iterative generation
phase, H2O (Zhang et al., 2023e) and SnapKV (Li et al., 2024g) introduce static
methods to compress/evict the KV cache. These techniques can shrink the KV
cache size from 128K to 1024 with negligible performance loss, resulting in faster
speeds and lower GPU memory consumption during the iterative generation phase.
However, these methods do not improve the efficiency of the prompt computation
phase, which becomes the dominant bottleneck as the input context lengthens.
Thus, we ask:

Can we accelerate the speed and reduce memory usage during the prompt computation
phase?

Top k selection
based on last row

A
tte

nt
io

n
M

at
rix

: Q
KT

Useful information
for retrieval

Figure 9.2: The last row of at-
tention matrices in early lay-
ers can locate answer-related
tokens.

We observe that when serving a query, LLMs
often find the necessary information in the early lay-
ers, even before generating the answer. Specifically,
the relevant tokens can be identified using the at-
tention matrix from these early layers (Figure 9.2),
which we refer to as filter layers. Figure 9.1 provides
a real example from the Needle in a Haystack task,
where LLMs must find a small piece of informa-
tion within a large context. For LLaMA 3.1 8B, we
observe that the information needed to answer the
query can be distilled from the attention matrix in
any of the 13th-19th layers. Furthermore, LLMs ex-
plicitly summarize the required information in these
filter layers. As a consequence, we only need to per-

155

Text selection
on the first
few layer

Full LLM

Top k selection based
on the last row of
attention matrix

108,172 tokens
100 tokens 1,000 times

compress
<|begin_of_text|><|im_start|> This is
a very long story book: <book>
October 2015 When I talk to a startup
that's been operating for more than
……
as a scripting language for Unix. (It
would be hard to make it worse.
The best thing to do in San
Francisco is eat a sandwich and sit
in Dolores Park on a sunny day.
) But I think there are areas where
……
If you look at the history of programmi
</book>.
Based on the content of the book,
Question: What is the best thing to
do in San Francisco?
Answer:

<|begin_of_text|>

<||> This book: < What a bang that
balloon is going

to make when someone pops it by:

Woman with hammer.N trick to call
That sounds hipper than Lisp toThe
best thing to do in San Francisco
is eat a sandwich and sit in
Dolores Park on a sunny day.

) But you. trash I sawcarrying case.
I looked inside Is real at

and say," and Question: What is
the to do in San Francisco?

Answer:

Figure 9.1: Illustration of our method GemFilter: generation with context selection
based on early filter layers. We demonstrate a real Needle in a Haystack task
(Section 9.4.1). The original input consists of 108,172 tokens, including the initial
instruction, key message, and the query. In the first step, we use the 13th layer of the
LLM (LLaMA 3.1 8B Instruct) as a filter to compress the input tokens by choosing
the top k indices from the last row of the attention matrix. Notably, the selected
input retains the initial instruction, key message, and query. GemFilter achieves a
1000× compression, reducing the input token length to 100. In the second step, we
feed the selected tokens for full LLM inference using a standard generation function,
which produces the correct output. GemFilter significantly reduces running time
and GPU memory with negligible performance loss.

form the prompt computation on a long context input for the filter layers, allowing
us to compress the input tokens into a smaller subset (e.g., reducing from 128K
tokens to 100), saving both time and GPU memory. We then feed the selected
tokens for full model inference and proceed with a standard generation function.
Algorithm 2 in Section 9.3 presents our method GemFilter.

As shown in Figure 9.3, GemFilter runs faster and consumes less GPU memory
than SnapKV/H2O and standard attention (full KV cache) during the prompt
computation phase. During the iterative generation phase, GemFilter has the same
running time and GPU memory consumption as SnapKV/H2O, both of which
outperform standard attention. We discuss the complexity further in Section 9.3.2
theoretically and in Section 9.4.5 empirically. GemFilter significantly outperforms
standard attention and SnapKV on the Needle in a Haystack benchmark (Sec-

156

8192 16384 32768 65536 131072
Input token number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Ru

nn
in

g
tim

e:
 se

co
nd

s
LLaMA 3.1 8B Instruct running time comparison

standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

10

20

30

40

50

60

GP
U

Pe
ak

 M
em

or
y:

 G
B

LLaMA 3.1 8B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

Figure 9.3: Comparison of time and GPU memory usage across different methods
on LLaMA 3.1 8B Instruct. ‘gemfilter’ represents our method, using the 13th layer
as the filter. It achieves a 2.4× speedup and reduces GPU memory usage by 30%
compared to SnapKV. The iterative generation is evaluated on 50 tokens generation.
Additional results can be found in Section 9.4.5.

tion 9.4.1). Additionally, on LongBench, a multi-task benchmark designed to rig-
orously evaluate long-context understanding across various datasets, GemFilter
achieves performance comparable to SnapKV/H2O (Section 9.4.2). Furthermore,
our ablation study in Section 9.4.3 shows that our method is quite robust to the
filter layer selection strategy and Section 9.4.4 shows that each component in our
algorithm is essential.

Our contributions and advantages are:

• We found that LLMs can identify relevant tokens using attention matrices in
the early layers, suggesting crucial information is recognized before the answer
generation. Furthermore, LLMs explicitly summarize this information within
specific filter layers. This observation provides insights into LLM mechanisms
and opens avenues for LLM understanding and algorithm design.

• Leveraging this insight, we develop GemFilter, formulated in Algorithm 2,
an inference strategy that utilizes early LLM layers as a filter to select and
compress input tokens into a small subset to be processed by the full model
(Figure 9.1). GemFilter achieves a 2.4× speedup and reduces GPU memory
consumption by 30% compared to state-of-the-art methods like SnapKV.

157

• GemFilter significantly outperforms both standard attention (all KV cache)
and SnapKV on the Needle in a Haystack benchmark (Section 9.4.1), while
maintaining performance comparable to SnapKV/H2O on the LongBench
benchmark (Table 9.1).

• We provide a thorough ablation studies for the GemFilter in Section 9.4.3 and
Section 9.4.4.

• Our approach offers several advantages: it is simple, training-free, and broadly
applicable to various LLMs. Furthermore, it enhances interpretability by
allowing humans to directly inspect the selected token sequence.

9.2 Related Works
Generation Speed-up with Long Context Input. One effective technique to ac-
celerate auto-regressive generation is KV cache compression/eviction. During
generation, LLMs store the previous key and value matrices to reduce computa-
tional complexity. However, when the input context is long (e.g., 128K tokens),
the memory consumption and running time associated with the KV cache dom-
inate iterative generation. Many studies have focused on KV cache eviction. For
instance, Ge et al. (2023) evict long-range contexts on attention heads to prioritize
local contexts, using the KV cache only for heads that broadly attend to all tokens.
Streaming LLM (Xiao et al., 2023) introduces an attention sink that retains only the
first few tokens and the latest k tokens in the KV cache to enable fast streaming
generation. LOOK-M (Wan et al., 2024) applies KV eviction in the multimodality
so that the model only needs to look once for the image. LongWriter (Bai et al.,
2024b) uses KV eviction to enable LLMs to generate coherent outputs exceeding
20,000 words. MInference 1.0 (Jiang et al., 2024a) introduces ∧-shape, vertical-slash,
and block-sparse attention head and determines the optimal KV cache pattern for
each attention head offline and dynamically builds sparse indices based on the
assigned query during inference. QuickLLaMA (Li et al., 2024c) classifies the KV
cache to many subsets, e.g., query tokens, context tokens, global tokens, and local

158

tokens, and only preserves some types of tokens in the KV cache. ThinK (Xu et al.,
2024c) proposes a query-dependent KV cache pruning method by pruning the
least significant channel dimensions of the KV cache. H2O (Zhang et al., 2023e)
retains only tokens contributing to cumulative attention. SnapKV (Li et al., 2024g)
evicts non-essential KV positions for each attention head based on observation
windows. While the aforementioned studies focus on eviction and compression
of the KV cache during the prompt computation phase to optimize the iterative
generation phase, they do not reduce the running time or GPU memory usage
during the prompt computation phase. In contrast, our method, GemFilter, achieves
both reduced running time and GPU memory usage in the prompt computation
phase, as well as during the iterative generation phase. We provide a more detailed
comparison in Appendix G.2.

More related to our work, Li et al. (2023g) compress input sequences by pruning
redundancy in the context, making inputs more compact. However, they need
to keep 50% of input tokens to keep the LLMs’ performance, whereas GemFilter
achieves comparable performance by only reserving 1% of input tokens. For further
details, we refer the reader to Section 9.4.1. The LLMLingua series methods (Jiang
et al., 2023b; Pan et al., 2024; Jiang et al., 2024b) present a coarse-to-fine approach
for prompt compression. It leverages a budget controller to ensure semantic in-
tegrity even at high compression ratios, employs a token-level iterative compression
algorithm to model interdependencies within the compressed content, and utilizes
an instruction-tuning strategy to achieve distribution alignment across language
models.

9.3 Method
Notations and Preliminary. While the Transformer and self-attention architecture
(Vaswani et al., 2017) have already become overwhelmingly popular, we first
introduce preliminary definitions to provide a better methodological connection to
our proposed GemFilter method in Section 9.3.1.

For any positive integer n, we use [n] to denote the set {1, 2, · · · ,n}. We use ◦ to

159

denote function composition and⊙ to denote the Hardamard product. Let n be the
input token/prompt length, d the hidden feature dimension, and V the vocabulary
set. We now introduce the key concept of attention and transformers. We first
define the query, key, and value matrices. It is important to note that during text
generation, the key and value matrices are also referred to as the KV cache, as they
are stored in GPU memory to reduce running time during the iterative prediction
of the next token.

Definition 9.1 (Single layer self-attention). Let Q ∈ Rn×d be the query matrix ,
K ∈ Rn×d the key cache, and V ∈ Rn×d the value cache. LetMc ∈ {0, 1}n×n be the causal
attention mask, where (Mc)i,j is 1 if i ⩾ j and 0 otherwise. The self-attention function
Attn is defined as:

Attn(Q,K,V) =Mc ⊙ Softmax(QK⊤/
√
d) · V

Definition 9.2 (Multi-layer transformer). Let T ∈ Vn represent the input tokens, and
let m denote the number of transformer layers. Let gi represent components in the i-th
transformer layer other than self-attention, such as layer normalization, residual connections,
and the MLP block, where gi : Rn×d → Rn×d for any i ∈ {0, 1, . . . ,m}. Let Attni denote
the self-attention module in the i-th transformer layer. We define anm-layer transformer
F1:m : Vn → Rn×d as

F1:m(T) := gm ◦ Attnm ◦ gm−1 ◦ · · · ◦ g1 ◦ Attn1 ◦ g0 ◦ E(T) ∈ Rn×d,

where E is the input embedding function mapping the input tokens to hidden features using
the vocabulary dictionary, i.e., E(T) ∈ Rn×d.

Note that the above definitions use a single attention head for simplicity, but in
practice, multi-head attention is used (Vaswani et al., 2017).

160

Algorithm 2 GemFilter: Generation with Token Selection Based on Early Layers
1: procedure SelectionGen(F1:m, T ∈ [V]n, r ∈ [m],k ∈ [n])
2: ▷ F1:m : Anm-layer transformer network; T : input sequence of tokens
3: ▷ r: filter layer index for token selection; k: number of selected tokens
4: Get Q(r),K(r) by doing a r-layer forward pass: F1:r(T)
5: ▷ Q(r),K(r) ∈ Rn×d: the r-th layer query, key
6: J← topk_index(Q(r)

n K
(r)⊤,k) ▷ Q

(r)
n : the last row of Q(r); Q(r)

n K(r)⊤ ∈ Rn are
attn scores

7: Sort the indices in J ▷ J ⊆ [n] and |J| = k

8: return Gen(F1:m, TJ) ▷ Gen is generation function, TJ ∈ [V]k is a sub-sequence of
T on J

9: end procedure

9.3.1 Our Algorithm: GemFilter

We present our method, GemFilter, in Algorithm 2. We also present PyTorch code
in Appendix G.4.1 for the reader’s interests. The high-level idea is to run the LLM
twice. In the first pass, we run only the early layers of the LLM to select the key
input tokens. This corresponds to the prompt computation phase (Line 4-7 of
Algorithm 2). This process selects the top k tokens that receive the most attention
from the last query token. In the second pass, we feed the selected tokens to the
full LLM and run the generation function, corresponding to the iterative generation
phase (Line 8). Below, we explain Algorithm 2 step by step.

The input of the algorithm is an m-layer transformer F1 (Definition 9.2), an
input token sequence T ∈ Vn, and two hyperparameters r ⩽ m,k ⩽ n, where r
represents the index of the filter layer for context token selection and k denotes
the number of tokens to select. For example, in the case of LLaMA 3.1 8B Instruct
(Figure 9.1), we havem = 32, r = 13, and k = 1024.

In the first step (Line 4), we run only the first r layers forward to serve as a filter,
obtaining the r-th layer’s query and key matrices, Q(r) and K(r). Note that we do
not need to run all layers of the LLM on a long context input, thereby saving both
computation time and memory (see detailed analysis in Section 9.3.2). In Line 6,
we select token indices based on the r-th layer attention matrix. The selection is

161

made by identifying the k largest values from the last row of the attention matrix,
i.e., the inner product between the last query token Q(r)

n and all key tokens K(r).
For multi-head attention, the top-k indices are selected based on the summation
of the last row across the attention matrices of all heads. For instance, suppose
we have h attention heads, and let Q(r,j),K(r,j) ∈ Rn×d represent the query and
key matrices for the r-th layer and j-th attention head. Then, we compute J ←
topk_index(

∑h
j=1Q

(r,j)
n K(r,j)⊤,k), where J is a set of top k index selection. Note

that our method uses a single index set J, whereas SnapKV (Li et al., 2024g) and
H2O (Zhang et al., 2023e) use different index sets for each layer and attention
head, resulting in m · h index sets in total. A detailed discussion is provided in
Appendix G.2.

In Line 6, J is sorted by inner product values. However, we need to re-sort J so
that the selected tokens follow their original input order, ensuring, for example,
that the ⟨bos⟩ token is placed at the beginning. Line 7 performs this reordering
operation. Finally, in Line 8, we can run any language generation function using
the selected tokens TJ, which is a sub-sequence of T on the index set J, across all
layers. This generation is efficient as the input context length is reduced from n to
k, e.g., from 128K to 1024 tokens in Figure 9.1. Below, we provide a formal time
complexity analysis.

9.3.2 Running Time and Memory Complexity Analysis

The results of our analysis on time complexity and GPU memory consumption are
presented in Theorem 9.3 below, with the proof deferred to Appendix G.3.

Theorem 9.3 (Complexity analysis). Let n be the input sequence (prompt) length and
d the hidden feature dimensions. In our Algorithm 2, GemFilter uses the r-th layer as a
filter to select k input tokens. Let SnapKV and H2O also use k as their cache size. Assume
the LLM has m attention layers, each with h attention heads, and each transformer layer’s
parameters consume w GPU memory. Assuming that we generate t tokens with the Gen
function and n ⩾ max{d,k, t}, the following table summarizes the complexity for standard
attention, SnapKV and H2O, and GemFilter:

162

Complexity Standard attention SnapKV and H2O GemFilter

Time
Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)

Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem.
Prompt Comp. mw+ 2mhnd mw+ 2hnd+ 2mhkd rw+ 2hnd
Iter. generation mw+ 2mh(n+ t)d mw+ 2mh(k+ t)d mw+ 2mh(k+ t)d

Recall that there are two phases in text generation. The first phase is prompt
computation, which involves attention computation on the long context input to-
kens and generating the KV cache. The second phase is iterative generation, where
auto-regressive generation occurs based on the pre-computed KV cache. Theo-
rem 9.3 demonstrates that GemFilter is faster and consumes less GPU memory
than SnapKV/H2O and standard attention during the prompt computation phase.
Additionally, during the iterative generation phase, GemFilter has the same running
time and GPU memory consumption as SnapKV/H2O, which is significantly better
than standard attention. This conclusion aligns with our experimental results in
Section 9.4.5.

Case Study. Let us consider the case n≫ k ≈ t, e.g., n =128K, k = t = 1024 and
r < m. During the prompt computation phase, we have the running time and the
GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(m : m : r),

Standard attention : SnapKV/H2O : GemFilter ≈ mw+mhnd : mw+ hnd : rw+ hnd,

We see that GemFilter has a lower time complexity and less GPU memory consump-
tion than standard attention, SnapKV, and H2O. During the iterative generation
phase, we have the running time and the GPU memory consumption:

Standard attention : SnapKV/H2O : GemFilter = Θ(n : k : k),

Standard attention : SnapKV/H2O : GemFilter ≈ w/hd+ 2n : w/hd+ 4k : w/hd+ 4k,

163

As such, GemFilter has the same time complexity and GPU memory consumption
as SnapKV/H2O, while significantly outperforming the standard attention. The
running time bottleneck for all methods occurs during prompt computation, which
takes Θ(mhn2d) for standard attention, SnapKV, and H2O. In contrast, GemFilter
only requires Θ(rhn2d) for prompt computation, as it only processes the early
layers of the LLMs to select and compress the input tokens during the first run.
See detailed proof in Appendix G.3. Note that the GPU memory bottleneck for
standard attention occurs during iterative generation, while for other methods,
the memory bottleneck arises during prompt computation due to the reduced KV
cache. GemFilter consumes less GPU memory than SnapKV and H2O because it
only requires loading some layer model weights when processing the long context
input in its first run. Our empirical results in Section 9.4.5 support our complexity
analysis findings.

9.4 Experiments
Model and Datasets. We evaluated our approach using three popular long-
context models: LLaMA 3.1 8B Instruct1 (AI, 2024), Mistral Nemo 12B Instruct2

(Jiang et al., 2023a), and Phi 3.5 Mini 3.8B Instruct3 (Abdin et al., 2024), all of
which support an input token length of 128K. We compared our method, Gem-
Filter, against standard attention and two state-of-the-art methods, SnapKV (Li
et al., 2024g) and H2O (Zhang et al., 2023e)4. For our experiments, we used two
popular datasets: Needle in a Haystack (Kamradt, 2024) (Section 9.4.1) and Long-
Bench (Bai et al., 2023) (Section 9.4.2). More implementation details are provided
in Appendix G.4.2.

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
2https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
3https://huggingface.co/microsoft/Phi-3.5-mini-instruct
4While there are many other generation acceleration methods, they may not be directly com-

parable to ours as they use orthogonal techniques. We refer the reader to Section 9.2 for further
details.

164

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t
Pressure Testing Mistral Nemo 12B Instruct All KV

Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct All KV
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) All KV. Mistral Nemo average score: 0.486; LLaMA 3.1 average score: 0.841.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
10

00
75

13
14

02
6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) SnapKV-1024. Mistral Nemo average score: 0.494; LLaMA 3.1 average score: 0.749.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-13)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) GemFilter-1024. Mistral Nemo average score: 0.838; LLaMA 3.1 average score: 0.887.

Figure 9.4: Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model (left column) and the LLaMA 3.1 8B
Instruct model (right column). Results for the Phi 3.5 Mini 3.8B Instruct model
are provided in Appendix G.4.3. The x-axis represents the length of the input
tokens, while the y-axis shows the position depth percentage of the ‘needle’ infor-
mation (e.g., 0% indicates the beginning, and 100% indicates the end). A higher
score reflects better performance, meaning more effective retrieval of the ‘needle’
information. GemFilter significantly outperforms both standard attention (full KV
cache) and SnapKV.

Filter Layer. Except for Section 9.4.3, for context selection, we always use the index
of 13 out of 32, 19 out of 40, and 19 out of 32 layers as the input filter for LLaMA

165

3.1, Mistral Nemo and Phi 3.5, respectively. In Section 9.4.3, we provide an ablation
study for the filter layer choice.

9.4.1 Needle in a Haystack

The Needle in a Haystack (Kamradt, 2024) benchmark serves as a pressure test,
challenging LLMs to retrieve accurate information from a specific sentence (the
‘needle’) hidden within an extensive document (the ‘haystack’), where the sentence
can appear at any arbitrary location. The difficulty increases as the length of the
haystack grows. We use input lengths of 60K for Mistral Nemo 12B Instruct and
120K for LLaMA 3.1 8B Instruct, as these are the maximum lengths for standard
attention on two A100-40GB GPUs. The KV cache size is set to 1024 for both SnapKV
and GemFilter. In Figure 9.4, we see that GemFilter significantly outperforms both
All KV (standard attention) and SnapKV with Mistral Nemo and LLaMA 3.1.5 The
Needle in a Haystack results suggest that our method, GemFilter, achieves superior
retrieval performance for long input contexts compared to SnapKV and standard
attention. Additional results are provided in Appendix G.4.3.

9.4.2 LongBench

LongBench (Bai et al., 2023) is a multi-task benchmark designed to rigorously
evaluate long-context understanding capabilities across various datasets, including
single- and multi-document Question Answering (QA), summarization, few-shot
learning, and synthetic tasks. We evaluate the English-only dataset, following Li
et al. (2024g); Xu et al. (2024c). Note that we do not use a chat template in Table 9.1.
See Table G.1 in Appendix G.4.7 for more results of using a chat template.

For each LLM, we evaluate GemFilter and SnapKV with selected tokens/KV
caches of 1024, 2048, and 4096. We also evaluated standard attention (all KV cache)
and H2O with a KV cache size of 4096 on the LongBench dataset to further demon-

5H2O cannot be implemented with FlashAttention due to its cumulative attention score strategy
and is therefore unable to handle super long input contexts, which is why we exclude it here,
following Li et al. (2024g); Xu et al. (2024c).

166

Table 9.1: Performance comparison on LongBench across various LLMs and meth-
ods. A larger number means better performance. The best score is boldfaced.

Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasper
MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

GovRep
ort

QMSum

MultiN
ew

s

TREC
Triv

iaQA

SA
MSum

PCount
PRe

LLaMA 3.1 8B Instruct
All KV 32.02 13.04 27.34 16.23 16.05 11.22 34.52 23.41 26.89 73.0 91.64 43.8 7.16 97.73 36.72
H2O-4096 22.94 12.61 26.48 16.63 15.81 10.14 33.51 23.47 26.81 69.0 91.15 43.97 6.66 71.67 33.63
MInference 27.52 14.72 28.89 17.55 15.22 10.58 34.76 22.34 26.64 72.5 89.78 41.94 7.59 92.91 35.92
LLMLingua-1024 11.73 6.28 12.43 13.82 12.92 8.15 22.82 20.18 23.32 24.0 66.75 24.02 9.09 4.24 18.55
SnapKV-1024 31.98 11.17 25.33 14.81 15.73 10.69 26.95 22.89 25.86 67.5 91.89 42.85 7.67 98.16 35.25
GemFilter-1024 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50
SnapKV-2048 31.45 11.94 26.24 15.73 16.03 11.66 29.64 23.24 26.44 69.5 91.48 42.68 7.21 98.03 35.80
GemFilter-2048 24.36 12.63 25.39 19.58 17.03 14.11 33.15 22.31 26.49 69.5 91.59 42.64 4.61 98.75 35.87
SnapKV-4096 32.13 13.12 27.38 16.11 16.08 11.6 32.39 23.47 26.76 71.5 91.64 43.46 7.33 97.24 36.44
GemFilter-4096 25.66 12.95 27.38 17.76 15.6 12.02 34.17 23.25 26.87 70.0 92.36 43.34 5.96 98.0 36.09

Mistral Nemo 12B Instruct
All KV 28.91 40.74 54.65 52.15 48.36 30.28 30.66 23.53 26.31 75.0 89.66 44.32 4.5 100.0 46.36
H2O-4096 31.61 39.52 54.75 47.83 48.09 27.0 30.44 23.21 26.42 72.5 89.76 44.47 3.0 73.0 43.69
LLMLingua-1024 19.24 16.92 21.43 30.94 25.09 13.24 21.96 19.8 23.94 24.5 68.48 33.33 4.0 5.0 23.42
SnapKV-1024 26.42 38.49 52.96 51.21 47.86 27.06 24.32 22.66 25.52 73.0 89.82 43.16 3.5 100.0 44.71
GemFilter-1024 27.53 40.68 53.86 55.51 55.43 34.11 27.25 21.16 25.56 69.0 87.32 42.49 4.0 88.06 45.14
SnapKV-2048 25.85 40.69 54.48 51.96 49.06 26.95 26.29 23.17 25.9 74.5 89.66 43.89 4.0 99.5 45.42
GemFilter-2048 29.27 41.53 54.91 57.62 54.97 35.09 29.34 22.58 26.19 72.0 89.65 44.93 4.0 97.5 47.11
SnapKV-4096 27.92 40.9 54.75 51.69 48.16 29.19 29.17 23.36 26.35 75.0 89.66 43.93 4.5 100.0 46.04
GemFilter-4096 30.29 39.9 56.48 58.78 51.48 32.81 30.32 23.21 26.48 71.5 90.24 42.13 2.0 99.5 46.79

Phi 3.5 Mini 3.8B Instruct
All KV 27.51 17.23 35.63 21.7 25.7 11.68 34.14 23.17 24.95 71.5 87.37 13.08 7.17 83.85 34.62
H2O-4096 19.74 16.23 34.17 21.02 23.05 10.49 33.42 21.95 24.95 67.5 86.13 16.71 1.55 47.46 30.31
LLMLingua-1024 8.58 6.74 14.93 12.37 11.01 4.48 21.23 17.08 20.75 24.0 56.09 23.01 0.96 3.79 16.07
SnapKV-1024 24.31 16.03 34.93 20.72 26.02 13.74 28.27 22.03 24.02 67.5 87.71 14.57 6.08 85.6 33.68
GemFilter-1024 16.57 18.29 35.91 24.22 26.1 9.7 30.29 18.96 23.64 64.5 85.85 23.02 0.2 81.12 32.74
SnapKV-2048 26.41 16.59 36.99 21.8 26.07 12.57 30.88 22.37 24.51 69.5 87.54 13.13 6.57 83.92 34.20
GemFilter-2048 19.63 14.84 35.99 21.38 19.72 10.13 32.39 21.24 24.71 65.0 86.49 20.47 2.17 69.5 31.69
SnapKV-4096 27.25 17.42 36.9 21.37 25.42 12.55 32.9 22.6 24.87 70.5 87.45 13.28 6.81 84.04 34.53
GemFilter-4096 20.95 19.98 35.22 28.82 28.21 13.98 34.2 22.45 25.08 64.5 85.86 18.68 3.43 65.56 33.35

strate the performance of GemFilter, following Li et al. (2024g). Table 9.1 shows
a negligible performance drop in LLMs using GemFilter compared to standard
attention, even with only 1024 selected tokens. In some cases, GemFilter even out-
performs standard attention, such as GemFilter-2048 for Mistral Nemo 12B Instruct.
It demonstrates significantly better performance than H2O and comparable perfor-
mance with SnapKV. Furthermore, GemFilter effectively filters key information in
long contexts, provides interpretable summaries, and compresses the input context

167

0 5 10 15 20 25 30
LLaMA 3.1 8B Instruct layer index

0

10000

20000

30000

40000

To
ke

n
di

st
an

ce
Input: 108172 tokens. The distance between

top 1024 nearest neighbors and needle position.

(a) LLaMA 3.1 8B Instruct

0 5 10 15 20 25 30 35 40
Mistral Nemo 12B Instruct layer index

0

2500

5000

7500

10000

12500

15000

17500

20000

To
ke

n
di

st
an

ce

Input: 55989 tokens. The distance between
top 1024 nearest neighbors and needle position.

(b) Mistral Nemo 12B Instruct

0 5 10 15 20 25 30
Phi 3.5 Mini 3.8B Instruct layer index

0

10000

20000

30000

40000

50000

60000

To
ke

n
di

st
an

ce

Input: 122647 tokens. The distance between
top 1024 nearest neighbors and needle position.

(c) Phi 3.5 Mini 3.8B Instruct

Figure 9.5: Distance between the needle position and selected token index position
across three LLMs. The position depth percentage of the “needle” information
is 50%. The x-axis means the layer index of different LLMs. The y-axis means
min(topk_index − niddle_index). When y = 0, it means the needle information
is covered by the selected token. The needle information has been successfully
discovered in the early layers of all three LLMs.

effectively, e.g., it reduces input tokens to an average of 8% when using 1024 tokens,
and 32% when using 4096, with negligible accuracy drops.

In the section, we also evaluated on two important baselines, MInference (Jiang
et al., 2024a) and LLMLingua (Jiang et al., 2023b)6. We can see that MInfer-
ence (Jiang et al., 2024a) has compatible performance with SnapKV, while it requires
offline to determine the best attention pattern, which cannot save the prompt com-
putation phase running time. We can see that although LLMLingua (Jiang et al.,
2023b) achieves a good comparison rate, the performance may not be satisfactory.

9.4.3 Ablation Study: Filter Layer Choice

In this section, we explore which layer should be chosen as the input filter. First, we
aim to determine which layer of the LLM can best identify the position of the needle
information. In Figure 9.5, we plot the distance between the needle’s position and
the selected token index across all layers in the LLM. The results reveal three stages
in the prompt computation of LLMs. In the first stage, the initial layers preprocess

6We skip LongLLMLingua Jiang et al. (2024b) for a fair comparison, as it requires explicitly
separating the input context into text information and questions, while other methods do not require
that.

168

the input context and search for the ‘needle’. In the second stage, some early to
middle layers identify the needle information. Finally, in the third stage, the LLM
prepares to generate the output based on the selected tokens.

Table 9.2: Performance of our method on LongBench using different layers as an
input filter. A larger number means better performance. The best score is boldfaced.

Filter layer

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic

Average

Nrtv
QA

Qasper
MF-en

HotpotQ
A

2WikiM
QA

Musiq
ue

GovRep
ort

QMSum

MultiN
ew

s

TREC
Triv

iaQA

SA
MSum

PCount
PRe

LLaMA 3.1 8B Instruct (32 layers)
layer-1 16.32 7.38 13.86 13.9 13.21 5.22 25.61 20.09 24.51 47.0 76.59 39.78 2.55 23.01 23.50
layer-7 16.89 6.83 13.47 13.78 12.23 9.67 26.56 19.49 24.55 58.0 84.87 41.07 6.5 50.69 27.47
layer-12 15.53 7.73 16.53 17.08 13.33 9.88 28.94 20.32 25.01 58.0 88.16 40.42 8.36 43.06 28.03
layer-13 20.71 11.0 29.28 19.12 17.01 13.01 30.37 21.75 25.17 63.0 90.7 42.5 7.15 92.22 34.50
layer-14 21.14 13.06 25.45 20.89 17.32 12.9 29.85 22.06 24.91 62.0 89.88 42.33 6.17 92.17 34.30
layer-19 19.06 11.69 27.12 20.98 16.98 14.04 29.17 21.88 25.18 58.0 89.65 40.4 8.75 94.84 34.12
layer-25 24.74 12.33 26.18 18.56 16.3 12.54 28.66 21.75 25.14 61.5 88.78 39.47 8.67 90.59 33.94
layer-31 20.62 9.13 17.51 19.13 13.76 10.07 28.21 21.11 25.16 58.0 88.4 42.37 8.23 58.8 30.04

We then use the first layer that accurately identifies the needle’s position as
the input filter. In our experiments, we find that this layer remains consistent
across different inputs. As shown in Table 9.2, performance first increases and then
decreases as we select the input filter layer from the beginning to the end. The
peak performance is observed at the 13th layer, which supports our layer selection
strategy. Performance remains robust between layers 13 and 25, providing flexibility
in layer selection. Exploring the distinct functions of different layers presents an
interesting direction for future research.

9.4.4 More Ablation Study

To understand the intuition behind selecting tokens with the most attention specifi-
cally from the last query, we study using different rows rather than the last row in
the attention matrix for indices selection, as shown in Figure 9.2 in Appendix G.4.4.
In Figure G.3, we introduce two methods: (a) selecting middle rows of the attention
matrix and (2) selecting rows with the largest ℓ2 norm. Both methods fail in the
Needle in a Haystack task, verifying that selecting the last query token is essential.

169

Note that the performance improvement of GemFilter may stem from two factors:
(1) the selection of important tokens, and (2) the re-computation of these tokens,
which might mitigate issues like “lost-in-the-middle”. To understand whether both
factors made contributions, we provide an ablation study to isolate the contribution
of each factor in Figure G.4 of Appendix G.4.5. Furthermore, in Appendix G.4.6
Figure G.5, we show the index selection difference between Gemfilter and SnapKV.

9.4.5 Running Time and GPU Memory Consumption

In this section, we compare the running time and GPU memory consumption of
different methods with FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024)
support.7 The iterative generation running time and memory consumption are
evaluated on 50 tokens generation. As shown in Figure 9.3, our method, GemFilter,
achieves a 2.4× speedup compared to SnapKV and standard attention, with 30%
and 70% reductions in GPU memory usage, respectively. It saves both running time
and GPU memory by processing the long input context only during the first stage,
as described in Section 9.4.3. For the latter two stages, the LLMs only need to handle
compressed inputs. In Figure 9.6, we present a comparison of running time and
GPU memory consumption for Mistral Nemo 12B Instruct and Phi 3.5 Mini 3.8B
Instruct using various methods. GemFilter runs faster and uses less GPU memory
than the state-of-the-art methods, as discussed above. Additionally, Figure 9.3 and
Figure 9.6 further support our Theorem 9.3 in Section 9.3.2.

9.5 Conclusion
In this work, we presented a novel approach, GemFilter, to accelerate LLM inference
and reduce memory consumption for long context inputs. By leveraging the ability
of early LLM layers to identify relevant information, GemFilter achieves significant
improvements over existing techniques. It demonstrates a 2.4× speedup and 30%

7We exclude H2O as it does not support FlashAttention and thus requires more GPU memory
and running time than standard attention during prompt computation.

170

8192 16384 32768 65536 131072
Input token number

0

5

10

15

20

Ru
nn

in
g

tim
e:

 se
co

nd
s

Mistral Nemo 12B Instruct running time comparison
standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

20

40

60

80

GP
U

Pe
ak

 M
em

or
y:

 G
B

Mistral Nemo 12B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

(a) Mistral Nemo 12B Instruct

8192 16384 32768 65536 131072
Input token number

0

2

4

6

8

10

12

Ru
nn

in
g

tim
e:

 se
co

nd
s

Phi 3.5 Mini 3.8B Instruct running time comparison
standard prompt time
standard gen time
snapkv prompt time
snapkv gen time
gemfilter prompt time
gemfilter gen time

8192 16384 32768 65536 131072
Input token number

0

50

100

150

200

GP
U

Pe
ak

 M
em

or
y:

 G
B

Phi 3.5 Mini 3.8B Instruct GPU memory comparison
standard prompt GPU mem
standard gen GPU mem
snapkv prompt GPU mem
snapkv gen GPU mem
gemfilter prompt GPU mem
gemfilter gen GPU mem

(b) Phi 3.5 Mini 3.8B Instruct

Figure 9.6: Comparison of time and GPU memory usage across different methods
on Mistral Nemo 12B Instruct and Phi 3.5 Mini 3.8B Instruct. GemFilter uses the
19th layer as an input filter for both LLMs. It achieves a 2.4× speedup and reduces
GPU memory usage by 30% compared to SnapKV.

reduction in GPU memory usage compared to SOTA methods, while also showing
superior performance on the Needle in a Haystack benchmark. Our approach is
simple, training-free, applicable to various LLMs, and offers enhanced interpretabil-
ity by directly inspecting selected tokens. These results not only provide practical
benefits for LLM deployment, but also provide insight into a better understanding
of LLM internal mechanisms.

171

10 conclusion and future work

10.1 Thesis Overview
This thesis has explored the fundamental mechanisms of feature learning in neural
networks and their practical applications in foundation models. Through theoretical
analysis and empirical studies, we have demonstrated that feature learning emerges
from input data structures during neural network training and plays a crucial role
in foundation models’ adaptation to downstream applications.

Our research journey began with a theoretical investigation of feature learn-
ing emergence in neural networks. We demonstrated that neural networks can
efficiently learn class-relevant patterns in the early stages of training, using a sur-
prisingly small number of parameters. This capability stands in stark contrast to
traditional machine learning methods, which require exponentially many fixed
features to achieve comparable performance. Our analysis revealed that this effi-
ciency stems from the networks’ ability to discover and leverage inherent input data
structures, thereby avoiding the curse of dimensionality that plagues conventional
approaches.

We further developed a unified analysis framework for two-layer networks
trained by gradient descent, centered around the principle of feature learning from
gradients. This framework successfully explained several important phenomena,
including learning beyond kernel methods and the lottery ticket hypothesis. Our
investigation extended to Transformers, where we characterized the Fourier features
in one-layer architectures and uncovered intriguing relationships between model
scale and in-context learning behavior.

In the realm of practical applications, our work has yielded several significant
advances. We introduced nuclear norm regularization for domain generalization,
which effectively mitigates the impact of environmental features while promoting
the learning of domain-invariant features. Our contrastive regularization method
addressed the fundamental trade-off between universality and label efficiency in
foundation models. We also developed innovative approaches for Transformer

172

architectures, including looped Transformers for multi-step gradient descent in in-
context learning and the GemFilter algorithm for efficient processing of long-context
inputs in Large Language Models.

10.2 Future Research Directions
Looking ahead, our findings point to several promising research directions.

The first critical area involves adaptive feature selection in Retrieval-Augmented
Generation (RAG) systems. Current systems often use static feature extraction
methods, but our understanding of how feature learning emerges suggests the
potential for dynamic approaches. Future research should explore mechanisms for
adjusting feature extraction based on query complexity and context, potentially
leading to more efficient and accurate retrieval systems. This could involve devel-
oping adaptive architectures that can modulate their feature extraction depth and
breadth based on the input characteristics.

Cross-modal feature learning represents another frontier for investigation. As
foundation models increasingly handle multiple modalities, understanding how
features learned in one domain can enhance retrieval in another becomes crucial.
Future work should examine the transfer of features across modalities and develop
unified representations that can effectively capture cross-modal relationships while
maintaining computational efficiency.

Feature compression and efficiency present significant opportunities for ad-
vancement. As models grow larger and handle more extensive contexts, developing
methods for efficient feature storage and retrieval becomes paramount. Research
should focus on lossy compression techniques that preserve retrieval quality while
substantially reducing storage and computational requirements. This includes
investigating how to identify and retain the most task-relevant features while dis-
carding redundant or less important ones.

Temporal feature learning in continuously updated systems poses another im-
portant challenge. As knowledge bases expand and evolve, understanding how
to maintain feature relevance over time becomes crucial. Future research should

173

examine mechanisms for feature adaptation and retention in long-running systems,
including strategies for balancing the preservation of important historical features
with the incorporation of new knowledge.

10.3 Concluding Remarks
The exploration of feature learning in neural networks has revealed its fundamental
role in the success of modern machine learning systems. Our theoretical insights
into how feature learning emerges from data structures, combined with practical
applications in foundation models, have advanced our understanding of these
systems’ capabilities and limitations. As we look toward future developments, the
principles of feature learning will continue to guide improvements in efficiency,
adaptability, and performance.

The path forward requires careful balance between theoretical understanding
and practical implementation. While our work has illuminated many aspects of
feature learning, numerous questions remain about optimal feature extraction, cross-
modal integration, and temporal adaptation. Addressing these challenges will be
crucial for developing the next generation of intelligent systems that can efficiently
process, store, and utilize features across diverse applications and modalities.

As the field continues to evolve, the insights gained from studying feature
learning will undoubtedly play a vital role in shaping more efficient, adaptable,
and capable machine learning systems. The future of artificial intelligence lies not
just in larger models, but in better understanding and utilizing the fundamental
mechanisms that make learning possible.

174

a appendix for chapter 2

Section A.3 presents more technical discussion on related work. Section A.4-A.6
provides the complete proofs for our results in the main text. Section A.7 provides
the complete details and experimental results for our experiments.

Finally, Section A.8 provides the theoretical results and complete proofs for a
setting more general than that in the main text, allowing incoherent dictionaries,
unbalanced classes, and Gaussian noise in the data.

A.1 Ethics Statement
Our paper is mostly theoretical in nature and thus we foresee no immediate negative
ethical impact. We are of the opinion that our theoretical framework may lead
to better understanding and inspire development of improved network learning
methods, which may have a positive impact in practice. In addition to the theoretical
machine learning community, we perceive that our conceptual message that the
input structure is crucial for the network learning’s performance can be beneficial
to engineering-inclined machine learning researchers.

A.2 Reproducibility Statement
For theoretical results in the Section 2.4, a complete proof is provided in the Ap-
pendix A.4-A.6. The theoretical results and complete proofs for a setting more
general than that in the main text are provided in the Appendix A.8. For experi-
ments in the Section 2.6, complete details and experimental results are provided in
the Appendix Section A.7. The source code with explanations and comments is
provided in the supplementary material.

175

A.3 More Technical Discussion on Related Work
Advantage of Neural Networks over Linear Models on Fixed Features. A recent
line of work has turned to show learning settings where network learning provably
has advantage over linear models on fixed features; see the nice summary in Malach
et al. (2021). Here we highlight the results and focuses of the existing related studies
and discuss the differences from ours.

Yehudai and Shamir (2019) shows that the random feature method fails to
learn even a single ReLU neuron on Gaussian inputs unless its size is exponentially
large in dimension. This points out the limitation of the random feature method
(belonging to the fixed feature approach) but does not consider feature learning in
networks.

Some studies show that a single ReLU neuron can be learnt by gradient de-
scent (Yehudai and Ohad, 2020; Diakonikolas et al., 2020; Frei et al., 2020). The
analysis typically involves feature learning. However, their focus is different: they
do not show the advantage over fixed feature methods and do not consider the
effect of the input structures.

Zhou et al. (2021b) shows that in a special teacher-student setting, the student
network will do exact local convergence in a surprising way that all student neurons
will converge to one of the teacher neurons. The work does not consider the effect
of the input structure nor the advantage over fixed features.

Dou and Liang (2020) explains the advantage of network learning by construct-
ing adaptive Reproducing Kernel Hilbert Space (RKHS) indexed by the training
process of the neural network, and shows that adaptive RKHS benefits from a
smaller function space containing the residue comparing to RKHS. The work shows
the statistical advantage of networks over data-independent kernels, but does not
consider the optimization for learning the network.

Ghorbani et al. (2020) considers data generated from a hidden vector with
two subsets of variables, each uniformly distributed in a high-dimensional sphere
(with a different radius), while the label is determined by only the first subset of
variables. It shows the existence of good neural networks that can overcome the

176

curse of dimensionality by representing the best low-dimensional hidden structure.
However, it studies the approximation power of neural networks rather than the
learning, i.e., it does not show how to learn the good network.

Fang et al. (2019) argues that in the infinite width limit, a two-layer neural
network will learn a nearly optimal feature representation in the distribution sense,
thanks to the convexity of the limit problem. It is unclear how this result helps to
understand the feature learning procedure for practical networks, which is usually
a non-convex process.

Chen et al. (2020a) considers a fixed, randomly initialized neural network as a
representation function fed into another trainable network which is the quadratic
Taylor model of a wide two-layer network. It shows that learning over the random
representation can achieve improved sample complexities compared to learning
over the raw data. However, the representation considered is not learned, which is
different from our focus on feature learning.

Allen-Zhu and Li (2020a) considers Gaussian inputs with labels given by a
multiple-layer network with quadratic activations and skip connections (with
the assumption of information gap on the weights), and studies training a deep
network with quadratic activation. It shows that the trained network can learn
proper representations and obtain small errors while no polynomial fixed feature
methods can. On the other hand, it does not focus on the influence of input structure
on feature learning: note that its input distribution contains no information about
the “ground-truth” features in the target network. It also points out that the learned
features get improved during training: higher-level layers will help lower-level
layers to improve by backpropagating correction signals. Our analysis also shows
feature improvement which however is by signals from the input distribution.

Allen-Zhu and Li (2019) considers PAC learning with labels given by a depth-2
ResNet, and studies training an overparameterized depth-2 ResNet (using uniform
inputs over Boolean hypercube as an example). It shows the trained network can
obtain small errors while no polynomial kernel methods can obtain as good errors.
Similar to Allen-Zhu and Li (2020a), it does not focus on the influence of input
structure on feature learning or the advantage of networks.

177

Allen-Zhu and Li (2020b) studies how ensemble of deep learning models can
improve test accuracy and how the ensemble can be distilled into a single model.
It develops a theory which assumes the data has multi-view structure and shows
that the ensemble of independently trained networks can provably improve test
accuracy and the ensemble can also be provably distilled into a single model. The
analysis also relies on showing that the data structure can help the ensemble and
the distillation. On the other hand, their focus is on ensembles and is quite different
from ours: the analysis is on showing the multi-view input structure allows the
ensembles of networks to improve over single ones and ensembles of fixed feature
mappings do not have improvement. While our focus is on supervisedly learning
one single network that outperforms the fixed feature approaches.

Daniely and Malach (2020) considers the task of learning sparse parities with
two-layer networks, and the analysis suggests that the ability to learn the label-
correlated features also seems to be critical towards the success of neural networks,
although the authors did not explore much in this direction. Malach et al. (2021)
also considers similar learning problems but with specifically designed models for
the problems. The learning problems considered in Daniely and Malach (2020);
Malach et al. (2021) have input distributions that leak information about the target
labeling function, which is similar to our setting, and their analysis also shows
that the first gradient descent can learn a set of good features and later steps can
learn an accurate classifier on top. Our work is inspired by their studies, while
there are some important differences. First, their focuses are different from ours.
Daniely and Malach (2020) focuses on showing neural networks can learn targets
(i.e., k-parity functions) that are inherently non-linear. Our analysis generalizes
to more general distributions, including practically motivated ones. Malach et al.
(2021) focuses on strong separations between learning with gradient descent on
differentiable models (including typical neural networks) and learning using the
corresponding tangent kernels. The analysis is on specific differentiable models,
while our work is on two-layer neural networks similar to practical ones. Second,
our analysis relies on the feature improvement in the second gradient step. This is
not an artifact of the analysis but comes from our problem setup. While in Daniely

178

and Malach (2020) the data distribution allows some neurons to be sufficiently
good after the first gradient step and needs no feature improvement, our setup is
more general where the data distribution may not have a similar strong benign
effect and thus needs feature improvement in the second gradient step.

Most related to our work is Daniely and Malach (2020). Therefore, we provide
a detailed discussion to highlight the connections and differences.

1. Our problem setting is more general than that in Daniely and Malach (2020).
To see this, let our dictionary be the identity matrix, the set P to be the odd
numbers (i.e., the labeling function is a sparse parity). Furthermore, let the
distribution of the hidden representation be an equal mixture of the following
two:

a) D1: Uniform distribution over the hypercube.

b) D2: Irrelevant patterns ϕ̃j(j ̸∈ A) have appearance probability p0 =

1/2. And the distribution of relevant patterns ϕ̃j(j ∈ A) is: all 0’s with
probability 1/2, and all 1’s with probability 1/2.

Then our problem setting reduces to their setting (up to scaling/translation
of ϕ̃j’s). On the other hand, in general our setting allows for more choices for
the labeling, the dictionary, and the distributions over ϕ̃.

2. Upper bound: Because of the more general setting, our upper bound proof
requires technical novelty. Recall that in their work, the input distribution is
essentially a mixture of D1 and D2 above. In D2, the relevant patterns ϕ̃j(j ∈
A) have the specific structure of all 0’s or all 1’s with probability 1/2. This
allows to show that neurons with weight w satisfying

∑
j∈Awj = 0 will have

good gradients: small components from irrelevant patterns (their Lemma
7) and large components from relevant patterns (their Lemma 8). However,
in our setting, the relevant patterns do not have this specific structure, and
thus their proof technique is not applicable (or can be applied only when
we have an exponentially large number of hidden neurons so that some hit
the good positions at random initialization). What we showed is that the

179

gradient has some correlation with the good feature direction. So after the
first gradient step, the neuron weights are not good yet but are in a better
position for further improvement (in particular, their setting corresponds
to p0 = 1/2 which means large noise in the weights after the first step; see
discussion after our Lemma 2.6 in Section 2.5). Then the latter gradient steps
are able to improve the weights to better “signal-to-noise-ratio”. In summary,
our proof does not rely on their specific input structure or an exponentially
large number of hidden neurons for hitting some good positions. The key is
that the good feature will emerge with the help of the input structure, and
once in a better position, the neurons’ weights can be improved to the desired
quality.

3. Lower bound: On the other hand, our lower bound is proved by a reduction to
the lower bound results in Daniely and Malach (2020). They have shown that
D1 above can lead to large errors for fixed feature models of polynomial size.
Our proof is essentially constructing a mixture of D1 and D2 with mixture
weights p0 and (1−p0), and applying their lower bound for D1. See our proof
in Appendix A.5.

4. Conceptually, our work belongs to the same line of research as Daniely and
Malach (2020), to analyze how feature learning leads to the superior perfor-
mance of networks. While their analysis also relies on feature learning from
good gradients induced by input structure, their focus is more on separating
network learning and fixed feature models and has not explicitly explored
the impact of input structures (while we agree that such an explicit study will
not be difficult in their setting). More importantly, their input distribution
is specific and atypical in practice, which allows a specific type of feature
learning (as explained in the above discussion on upper bounds). Our work
thus considers a more general setting that is motivated by practical problems.
Our results then bring theoretical insights closer for explaining the feature
learning in practice and provide some positive evidence for the importance
of analysis under proper models of the input distributions.

180

Sparse Coding and Subspace Data Models. To analyze neural networks’ perfor-
mance, various data models have been considered. A practical way to model the
underlying structure of data is by assuming that a set of hidden variables exists and
the input data is a high dimensional projection of the hidden vector (possibly with
noise). Along this line, the classic sparse coding model has been used in existing
works for analyzing networks. Koehler and Risteski (2018) considers such a data
distribution where the label is given by a linear function on the hidden sparse
vector, but studies the approximation power of networks and classic polynomial
methods rather than the learning. Allen-Zhu and Li (2022) considers similar data
distributions, but studies the performance of networks under adversarial perturba-
tions. Another type of related data models assumes that the label is determined by
a subset of hidden variables. Ghorbani et al. (2020) considers a hidden vector with
two subsets of variables, each uniformly distributed in a high-dimensional sphere
(with a different radius), while the label is determined by only the first subset of
variables. However, Ghorbani et al. (2020) studies the approximation power of
neural networks rather than the learning. Compared to these studies, our work
assumes the input is given by a dictionary multiplied with a hidden vector (not
necessarily sparse) while the label is determined by a subset of the hidden vector,
as motivated by pattern recognition applications in practice. Furthermore, we focus
on the learning ability of networks instead of approximation.

A.4 Complete Proofs for Provable Guarantees of
Neural Networks

We first make a few remarks about the proof.
Remark. The analysis can be carried out for more gradient steps following similar

intuition, while we analyze two steps for simplicity.
Remark. Readers may notice that the network can be overparameterized. With

sufficient overparameterization and proper initialization and step sizes, network
learning becomes approximately NTK. However, here our learning scheme al-

181

lows going beyond this kernel regime: we use aggressive gradient updates λ(t)w =

1/(2η(t)) in the first two steps, completely forgetting the old weights to learn effec-
tive features. Using proper initialization and aggressive updates early to escape
the kernel regime has been studied in existing work (e.g., Woodworth et al. (2020);
Li et al. (2019)). Our result thus adds another concrete example.

Notations. For a vector v and an index set I, let vI denote the vector containing
the entries of v indexed by I, and v−I denote the vector containing the entries of v
with indices outside I.

By initialization, w(0)
i for i ∈ [m] are i.i.d. copies of the same random variable

w(0) ∼ N(0,σ2
wId×d); similar for a(0) and b(0). Let qℓ := ⟨w(0),Mℓ⟩, then ⟨w(0), x⟩ =

⟨ϕ,q⟩. Similarly, define q(t)
i,ℓ := ⟨w(t)

i ,Mℓ⟩. Let σ2
ϕ := po(1 − po)/σ̃

2 denote the
variance of ϕℓ for ℓ ̸∈ A.

We also define the following sets to denote typical initialization. For a fixed
δ ∈ (0, 1), define

Gw(δ) :=

{
w ∈ Rd : qℓ = ⟨w,Mℓ⟩,

σ2
w(D− k)

2 ⩽
∑
ℓ ̸∈A

q2
ℓ ⩽

3σ2
w(D− k)

2 ,

max
ℓ

|qℓ| ⩽ σw

√
2 log(Dm/δ)

}
, (A.1)

Ga(δ) := {a ∈ R : |a| ⩽ σa
√

2 log(m/δ)}. (A.2)

Gb(δ) := {b ∈ R : |b| ⩽ σb
√

2 log(m/δ)}. (A.3)

A.4.1 Existence of A Good Network

we first show that there exists a network that can fit the data distribution.

182

Lemma A.1. For some s,a,b ∈ R with a,b ⩾ 0, define a function δs,a,b : R→ R as

δs,a,b(z) = aœr(z− s+ b) − 2aœr(z− s) + aœr(z− s− b). (A.4)

where œr(z) = max{z, 0} is the ReLU activation function. Then

δs,a,b(z) =

0 when z ⩽ s− b,

a(z− s) + ab when s− b ⩽ z ⩽ s,

−a(z− s) + ab when s ⩽ z ⩽ s+ b,

0 when s+ b ⩽ z.

(A.5)

That is, δs,a,b(z) linearly interpolates between (s − b, 0), (s,ab), (s + b, 0) when z ∈
[s− b, s+ b], and is 0 elsewhere.

Proof of Lemma A.1. This can be simply verified for the four cases of the value of
z.

Lemma A.2 (Restatement of Lemma 2.5). For any D ∈ FΞ, there exists a network
g∗(x) =

∑n
i=1 a

∗
iσ(⟨w∗

i , x⟩ + b∗i) with y = g∗(x) for any (x,y) ∼ D. Furthermore,
the number of neurons n = 3(k + 1), |a∗

i | ⩽ 32k, 1/(32k) ⩽ |b∗i | ⩽ 1/2, w∗
i =

σ̃
∑
j∈AMj/(4k), and |⟨w∗

i , x⟩+ b∗i | ⩽ 1 for any i ∈ [n] and (x,y) ∼ D.

Proof of Lemma 2.5. Let w = σ̃
∑
j∈AMj and let µ =

∑
j∈A E[ϕ̃j]. We have

⟨w, x⟩ = σ̃
∑
j∈A

⟨Mj,Mϕ⟩ = σ̃
∑
j∈A

ϕj =
∑
j∈A

ϕ̃j − µ. (A.6)

Then by Lemma A.1,

g∗1(x) :=
∑
p∈P

δp−µ,2,1/2(⟨w, x⟩) −
∑

p̸∈P,0⩽p⩽k

δp−µ,2,1/2(⟨w, x⟩) (A.7)

=
∑
p∈P

δp,2,1/2(⟨w, x⟩+ µ) −
∑

p̸∈P,0⩽p⩽k

δp,2,1/2(⟨w, x⟩+ µ) (A.8)

183

=
∑
p∈P

δp,2,1/2

(∑
j∈A

ϕ̃j

)
−

∑
p̸∈P,0⩽p⩽k

δp,2,1/2

(∑
j∈A

ϕ̃j

)
(A.9)

= y (A.10)

for any (x,y) ∼ D. Similarly,

g∗2(x) :=
∑
p∈P

δp−µ+1/4,4,1/2(⟨w, x⟩) −
∑

p̸∈P,0⩽p⩽k

δp−µ+1/4,4,1/2(⟨w, x⟩) (A.11)

=
∑
p∈P

δp+1/4,4,1/2(⟨w, x⟩+ µ) −
∑

p̸∈P,0⩽p⩽k

δp+1/4,4,1/2(⟨w, x⟩+ µ) (A.12)

=
∑
p∈P

δp+1/4,4,1/2

(∑
j∈A

ϕ̃j

)
−

∑
p̸∈P,0⩽p⩽k

δp+1/4,4,1/2

(∑
j∈A

ϕ̃j

)
(A.13)

= y (A.14)

for any (x,y) ∼ D. Note that the bias terms in g∗1 and g∗2 have distance at least 1/4,
then at least one of them satisfies that all its bias terms have absolute value ⩾ 1/8.
Pick that one and denote it as g(x) =

∑n
i=1 aiœr(⟨wi, x⟩ + bi). By the positive

homogeneity of œr, we have

g(x) =
n∑
i=1

4kaiœr(⟨wi, x⟩/(4k) + bi/(4k)). (A.15)

Since for any (x,y) ∼ D, |⟨wi, x⟩/(4k) + bi/(4k)| ⩽ 1, then

g(x) =
n∑
i=1

4kaiσ(⟨wi, x⟩/(4k) + bi/(4k)) (A.16)

where σ is the truncated ReLU. Now we can set a∗
i = 4kai, w∗

i = wi/(4k),b∗i =

bi/(4k), to get our final g∗.

184

A.4.2 Initialization

We first show that with high probability, the initial weights are in typical positions.

Lemma A.3. For any δ ∈ (0, 1), with probability at least 1 − δ − 2 exp (−Θ(D− k))

over w(0),
σ2

w(D− k)/2 ⩽
∑
ℓ ̸∈A

q2
ℓ ⩽ 3σ2

w(D− k)/2,

max
ℓ

|qℓ| ⩽ σw

√
2 log(D/δ).

With probability at least 1 − δ over b(0),

|b(0)| ⩽ σb
√

2 log(1/δ).

With probability at least 1 − δ over a(0),

|a(0)| ⩽ σa
√

2 log(1/δ).

Proof of Lemma A.3. From q ∼ N(0,σ2
wId×d), we have:

• With probability ⩾ 1 − δ/2, maxℓ |qℓ| ⩽
√

2σ2
w log D

δ
, and

• For any subset S ⊆ [D], with probability ⩾ 1 − 2 exp (−Θ(|S|)), ∥qS∥2
2 ∈(

|S|σ2
w

2 , 3|S|σ2
w

2

)
.

Similar for b(0) and a(0). The lemma then follows.

Lemma A.4. We have:

• With probability ⩾ 1 − δ − 2m exp(−Θ(D − k)) over w(0)
i ’s, for all i ∈ [2m],

w(0)
i ∈ Gw(δ).

• With probability ⩾ 1 − δ over b(0)
i ’s, for all i ∈ [2m], b(0)

i ∈ Gb(δ).

• With probability ⩾ 1 − δ over a(0)
i ’s, for all i ∈ [2m], a(0)

i ∈ Ga(δ).

Proof of Lemma A.4. This follows from Lemma A.3 by union bound.

185

The following lemma about the typical w(0)
i ’s will be useful for later analysis.

Lemma A.5. Fix δ ∈ (0, 1). For any w(0)
i ∈ Gw(δ), we have

Pr
ϕ

[∑
ℓ ̸∈A

ϕℓq
(0)
i,ℓ ⩾ Θ

(√
(D− k)σ2

ϕσ
2
w

)]
= Θ(1) − O(log3/2(Dm/δ))√

(D− k)σ2
ϕσ̃

2
. (A.17)

Consequently, when po = Ω(k2/D) and k = Ω(log2(Dm/δ)),

Pr
ϕ

[∑
ℓ ̸∈A

ϕℓq
(0)
i,ℓ ⩾ Θ (σw)

]
= Θ(1) − O(1)

k1/4 . (A.18)

Proof of Lemma A.5. Note that for ℓ ̸∈ A, E[ϕℓ] = 0, E[ϕ2
ℓ] = σ2

ϕ, and E[|ϕℓ|3] =
Θ(σ2

ϕ/σ̃). Then the statement follows from Berry-Esseen Theorem.

A.4.3 Some Auxiliary Lemmas

The expression of the gradients will be used frequently.

Lemma A.6.

∂

∂wi

LD(g;σξ) = −aiE(x,y)∼D {yI[yg(x; ξ) ⩽ 1]EξiI[⟨wi, x⟩+ bi + ξi ∈ (0, 1)]x} ,

(A.19)
∂

∂bi
LD(g;σξ) = −aiE(x,y)∼D {yI[yg(x; ξ) ⩽ 1]EξiI[⟨wi, x⟩+ bi ∈ (0, 1)]} , (A.20)

∂

∂ai
LD(g;σξ) = −E(x,y)∼D {yI[yg(x; ξ) ⩽ 1]Eξiσ(⟨wi, x⟩+ bi + ξi)} . (A.21)

Proof of Lemma A.6. It follows from straightforward calculation.

We now show that a small subset of the entries in ϕ,q does not affect the
probability distribution of ⟨ϕ,q⟩much.

186

Lemma A.7. Suppose ν ∼ N(0,σ2). For any B ⊇ A and any b:∣∣∣∣ Pr
ϕ−B,ν

{⟨ϕ,q⟩+ ν ⩾ b}− Pr
ϕ−B,ν

{⟨ϕ−B,q−B⟩+ ν ⩾ b}

∣∣∣∣ (A.22)

⩽ O

(
|⟨ϕB,qB⟩|

(σ2
ϕ∥q−B∥2

2 + σ
2)1/2 +

σ3 + σ2
ϕ∥q−B∥3

3/σ̃

(σ2 + σ2
ϕ∥q−B∥2

2)
3/2

)
. (A.23)

Similarly, ∣∣∣∣ Pr
ϕ−B

{⟨ϕ,q⟩ ⩾ b}− Pr
ϕ−B

{⟨ϕ−B,q−B⟩ ⩾ b}
∣∣∣∣ (A.24)

⩽ O

(
|⟨ϕB,qB⟩|
σϕ∥q−B∥2

+
∥q−B∥3

3
σ̃σϕ∥q−B∥3

2

)
. (A.25)

Proof of Lemma A.7. Note that for ℓ ̸∈ A, E[ϕℓ] = 0, E[ϕ2
ℓ] = σ2

ϕ, and E[|ϕℓ|3] =
Θ(σ2

ϕ/σ̃). Let t = |⟨ϕB,qB⟩|. Then by the Berry-Esseen Theorem,∣∣∣∣ Pr
ϕ−B

{⟨ϕ,q⟩+ ν ⩾ b}− Pr
ϕ−B

{⟨ϕ−B,q−B⟩+ ν ⩾ b}

∣∣∣∣ (A.26)

⩽ Pr
ϕ−B

{⟨ϕ−B,q−B⟩+ ν ∈ [−t+ b, t+ b]} (A.27)

⩽
2t

(σ2
ϕ∥q−B∥2

2 + σ
2)1/2 +

O(σ3 + σ2
ϕ∥q−B∥3

3/σ̃)

(σ2 + σ2
ϕ∥q−B∥2

2)
3/2 . (A.28)

The second statement follows from a similar argument.

We also have the following auxiliary lemma for later calculations.

Lemma A.8.

EϕA {y} = 0, (A.29)

EϕA {|y|} = 1, (A.30)

Eϕj {|ϕj|} = 2σ2
ϕσ̃, for j ̸∈ A, (A.31)

EϕA {yϕj} =
γ

σ̃
, (A.32)

187

EϕA {|yϕj|} ⩽
1
σ̃

, for all j ∈ [D]. (A.33)

Proof of Lemma A.8.

EϕA {y} =
∑
v∈{±1}

EϕA {y|y = v}Pr[y = v] (A.34)

=
1
2

∑
v∈{±1}

EϕA {y|y = v} (A.35)

= 0. (A.36)

EϕA {|y|} =
∑
v∈{±1}

EϕA {|y| |y = v}Pr[y = v] (A.37)

=
1
2

∑
v∈{±1}

EϕA {|y| |y = v} (A.38)

= 1. (A.39)

Eϕj {|ϕj|} =
|− po|(1 − po) + |1 − po|po

σ̃
= 2σ2

ϕσ̃. (A.40)

EϕA {yϕj} = EϕA

{
y
ϕ̃j − E[ϕ̃j]

σ̃

}
(A.41)

=
1
σ̃
EϕA

{
yϕ̃j − yE[ϕ̃j]

}
(A.42)

=
γ

σ̃
. (A.43)

EϕA {|yϕj|} = EϕA {|ϕj|} (A.44)

⩽
1
σ̃

. (A.45)

A.4.4 Feature Emergence: First Gradient Step

We will show that w.h.p. over the initialization, after the first gradient step, there
are neurons that represent good features.

We begin with analyzing the gradients.

188

Lemma A.9 (Full version of Lemma 2.6). Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈
Gb(δ) for all i ∈ [2m]. Let

ϵe :=
k log1/2(Dm/δ) + log3/2(Dm/δ)√

σ2
ϕσ̃

2(D− k)
.

If po = Ω(k2/D), k = Ω(log2(Dm/δ)), and σ(1)
ξ < 1/k, then

∂

∂wi

LD(g
(0);σ(1)

ξ) = −a
(0)
i

D∑
j=1

MjTj (A.46)

where Tj satisfies:

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ O(ϵe/σ̃), where β ∈ [Ω(1), 1] and depends only on
w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ O(σ2
ϕϵeσ̃).

Proof of Lemma A.9. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂wLD(g
(0);σ(1)

ξ) (A.47)

= −a(0)E(x,y)∼D
{
yI[yg(0)(x; ξ(1)) ⩽ 1]Eξ(1)I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]x

}
(A.48)

= −a(0)E(x,y)∼D,ξ(1)
{
yI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]x

}
(A.49)

= −a(0)
D∑
j=1

Mj E(x,y)∼D,ξ(1)
{
yI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]ϕj

}︸ ︷︷ ︸
:=Tj

. (A.50)

First, consider j ∈ A.

Tj = E(x,y)∼D,ξ(1)
{
yI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]ϕj

}
(A.51)

189

= EϕA,ξ(1)

{
yϕj Pr

ϕ−A

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]}
. (A.52)

Let

Ia := Pr
ϕ−A

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]
, (A.53)

I ′a := Pr
ϕ−A

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)

]
. (A.54)

We have

|Eξ(1)(Ia − I
′
a)| (A.55)

⩽ Eξ(1)

∣∣∣∣ Pr
ϕ−A

[
⟨ϕ,q⟩+ b(0) + ξ(1) ⩾ 0

]
− Pr
ϕ−A

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ⩾ 0

]∣∣∣∣
(A.56)

+ Pr
ϕ−A,ξ(1)

[
⟨ϕ,q⟩+ b(0) + ξ(1) ⩾ 1

]
+ Pr
ϕ−A,ξ(1)

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ⩾ 1

]
.

(A.57)

Then by Lemma A.7,∣∣∣∣ Pr
ϕ−A

[
⟨ϕ,q⟩+ b(0) + ξ(1) ⩾ 0

]
− Pr
ϕ−A

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ⩾ 0

]∣∣∣∣ = O(ϵe).

(A.58)

Note that
∑
ℓ ̸∈A Var(ϕℓqℓ) = Θ(σ2

ϕσ
2
w(D − k)) = Θ(σ2

w), and |ϕℓ| ⩽ 1
σ̃

, maxℓ |qℓ| ⩽
σw
√

2 log(Dm/δ). Applying Bernstein’s inequality for bounded distributions, we
have:

Pr
ϕ−A

[⟨ϕ−A,q−A⟩ ⩾ 1/4] = exp(−Ω(k)) = O(ϵe). (A.59)

We also have:

Pr
ξ(1)

[
b(0) + ξ(1) ⩾ 1/4

]
= exp(−Ω(k)) = O(ϵe). (A.60)

190

Therefore,

Pr
ϕ−A,ξ(1)

[
⟨ϕ,q⟩+ b(0) + ξ(1) ⩾ 1

]
= exp(−Ω(k)) = O(ϵe) (A.61)

where the last step follows from the assumption on σw and k. A similar argument
gives:

Pr
ϕ−A,ξ(1)

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ⩾ 1

]
= exp(−Ω(k)) = O(ϵe). (A.62)

Then we have

∣∣Tj − EϕA,ξ(1) {yϕjI
′
a}
∣∣ (A.63)

⩽ EϕA

{
|yϕj|

∣∣Eξ(1)(Ia − I
′
a)
∣∣} (A.64)

⩽ O(ϵe)EϕA {|yϕj|} (A.65)

⩽ O(ϵe/σ̃) (A.66)

where the last step is from Lemma A.8. Furthermore,

EϕA,ξ(1) {yϕjI
′
a} (A.67)

= EϕA {yϕj}Eξ(1) [I ′a] (A.68)

= EϕA {yϕj} Pr
ϕ−A,ξ(1)

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)

]
(A.69)

By Lemma A.5, the assumption on po, and (A.59), we have

Pr
ϕ−A

[
⟨ϕ−A,q−A⟩+ b(0) ∈ (0, 1/2)

]
⩾ Ω(1) −O(1/k1/4), (A.70)

Pr
ξ(1)

[
ξ(1) ∈ (0, 1/2)

]
= 1/2 − exp(−Ω(k)), (A.71)

This leads to

β := Eξ(1) [I ′a] = Pr
ϕ−A,ξ(1)

[
⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)

]
⩾ Ω(1). (A.72)

191

By Lemma A.8, EϕA {yϕj} = γ/σ̃. Therefore,

|Tj − βγ/σ̃| ⩽ O(ϵe/σ̃). (A.73)

Now, consider j ̸∈ A. Let B denote A ∪ {j}.

Tj = E(x,y)∼D,ξ(1)
{
yϕjI

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]}
(A.74)

= EϕBEϕ−B,ξ(1)
{
yϕjI

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]}
(A.75)

= EϕB,ξ(1)

{
yϕj Pr

ϕ−B

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]}
. (A.76)

Let

Ib := Pr
ϕ−B

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]
, (A.77)

I ′b := Pr
ϕ−B

[
⟨ϕ−B,q−B⟩+ b(0) + ξ(1) ∈ (0, 1)

]
. (A.78)

Similar as above, we have |Eξ(1)(Ib−I
′
b)| ⩽ O(ϵe) by Lemma A.7. Then by Lemma A.8,

∣∣Tj − EϕB,ξ(1) {yϕjI
′
b}
∣∣ (A.79)

⩽ EϕB
{
|yϕj||Eξ(1)(Ib − I

′
b)|

}
(A.80)

⩽ O(ϵe)EϕA {|y|}Eϕj {|ϕj|} (A.81)

⩽ O(ϵe)×O(σ2
ϕσ̃) (A.82)

= O(σ2
ϕϵeσ̃). (A.83)

Furthermore,

EϕB,ξ(1) {yϕjI
′
b} = EϕA {y}Eϕj {ϕj}Eξ(1) [I ′b] = 0. (A.84)

Therefore,

|Tj| ⩽ O(σ
2
ϕϵeσ̃). (A.85)

192

Lemma A.10. Under the same assumptions as in Lemma A.9,

∂

∂bi
LD(g

(0);σ(1)
ξ) = −a

(0)
i Tb (A.86)

where |Tb| ⩽ O(ϵe).

Proof of Lemma A.10. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂b
LD(g

(0);σ(1)
ξ) (A.87)

= −a(0)E(x,y)∼D
{
yI[yg(0)(x; ξ) ⩽ 1]Eξ(1)I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.88)

= −a(0) E(x,y)∼D,ξ(1)
{
yI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}︸ ︷︷ ︸
:=Tb

. (A.89)

Similar to the proof in Lemma 2.6,∣∣∣∣ Pr
ϕ−A

[⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)] − Pr
ϕ−A

[⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)]
∣∣∣∣ = O(ϵe).

(A.90)

Then∣∣∣∣Tb − EϕA,ξ(1)

{
y Pr
ϕ−A

[⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)]
}∣∣∣∣ (A.91)

= EϕA,ξ(1)

{
|y|

∣∣∣∣ Pr
ϕ−A

[⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)] − Pr
ϕ−A

[⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)]
∣∣∣∣}

(A.92)

⩽ O(ϵe)EϕA {|y|} (A.93)

⩽ O(ϵe). (A.94)

193

Also,

EϕA,ξ(1)

{
y Pr
ϕ−A

[⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)]
}

(A.95)

= EϕA {y} Pr
ϕ−A,ξ(1)

[⟨ϕ−A,q−A⟩+ b(0) + ξ(1) ∈ (0, 1)] (A.96)

= 0. (A.97)

Therefore, |Tb| ⩽ O(ϵe).

Lemma A.11. We have

∂

∂ai
LD(g

(0);σ(1)
ξ) = −Ta (A.98)

where |Ta| ⩽ O(maxℓ q(0)
i,ℓ). So if w(0)

i ∈ G(δ), |Ta| ⩽ O(σw
√

log(Dm/δ)).

Proof of Lemma A.11. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂a
LD(g

(0);σ(1)
ξ) (A.99)

= −E(x,y)∼D
{
yI[yg(0)(x; ξ(1)) ⩽ 1]Eξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))

}
(A.100)

= −E(x,y)∼D,ξ(1)
{
yσ(⟨w(0), x⟩+ b(0) + ξ(1))

}︸ ︷︷ ︸
:=Ta

. (A.101)

Let ϕ ′
A be an independent copy of ϕA, ϕ ′ be the vector obtained by replacing in ϕ

the entries ϕA with ϕ ′
A, and let x ′ =Mϕ ′ and its label is y ′. Then

|Ta| =
∣∣EϕA

{
yEϕ−A,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))

}∣∣ (A.102)

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = 1

}
(A.103)

− EϕA

{
Eϕ−A,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = −1

} ∣∣∣∣∣ (A.104)

194

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = 1

}
(A.105)

− Eϕ ′
A

{
Eϕ−A,ξ(1)σ(⟨w(0), x ′⟩+ b(0) + ξ(1))|y ′ = −1

} ∣∣∣∣∣. (A.106)

Since σ is 1-Lipschitz,

|Ta| ⩽
1
2EϕA,ϕ ′

A

{
Eϕ−A

∣∣⟨w(0), x⟩− ⟨w(0), x ′⟩
∣∣ |y = 1,y ′ = −1

}
(A.107)

⩽
1
2Eϕ−A

(
EϕA

{∣∣⟨w(0), x⟩
∣∣ |y = 1

}
+ Eϕ ′

A

{∣∣⟨w(0), x ′⟩
∣∣ |y ′ = −1

})
(A.108)

= Eϕ−A,ϕA

∣∣⟨w(0), x⟩
∣∣ (A.109)

= Ex
∣∣⟨w(0), x⟩

∣∣ (A.110)

⩽
√

Ex⟨w(0), x⟩2 (A.111)

⩽ max
ℓ
q
(0)
i,ℓ

√√√√√Ex

∑
ℓ∈[D]

ϕ2
ℓ +

∑
j̸=ℓ:j,ℓ∈A

|ϕjϕℓ|

 (A.112)

⩽ max
ℓ
q
(0)
i,ℓ

√
Ex (1 +O(1)) (A.113)

= Θ(max
ℓ
q
(0)
i,ℓ). (A.114)

With the bounds on the gradient, we now summarize the results for the weights
after the first gradient step.

Lemma A.12. Set

λ(1)
w = 1/(2η(1)), λ(1)

a = λ
(1)
b = 0,σ(1)

ξ = 1/k3/2.

Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ) for all i ∈ [2m]. If po = Ω(k2/D),
k = Ω(log2(Dm/δ)), then for all i ∈ [m], w(1)

i =
∑D
ℓ=1 q

(1)
i,ℓMℓ satisfying

195

• if ℓ ∈ A, then |q
(1)
i,ℓ − η(1)a

(0)
i βγ/σ̃| ⩽ O

(
|η(1)a

(0)
i |ϵe
σ̃

)
, where β ∈ [Ω(1), 1] and

depends only on w(0)
i ,b(0)

i ;

• if ℓ ̸∈ A, then |q
(1)
i,ℓ | ⩽ O

(
σ2
ϕ|η

(1)a
(0)
i |ϵeσ̃

)
;

and

• b
(1)
i = b

(0)
i + η(1)a

(0)
i Tb where |Tb| = O (ϵe);

• a
(1)
i = a

(0)
i + η(1)Ta where |Ta| = O(σw

√
log(Dm/δ)).

Proof of Lemma A.12. This follows from Lemma A.4 and Lemma A.9-A.11.

A.4.5 Feature Improvement: Second Gradient Step

We first show that with properly set η(1), for most x, |g(1)(x;σ(2)
ξ)| < 1 and thus

yg(1)(x;σ(2)
ξ) < 1.

Lemma A.13. Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ),a(0)
i ∈ Ga(δ)

for all i ∈ [2m]. If po = Ω(k2/D), k = Ω(log2(Dm/δ)), σa ⩽ σ̃2/(γk2), η(1) =

O
(

γ
kmσa

)
, and σ(2)

ξ ⩽ 1/k, then with probability ⩾ 1 − exp(−Θ(k)) over (x,y), we

have yg(1)(x;σ(2)
ξ) < 1. Furthermore, for any i ∈ [2m],

∣∣∣⟨w(1)
i , x⟩

∣∣∣ =
∣∣∣⟨q(1)

i ,ϕ⟩
∣∣∣ =

O(η(1)σ̃/γ),
∣∣∣⟨(q(1)

i)−A,ϕ−A⟩
∣∣∣ = O(η(1)σ̃/γ), and

∣∣∣b(1)
i − b

(1)
m+i

∣∣∣ = O(|η(1)a
(0)
i |ϵe).

Proof of Lemma A.13. Note that w(0)
i = w(0)

m+i, b
(0)
i = b

(0)
m+i, and a(0)

i = −a
(0)
m+i.

Then the gradient for wi is the negation of that for wm+i, the gradient for bi is the
negation of that for bm+i, and the gradient for ai is the same as that for am+i. With
probability ⩾ 1 − exp(−Θ(max{2po(D− k),k})), among all j ̸∈ A, we have that at
most 2po(D − k) + k of ϕj are (1 − po)/σ̃, while the others are −po/σ̃. For data
points with ϕ satisfying this, we have:

∣∣∣g(1)(x;σ(2)
ξ)
∣∣∣ (A.115)

196

=

∣∣∣∣∣
2m∑
i=1

a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i)

∣∣∣∣∣ (A.116)

=

∣∣∣∣∣
m∑
i=1

(
a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

m+i, x⟩+ b(1)
m+i + ξ

(2)
m+i)

)∣∣∣∣∣
(A.117)

⩽

∣∣∣∣∣
m∑
i=1

(
a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i)
)∣∣∣∣∣

(A.118)

+

∣∣∣∣∣
m∑
i=1

(
−a

(1)
m+iEξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

m+i, x⟩+ b(1)
m+i + ξ

(2)
i)
)∣∣∣∣∣ .

(A.119)

Then we have∣∣∣g(1)(x;σ(2)
ξ)
∣∣∣ ⩽ m∑

i=1

∣∣∣2η(1)TaEξ(2)σ(⟨w(1)
i , x⟩+ b(1)

i + ξ
(2)
i)
∣∣∣ (A.120)

+

m∑
i=1

∣∣∣a(1)
m+i

∣∣∣ (∣∣∣⟨w(1)
i − w(1)

m+i, x⟩
∣∣∣+ ∣∣∣b(1)

i − b
(1)
m+i

∣∣∣) (A.121)

⩽
m∑
i=1

∣∣2η(1)Ta
∣∣ (∣∣∣⟨w(1)

i , x⟩+ b(1)
i

∣∣∣+ Eξ(2)

∣∣∣ξ(2)
i

∣∣∣) (A.122)

+

m∑
i=1

∣∣∣a(1)
m+i

∣∣∣ (∣∣∣⟨w(1)
i − w(1)

m+i, x⟩
∣∣∣+ ∣∣∣b(1)

i − b
(1)
m+i

∣∣∣) . (A.123)

We have |Ta| = O(σw
√

log(Dm/δ)), and∣∣∣⟨w(1)
i , x⟩

∣∣∣ ⩽ O(|η(1)a
(0)
i |) (βγ/σ̃+ ϵe/σ̃)

k

σ̃
(A.124)

+O(|η(1)a
(0)
i |σ2

ϕϵeσ̃) ((2po(D− k) + k)(1 − po)/σ̃+ poD/σ̃) (A.125)

⩽ O(|η(1)a
(0)
i |)

(
kγ/σ̃2 + ϵek/σ̃

2 + (k+ poD)σ2
ϕϵe
)

(A.126)

⩽ O(η(1)(1 + poσ̃)/γ). (A.127)

197

∣∣∣b(1)
i

∣∣∣ ⩽ ∣∣∣b(0)
i

∣∣∣+ ∣∣∣η(1)a
(0)
i Tb

∣∣∣ (A.128)

⩽

√
log(m/δ)
k2 +

∣∣∣η(1)a
(0)
i

ϵe

σ̃

∣∣∣ . (A.129)

Eξ(2)

∣∣∣ξ(2)
i

∣∣∣ ⩽ O(σ(2)
ξ). (A.130)

|a
(1)
m+i| ⩽ |a

(0)
i |+ |η(1)Ta| ⩽ |a

(0)
i |+O(η(1)σw

√
log(Dm/δ)). (A.131)∣∣∣⟨w(1)

i − w(1)
m+i, x⟩

∣∣∣ = 2
∣∣∣⟨w(1)

i , x⟩
∣∣∣ = O(η(1)(1 + poσ̃)/γ). (A.132)∣∣∣b(1)

i − b
(1)
m+i

∣∣∣ = 2|η(1)a
(0)
i Tb| = O(|η

(1)a
(0)
i |ϵe). (A.133)

Then we have∣∣∣g(1)(x;σ(2)
ξ)
∣∣∣ (A.134)

⩽ O

(
mη(1)σw

√
log(Dm/δ)

)(
η(1)

γ
+

√
log(m/δ)
k2 +

∣∣∣η(1)a
(0)
i

ϵe

σ̃

∣∣∣+ σ(2)
ξ

)
(A.135)

+O

(
m(|a

(0)
i |+ η(1)σw

√
log(Dm/δ))

)(
η(1)

γ
+
∣∣∣η(1)a

(0)
i

ϵe

σ̃

∣∣∣) (A.136)

= O

(
mη(1)σw

log(Dm/δ)
k

+m|a
(0)
i |

(
η(1)

γ
+
∣∣∣η(1)a

(0)
i

ϵe

σ̃

∣∣∣)) (A.137)

= O

(
mη(1)σw

log(Dm/δ)
k

+m|a
(0)
i |
η(1)

γ
+mσaη

(1) k

γ

)
(A.138)

< 1. (A.139)

Then
∣∣∣yg(1)(x;σ(2)

ξ)
∣∣∣ < 1. Finally, the statement on

∣∣∣⟨(q(1)
i)−A,ϕ−A⟩

∣∣∣ follows from a

similar calculation on
∣∣∣⟨w(1)

i , x⟩
∣∣∣ = ∣∣∣⟨q(1)

i ,ϕ⟩
∣∣∣.

We are now ready to analyze the gradients in the second gradient step.

Lemma A.14. Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ),a(0)
i ∈ Ga(δ) for

198

all i ∈ [2m]. Let ϵe2 := O

(
η(1)|a

(0)
i |k(γ+ϵe)

σ̃2σ
(2)
ξ

)
+ exp(−Θ(k)). If k = Ω(log2(Dm/δ))

and k = O(D), σa ⩽ σ̃2/(γk2), η(1) = O
(

γ
kmσa

)
, and σ(2)

ξ = 1/k3/2, then

∂

∂wi

LD(g
(1);σ(2)

ξ) = −a
(1)
i

D∑
j=1

MjTj (A.140)

where Tj satisfies:

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ O(ϵe2/σ̃ + η(1)/σ
(2)
ξ + η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)), where

β ∈ [Ω(1), 1] and depends only on w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ 1
σ̃

exp(−Θ(k)) +O(σ2
ϕϵe2σ̃).

Proof of Lemma A.14. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.13, Pr[yg(1)(x; ξ(2)) > 1] ⩽ exp(−Θ(k)). Let Ix =

I[yg(1)(x; ξ(2)) ⩽ 1].

∂

∂wLD(g
(1);σ(2)

ξ) (A.141)

= −a(1)E(x,y)∼D
{
yIxEξ(2)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]x

}
(A.142)

= −a(1)
D∑
j=1

Mj E(x,y)∼D,ξ(2)
{
yIxI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}︸ ︷︷ ︸
:=Tj

. (A.143)

Let Tj1 := E(x,y)∼D,ξ(2)
{
yI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}
. We have

|Tj − Tj1| (A.144)

=
∣∣E(x,y)∼D,ξ(2)

{
y(1 − Ix)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}∣∣ (A.145)

⩽
1
σ̃
E(x,y)∼D,ξ(2) |1 − Ix| (A.146)

⩽
1
σ̃

exp(−Θ(k)). (A.147)

So it is sufficient to bound Tj1. For simplicity, we use q as a shorthand for q(1)
i .

199

First, consider j ∈ A.

Tj1 = E(x,y)∼D,ξ(2)
{
yI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}
(A.148)

= EϕA

{
yϕj Pr

ϕ−A,ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
. (A.149)

Let

Ia := Pr
ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.150)

I ′a := Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.151)

By the property of the Gaussian ξ(2), that |⟨ϕA,qA⟩| = O(
η(1)|a

(0)
i |k(γ+ϵe)

σ̃2), and that
|⟨ϕ,q⟩| = |⟨w(1)

i , x⟩| = O(η(1)/γ) < O(1/k) and |⟨ϕ−A,q−A⟩| = O(η(1)/γ) < O(1/k),
we have

|Ia − I
′
a| ⩽

∣∣∣∣Pr
ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ⩾ 0

]
− Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ⩾ 0

]∣∣∣∣
(A.152)

+ Pr
ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ⩾ 1

]
+ Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ⩾ 1

]
(A.153)

= O

(
η(1)|a

(0)
i |k(γ+ ϵe)

σ̃2σ
(2)
ξ

)
+ exp(−Θ(k)) = O(ϵe2). (A.154)

This leads to

∣∣Tj1 − EϕA,ϕ−A {yϕjI
′
a}
∣∣ (A.155)

⩽ EϕA

{
|yϕj|

∣∣Eϕ−A(Ia − I
′
a)
∣∣} (A.156)

⩽ O(ϵe2)EϕA {|yϕj|} (A.157)

⩽ O(ϵe2/σ̃) (A.158)

200

where the last step is from Lemma A.8. Furthermore,

EϕA,ϕ−A {yϕjI
′
a} (A.159)

= EϕA {yϕj}Eϕ−A [I
′
a] (A.160)

= EϕA {yϕj} Pr
ϕ−A,ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.161)

By Lemma A.13, we have |⟨ϕ−A,q−A⟩| ⩽ O(η(1)σ̃/γ). Also, |b(1)−b(0)| ⩽ O(η(1)|a
(0)
i |ϵe).

By the property of ξ(2),∣∣∣∣Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ∈ (0, 1)

]
− Pr
ξ(2)

[
b(0) + ξ(2) ∈ (0, 1)

]∣∣∣∣ (A.162)

⩽ O(η(1)σ̃/(γσ
(2)
ξ)) +O(η(1)|a

(0)
i |ϵe/σ

(2)
ξ). (A.163)

On the other hand,

β := Pr
ϕ−A,ξ(2)

[
b(0) + ξ(2) ∈ (0, 1)

]
= Pr
ξ(2)

[
ξ(2) ∈ (−b(0), 1 − b(0))

]
(A.164)

= Ω(1) (A.165)

and β only depends on b(0). By Lemma A.8, EϕA {yϕj} = γ/σ̃. Therefore,

|Tj1 − βγ/σ̃| ⩽ O(ϵe2/σ̃) +O(η
(1)/σ

(2)
ξ) +O(η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)). (A.166)

Now, consider j ̸∈ A. Let B denote A ∪ {j}.

Tj1 = E(x,y)∼D,ξ(2)
{
yϕjI

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.167)

= EϕBEϕ−B,ξ(2)
{
yϕjI

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.168)

= EϕB

{
yϕj Pr

ϕ−B,ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
. (A.169)

201

Let

Ib := Pr
ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.170)

I ′b := Pr
ξ(2)

[
⟨ϕ−B,q−B⟩+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.171)

Similar as above, we have |Ib − I
′
b| ⩽ ϵe2. Then by Lemma A.8,

∣∣Tj1 − EϕB,ϕ−B
{yϕjI

′
b}
∣∣ (A.172)

⩽ EϕB
{
|yϕj||Eϕ−B

(Ib − I
′
b)|

}
(A.173)

⩽ O(ϵe2)Eϕj {|ϕj|} (A.174)

⩽ O(ϵe)×O(σ2
ϕσ̃) (A.175)

= O(σ2
ϕϵe2σ̃). (A.176)

Furthermore,

EϕB,ϕ−B
{yϕjI

′
b} = EϕA {y}Eϕj {ϕj}Eϕ−B

[I ′b] = 0. (A.177)

Therefore,

|Tj1| ⩽ O(σ
2
ϕϵe2σ̃). (A.178)

Lemma A.15. Under the same assumptions as in Lemma A.14,

∂

∂b
LD(g

(1);σ(2)
ξ) = −a

(1)
i Tb (A.179)

where |Tb| ⩽ exp(−Ω(k)) +O(ϵe2).

Proof of Lemma A.15. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.13, Pr[yg(1)(x; ξ(2)) > 1] ⩽ exp(−Ω(k)). Let Ix =

202

I[yg(1)(x; ξ(2)) ⩽ 1].

∂

∂b
LD(g

(1);σ(2)
ξ) (A.180)

= −a(1) E(x,y)∼D
{
yIxEξ(2)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}︸ ︷︷ ︸
:=Tb

. (A.181)

Let Tb1 := E(x,y)∼D,ξ(2)
{
yI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}
. We have

|Tb − Tb1| (A.182)

=
∣∣E(x,y)∼D,ξ(2)

{
y(1 − Ix)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}∣∣ (A.183)

⩽ E(x,y)∼D,ξ(2) |1 − Ix| (A.184)

⩽ exp(−Ω(k)). (A.185)

So it is sufficient to bound Tb1. For simplicity, we use q as a shorthand for q(1)
i .

Tb1 = E(x,y)∼D,ξ(2)
{
yI
[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.186)

= EϕAEϕ−A,ξ(2)
{
yI
[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.187)

= EϕA

{
y Pr
ϕ−A,ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]}
. (A.188)

Let

Ib := Pr
ξ(2)

[
⟨ϕ,q⟩+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.189)

I ′b := Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.190)

Similar as in Lemma A.14, we have |Ib − I
′
b| ⩽ ϵe2. Then by Lemma A.8,

∣∣Tb1 − EϕA,ϕ−A {yI
′
b}
∣∣ (A.191)

⩽ EϕA

{
|Eϕ−A(Ib − I

′
b)|

}
(A.192)

⩽ O(ϵe2). (A.193)

203

Furthermore,

EϕA,ϕ−A {yI
′
b} = EϕA {y}Eϕ−A [I

′
b] = 0. (A.194)

Therefore, |Tb1| ⩽ O(ϵe2) and the statement follows.

Lemma A.16. Under the same assumptions as in Lemma A.14,

∂

∂ai
LD(g

(1);σ(2)
ξ) = −Ta (A.195)

where |Ta| = O(η(1)σ̃/γ) + exp(−Ω(k))poly(Dm).

Proof of Lemma A.16. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.13, Pr[yg(1)(x; ξ(2)) > 1] ⩽ exp(−Ω(k)). Let Ix =

I[yg(1)(x; ξ(2)) ⩽ 1].

∂

∂a
LD(g

(1);σ(2)
ξ) (A.196)

= −E(x,y)∼D
{
yIxEξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}︸ ︷︷ ︸
:=Ta

. (A.197)

Let Ta1 := E(x,y)∼D
{
yEξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}
. We have

|Ta − Ta1| (A.198)

=
∣∣E(x,y)∼D

{
y(1 − Ix)Eξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}∣∣ (A.199)

⩽ E(x,y)∼D,ξ(2) |1 − Ix| (A.200)

⩽ exp(−Ω(k)). (A.201)

So it is sufficient to bound Ta1. For simplicity, we use q as a shorthand for q(1)
i .

Let ϕ ′
A be an independent copy of ϕA, ϕ ′ be the vector obtained by replacing in

ϕ the entries ϕA with ϕ ′
A, and let x ′ =Mϕ ′ and its label is y ′. Then

|Ta1| :=
∣∣EϕA

{
yEϕ−A,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}∣∣ (A.202)

204

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(1))|y = 1

}
(A.203)

− EϕA

{
Eϕ−A,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))|y = −1

} ∣∣∣∣∣ (A.204)

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))|y = 1

}
(A.205)

− Eϕ ′
A

{
Eϕ−A,ξ(2)σ(⟨w(1), x ′⟩+ b(1) + ξ(2))|y ′ = −1

} ∣∣∣∣∣ (A.206)

⩽
1
2EϕA,ϕ ′

A

{
Eϕ−A

∣∣⟨w(1), x⟩− ⟨w(1), x ′⟩
∣∣ |y = 1,y ′ = −1

}
(A.207)

⩽
1
2Eϕ−A

(
EϕA

{∣∣⟨w(1), x⟩
∣∣ |y = 1

}
+ Eϕ ′

A

{∣∣⟨w(1), x ′⟩
∣∣ |y ′ = −1

})
(A.208)

⩽ Eϕ−A,ϕA

∣∣⟨w(1), x⟩
∣∣ (A.209)

= Ex
∣∣⟨w(1), x⟩

∣∣ (A.210)

= O(η(1)σ̃/γ) + exp(−Ω(k))×D× ∥q(1)∥∞∥ϕ∥∞ (A.211)

= O(η(1)σ̃/γ) + exp(−Ω(k))
D|η(1)a(0)|(γ+ ϵe)

σ̃2 (A.212)

= O(η(1)σ̃/γ) + exp(−Ω(k))poly(Dm) (A.213)

where the fourth step follows from that σ is 1-Lipschitz, the third to the last step
from Lemma A.13, and the second to the last step from Lemma A.12.

With the above lemmas about the gradients, we are now ready to show that at
the end of the second step, we get a good set of features for accurate prediction.

Lemma A.17. Set

η(1) =
γ2σ̃

km3 , λ(1)
a = 0, λ(1)

w = 1/(2η(1)),σ(1)
ξ = 1/k3/2, (A.214)

η(2) = 1, λ(2)
a = λ(2)

w = 1/(2η(2)),σ(2)
ξ = 1/k3/2. (A.215)

Fix δ ∈ (0,O(1/k3)). Ifpo = Ω(k2/D), k = Ω
(

log2
(
Dm
δγ

))
, andm ⩾ max{Ω(k4),D},

then with probability at least 1 − δ over the initialization, there exist ãi’s such that

205

g̃(x) :=
∑2m
i=1 ãiσ(⟨w

(2)
i , x⟩+ b(2)

i) satisfies LD(g̃) = 0. Furthermore, ∥ã∥0 = O(m/k),
∥ã∥∞ = O(k5/m), and ∥ã∥2

2 = O(k9/m). Finally, ∥a(2)∥∞ = O
(1
km2

)
, ∥w(2)

i ∥2 =

O(σ̃/k), and |b
(2)
i | = O(1/k2) for all i ∈ [2m].

Proof of Lemma A.17. By Lemma 2.5, there exists a network

g∗(x) =
3(k+1)∑
ℓ=1

a∗
ℓσ(⟨w∗

ℓ , x⟩+ b∗ℓ)

satisfying g∗(x) for all (x,y) ∼ D. Furthermore, |a∗
i | ⩽ 32k, 1/(32k) ⩽ |b∗i | ⩽ 1/2,

w∗
i = σ̃

∑
j∈AMj/(4k), and |⟨w∗

i , x⟩ + b∗i | ⩽ 1 for any i ∈ [n] and (x,y) ∼ D. Now
we fix an ℓ, and show that with high probability there is a neuron in g(2) that can
approximate the ℓ-th neuron in g∗.

By Lemma A.4, with probability 1 − 2δ over w(0)
i ’s, they are all in Gw(δ); with

probability 1 − δ over a(0)
i ’s, they are all in Ga(δ); with probability 1 − δ over b(0)

i ’s,
they are all in Gb(δ). Under these events, by Lemma A.12, Lemma A.14 and A.15,
for any neuron i ∈ [2m], we have

w(2)
i = a

(1)
i

D∑
j=1

MjTj, (A.216)

b
(2)
i = b

(1)
i + a

(1)
i Tb. (A.217)

where

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ ϵw1 := O(ϵe2/σ̃+ η(1)/σ
(2)
ξ + η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)),

where β ∈ [Ω(1), 1] and depends only on w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ ϵw2 :=
1
σ̃

exp(−Θ(k)) +O(σ2
ϕϵe2σ̃).

• |Tb| ⩽ ϵb := 1
σ̃

exp(−Θ(k)) +O(ϵe2).

Given the initialization, with probabilityΩ(1) over b(0)
i , we have

|b
(0)
i | ∈

[
1

2k2 , 2
k2

]
, sign(b(0)

i) = sign(b∗ℓ). (A.218)

206

Finally, since 4k|b∗
ℓ |βγ

|b
(0)
i |σ̃2 ∈ [Ω(k2γ/σ̃2),O(k3γ/σ̃2)] and depends only on w(0)

i ,b(0)
i , we

have that for ϵa = Θ(1/k2), with probabilityΩ(ϵa) > δ over a(0)
i ,∣∣∣∣∣4k|b∗ℓ |βγ|b

(0)
i |σ̃2

a
(0)
i − 1

∣∣∣∣∣ ⩽ ϵa, |a
(0)
i | = O

(
σ̃2

k2γ

)
. (A.219)

Let na = ϵam/4. For the given value of m, by (A.216)-(A.219) we have with
probability ⩾ 1 − 5δ over the initialization, for each ℓ there is a different set of
neurons Iℓ ⊆ [m] with |Iℓ| = na and such that for each iℓ ∈ Iℓ,

|b
(0)
iℓ

| ∈
[

1
2k2 , 2

k2

]
, sign(b(0)

iℓ
) = sign(b∗ℓ), (A.220)∣∣∣∣∣4k|b∗ℓ |βγ|b

(0)
iℓ

|σ̃2
a
(0)
iℓ

− 1

∣∣∣∣∣ ⩽ ϵa, |a
(0)
iℓ

| = O

(
σ̃2

k2γ

)
. (A.221)

We also have∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.222)

⩽

∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣+
∣∣∣∣∣a

(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣
(A.223)

=

∣∣∣∣∣a(1)
iℓ

D∑
j=1

Tjϕj −
a
(1)
iℓ
βγ

σ̃

∑
j∈A

ϕj

∣∣∣∣∣+ ∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ ∣∣∣∣∣βγσ̃ ∑
j∈A

ϕj

∣∣∣∣∣ (A.224)

=
∣∣∣a(1)
iℓ

∣∣∣ ∣∣∣∣∣
D∑
j=1

Tjϕj −
βγ

σ̃

∑
j∈A

ϕj

∣∣∣∣∣+ ∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ ∣∣∣∣∣βγσ̃ ∑
j∈A

ϕj

∣∣∣∣∣ . (A.225)

We have
∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ = O(η(1)σw
√

log(Dm/δ)), and

∣∣∣∣∣
D∑
j=1

Tjϕj −
βγ

σ̃

∑
j∈A

ϕj

∣∣∣∣∣ ⩽
∣∣∣∣∣∑
j∈A

(Tj −
βγ

σ̃
)ϕj

∣∣∣∣∣+
∣∣∣∣∣∑
j̸∈A

Tjϕj

∣∣∣∣∣ (A.226)

207

⩽ O(kϵw1/σ̃) +O(Dϵw2/σ̃) =: ϵϕ. (A.227)

For the given values of parameters, we have

ϵe2 = O
(γ
m2

)
, (A.228)

ϵw1 = O

(
kγ

m2σ̃
+
γϵe

km2

)
, (A.229)

ϵw2 = O
(γ

m2σ̃

)
, (A.230)

ϵb = O
(γ
m2

)
, (A.231)

ϵϕ = O

(
k2γ

m2σ̃2 +
γϵe

m2σ̃
+

γ

mσ̃2

)
. (A.232)

Therefore,∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.233)

⩽
∣∣∣a(1)
iℓ

∣∣∣ ϵϕ +
∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ kγ
σ̃2 (A.234)

⩽ O

(
σ̃2

k2γ
+ η(1)σw

√
log(Dm/δ)

)(
k2γ

m2σ̃2 +
γϵe

m2σ̃
+

γ

mσ̃2

)
(A.235)

+O

(
η(1)σw

√
log(Dm/δ)

)
kγ

σ̃2 (A.236)

⩽ O

(
1
m

)
. (A.237)

We also have by Lemma A.12 and A.15:

|b
(2)
iℓ

− b
(0)
iℓ

| ⩽ O

(
η(1)|a

(0)
iℓ

|ϵe + |a
(1)
iℓ

|

(
1
σ̃

exp(−Θ(k)) + ϵe2

))
⩽ O

(
1
m

)
.

(A.238)

Now, construct ã such that ãiℓ =
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
for each ℓ and each iℓ ∈ Iℓ, and ãi = 0

208

elsewhere. Then

|g̃(x) − 2g∗(x)| (A.239)

=

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

ãiℓσ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

3(k+1)∑
ℓ=1

2a∗
ℓσ (⟨w∗

ℓ , x⟩+ b∗ℓ)

∣∣∣∣∣∣ (A.240)

=

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
σ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
σ

(
|b

(0)
iℓ

|

|b∗ℓ |
⟨w∗

ℓ , x⟩+ b(0)
iℓ

)∣∣∣∣∣∣
(A.241)

⩽

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

1
na

(
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩+ b(0)
iℓ

))∣∣∣∣∣∣
(A.242)

+

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

1
na

(
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩+ b(0)
iℓ

)
−

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
|b

(0)
iℓ

|

|b∗ℓ |
⟨w∗

ℓ , x⟩+ b(0)
iℓ

))∣∣∣∣∣∣
(A.243)

⩽ 3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
O

(
1
m

)
+ (A.244)

3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|

σ̃|b
(0)
iℓ

|

4k|b∗ℓ |

∣∣∣∣∣4ka
(0)
iℓ
βγ|b∗ℓ |

σ̃2|b
(0)
iℓ

|
− 1

∣∣∣∣∣ kσ̃ (A.245)

= O

(
k4

m
+ k2ϵa

)
(A.246)

⩽ 1. (A.247)

Here the second equation follows from that σ is positive-homogeneous in [0, 1],
|⟨w∗

ℓ , x⟩+ b∗ℓ | ⩽ 1, |b(0)
iℓ

|/|b∗ℓ | ⩽ 1. This guarantees yg̃(x) ⩾ 1. Changing the scaling
of δ leads to the statement.

Finally, the bounds on ã follow from the above calculation. The bound on
∥a(2)∥2 follows from Lemma A.16, and those on ∥w(2)

i ∥2 and ∥b(2)
i ∥2 follow from

(A.216)(A.217) and the bounds on a(1)
i and b(1)

i in Lemma A.12.

209

A.4.6 Classifier Learning Stage

Once we have a set of good features, we are now ready to prove that the later
steps will learn an accurate classifier. The intuition is that the first layer’s weights
do not change much and the second layer’s weights get updated till achieving
good accuracy. In particular, we will employ the online optimization technique
from Daniely and Malach (2020).

We begin by showing that the first layer’s weights do not change too much.

Lemma A.18. Assume the same conditions as in Lemma A.17. Suppose for t > 2,
λ
(t)
a = λ

(t)
w = λ, η(t) = η for some λ,η ∈ (0, 1), and σ(t)ξ = 0. Then for any t > 2 and

i ∈ [2m],

|a
(t)
i | ⩽ ηt+O

(
1
km2

)
, (A.248)

∥w(t)
i − w(2)

i ∥2 ⩽ O

(
tηλσ̃

k

)
+ η2t2 +O

(
t

km2

)
, (A.249)

|b
(t)
i − b

(2)
i | ⩽ O

(
tηλ

k2

)
+ η2t2 +O

(
t

km2

)
. (A.250)

Proof of Lemma A.18. First, we bound the size of |a(t)
i |:

|a
(t)
i | =

∣∣∣∣(1 − 2ηλ)a(t−1)
i − η

∂

∂ai
LD(g

(t−1))

∣∣∣∣ (A.251)

⩽
∣∣∣(1 − 2ηλ)a(t−1)

i − ηE(x,y)∼D

{
yI[yg(t−1)(x) ⩽ 1]σ(⟨w(t−1)

i , x⟩+ b(t−1)
i)

}∣∣∣
(A.252)

⩽ |a
(t−1)
i |+ η (A.253)

which leads to

|a
(t)
i | ⩽ ηt+ |a

(2)
i | (A.254)

210

where |a
(2)
i | = O

(1
km2

)
. We are now to bound the change of w(t)

i and b(t)i .

∥w(t)
i − w(2)

i ∥2 (A.255)

=

∥∥∥∥(1 − 2ηλ)w(t−1)
i − η

∂

∂wi

LD(g
(t−1)) − w(2)

i

∥∥∥∥
2

(A.256)

⩽

∥∥∥∥∥(1 − 2ηλ)w(t−1)
i (A.257)

+ ηa
(t−1)
i E(x,y)∼D

{
yI[yg(t−1)(x) ⩽ 1]I[⟨w(t−1)

i , x⟩+ b(t−1)
i ∈ (0, 1)]x

}
− w(2)

i

∥∥∥∥∥
2

(A.258)

⩽
∥∥∥(1 − 2ηλ)w(t−1)

i − w(2)
i

∥∥∥
2

(A.259)

+ η
∥∥∥a(t−1)
i E(x,y)∼D

{
yI[yg(t−1)(x) ⩽ 1]I[⟨w(t−1)

i , x⟩+ b(t−1)
i ∈ (0, 1)]x

}∥∥∥
2
(A.260)

⩽ (1 − 2ηλ)
∥∥∥w(t−1)

i − w(2)
i

∥∥∥
2
+ 2ηλ

∥∥∥w(2)
i

∥∥∥
2
+ η

∣∣∣a(t−1)
i

∣∣∣ (A.261)

leading to

∥w(t)
i − w(2)

i ∥2 ⩽ 2tηλ
∥∥∥w(2)

i

∥∥∥
2
+ η2t2 + t|a

(2)
i |. (A.262)

Note that ∥w(2)
i ∥2 = O(σ̃/k).

|b
(t)
i − b

(2)
i | (A.263)

=

∣∣∣∣b(t−1)
i − η

∂

∂bi
LD(g

(t−1)) − b
(2)
i

∣∣∣∣ (A.264)

⩽
∣∣∣b(t−1)
i − b

(2)
i

∣∣∣ (A.265)

+ η
∣∣∣a(t−1)
i E(x,y)∼D

{
yI[yg(t−1)(x) ⩽ 1]I[⟨w(t−1)

i , x⟩+ b(t−1)
i ∈ (0, 1)]

}∣∣∣ (A.266)

⩽
∣∣∣b(t−1)
i − b

(2)
i

∣∣∣+ η ∣∣∣a(t−1)
i

∣∣∣ (A.267)

211

leading to

|b
(t)
i − b

(2)
i | ⩽ η2t2 + t|a

(2)
i |. (A.268)

Note that
∣∣∣b(2)
i

∣∣∣ = O(1/k2).

Lemma A.19. Assume the same conditions as in Lemma A.18. Let

g
(t)
ã (x) =

m∑
i=1

ãiσ(⟨w(t)
i , x⟩+ b(t)i).

Then

|ℓ(g
(t)
ã (x),y) − ℓ(g(2)

ã (x),y)| ⩽ ∥ã∥2
√
∥ã∥0

(
O

(
tηλσ̃

k

)
+ η2t2 +O

(
t

km2

))
.

(A.269)

Proof of Lemma A.19. It follows from that

|ℓ(g
(t)
ã (x),y) − ℓ(g(2)

ã (x))| (A.270)

⩽ |g
(t)
ã (x) − g(2)

ã (x)| (A.271)

⩽ ∥ã∥2
√
∥ã∥0 max

i∈[2m]

∣∣∣σ(⟨w(t)
i , x⟩+ b(t)i) − σ(⟨w(2)

i , x⟩+ b(2)
i)
∣∣∣ (A.272)

⩽ ∥ã∥2
√
∥ã∥0 max

i∈[2m]

(∣∣∣⟨w(t)
i − w(2)

i , x⟩
∣∣∣+ ∣∣∣b(t)i − b

(2)
i

∣∣∣) . (A.273)

and Lemma A.18.

A.4.7 Proof of Theorem 2.1

Based on the above lemmas, following the same argument as in the proof of Theorem
2 in Daniely and Malach (2020), we get our main theorem.

Theorem A.20 (Full version of Theorem 2.1). Set

η(1) =
γ2σ̃2

km3 , λ(1)
a = 0, λ(1)

w = 1/(2η(1)),σ(1)
ξ = 1/k2, (A.274)

212

η(2) = 1, λ(2)
a = λ(2)

w = 1/(2η(2)),σ(2)
ξ = 1/k2, (A.275)

η(t) = η =
k2

Tm1/3 , λ(t)a = λ(t)w = λ ⩽
k3

σ̃m1/3 ,σ(t)ξ = 0, for 2 < t ⩽ T . (A.276)

For any δ ∈ (0, 1), if po = Ω(k2/D), k = Ω
(

log2
(
D
δγ

))
, max{Ω(k4),D} ⩽ m ⩽

poly(D), then we have for any D ∈ FΞ, with probability at least 1 − δ, there exists t ∈ [T]

such that

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) = O
(
k8

m2/3 +
k3T

m2 +
k2m2/3

T

)
. (A.277)

Consequently, for any ϵ ∈ (0, 1), if T = m4/3, and max{Ω(k12/ϵ3/2),D} ⩽ m ⩽ poly(D),
then

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) ⩽ ϵ. (A.278)

Proof of Theorem 2.1. Consider L̃D(g(t)) = E[ℓ(g(t),y)] + λ(t)a ∥a(t)∥2
2. Note that the

gradient update using L̃D(g(t)) is the same as the update in our learning algorithm.
Then by Theorem A.21, Lemma A.17, and Lemma A.19,

1
T

T∑
t=3

L̃D(g
(t)) ⩽

∥ã∥2
2

2 + ∥ã∥2
√
∥ã∥0

(
O

(
Tηλσ̃

k

)
+ η2T 2 +O

(
T

km2

))
(A.279)

+
∥ã∥2

2
2ηT + ∥a(2)∥2

√
m+ ηm (A.280)

⩽ O

(
k9

m
+ k4η2T 2 +

k3T

m2 +
k9

ηTm
+ ηm

)
. (A.281)

⩽ O

(
k8

m2/3 +
k3T

m2 +
k2m2/3

T

)
. (A.282)

The statement follows from that 0-1 classification error is bounded by the hinge-
loss.

Theorem A.21 (Theorem 13 in Daniely and Malach (2020)). Fix some η, and let
f1, . . . , fT be some sequence of convex functions. Fix some θ1, and assume we update

213

θt+1 = θt − η∇ft(θt). Then for every θ∗ the following holds:

1
T

T∑
t=1

ft(θt) ⩽
1
T

T∑
t=1

ft(θ
∗) +

1
2ηT ∥θ

∗∥2
2 + ∥θ1∥2

1
T

T∑
t=1

∥∇ft(θt)∥2 + η
1
T

T∑
t=1

∥∇ft(θt)∥2
2.

(A.283)

A.5 Lower Bound for Linear Models on Fixed Feature
Mappings

Theorem A.22 (Restatement of Theorem 2.2). Suppose Ψ is a data-independent feature
mapping of dimensionN with bounded features, i.e., Ψ : X→ [−1, 1]N. Define for B > 0:

HB = {h(x̃) : h(x̃) = ⟨Ψ(x̃),w⟩, ∥w∥2 ⩽ B}. (A.284)

Then, if 3 < k ⩽ D/16 and k is odd, then there exists D ∈ FΞ such that all h ∈ HB have
hinge-loss at least po

(
1 −

√
2NB
2k

)
.

Proof of Theorem 2.2. We first show that FΞ contains some distributions that are
essentially sparse parity learning problems, and then we invoke the lower bound
result from existing work for such problems.

Consider D defined as follows.

• Let P = {i ∈ [k] : i is odd}. That is, if there are odd numbers of 1’s in ϕ̃A, then
y = +1.

• Let D(0)
ϕ̃

be a distribution where all entries ϕ̃j are i.i.d. with Pr[ϕ̃j = 0] =
Pr[ϕ̃j = 1] = 1/2. Let D(0) be the distribution over (x̃,y) induced by D

(0)
ϕ̃

and
the above P.

• Let D(1)
ϕ̃

be a distribution where all entries ϕ̃j for j ̸∈ A are i.i.d. with Pr[ϕ̃j =
1] = po/(2 − 2po), while Pr[ϕ̃A = (0, 0, . . . , 0)] = Pr[ϕ̃A = (1, 1, . . . , 1)] = 1/2.
Let D(1) be the distribution over (x̃,y) induced by D

(1)
ϕ̃

and the above P.

• Let Dmix
A = poD

(0) + (1 − po)D
(1).

214

It can be verified that such distributions are included in FΞ for γ = Θ(1).
Assume for contradiction that for all D ∈ FΞ, there exists h∗ ∈ HB such that

h = ⟨Ψ,w∗⟩ loss smaller than po

(
1 −

√
2NB
2k

)
. Then for all the distributions Dmix

A

defined above, we have

ED(0) [ℓ(h∗(x̃),y)] < 1 −

√
2NB
2k . (A.285)

Now let Dz be a distribution over z ∈ {−1,+1}D with i.i.d. entries zj and Pr[zj =
−1] = Pr[zj = +1] = 1/2. Let fA(z) =

∏
j∈A zj be the k-sparse parity functions. Let

Ψ ′(z) = Ψ(M(z+ 1)/2). Then we have h ′(z) = ⟨Ψ ′(z),w∗⟩ such that for all A,

EDz
[ℓ(h ′(z), fA(z))] < 1 −

√
2NB
2k . (A.286)

This is contradictory to Theorem A.23.

The following theorem is implicit in the proof in Theorem 1 in Daniely and
Malach (2020).

Theorem A.23. For a subset A ⊆ [D] of size k, let the distribution DA over (z,y) defined
as follows: z is uniform over {±1}D and y =

∏
i∈A zi. Fix some Ψ : {±1}D → [−1,+1]N,

and define:
HB
Ψ = {z→ ⟨Ψ(z),w⟩ : ∥w∥2 ⩽ B}.

If k is odd and k ⩽ D/16, then there exists some A such that

min
h∈HB

Ψ

EDA [ℓ(h(z),y)] ⩾ 1 −

√
2NB
2k .

We now prove the corollary.

Corollary A.24 (Restatement of Corollary 2.3). For any function f using a shift-
invariant kernel K with RKHS norm bounded by L, or f(x) =

∑
i αiK(zi, x) for some data

points zi and ||α||2 ⩽ L. If 3 < k ⩽ D/16 and k is odd, then there exists D ∈ FΞ such that
f have hinge-loss at least po(1 −

poly(d,L)
2k) − 1

poly(d,L) .

215

Proof. By Claim 1 in Rahimi and Recht (2008), for any ν > 0, there exists N =

poly(d, 1/ν) Fourier features Ψj that can approximate the shift-invariant kernel up
to error ν. For any ϵ > 0, consider

∑
i αi⟨Ψ(zi),Φ(x)⟩ = ⟨

∑
i αiΨ(zi),Ψ(x)⟩. Let

w =
∑
i αiΨ(zi) and let ν = O(ϵ

L
), then ⟨Ψ(x),w⟩ approximates f(x) upto error ϵ

and N = poly(d,L, 1/ϵ) and the norm of w bounded by B = poly(d,L, 1/ϵ). The
reasoning is the same for f in the RKHS form, replacing sum with integral. By
Theorem 2.2, ⟨Ψ(x),w⟩ has hinge-loss at least p0(1 −

√
2NB
2k). Thus, the function f

has loss at least p0(1 −
poly(d,L,1/ϵ)

2k) − ϵ. Choose ϵ = 1
poly(d,L) , we get the bound.

A.6 Lower Bound for Learning without Input
Structure

First recall the Statistical Query model (Kearns, 1998). In this model, the learning
algorithm can only receive information about the data through statistical queries.
A statistical query is specified by some property predicate Q of labeled instances,
and a tolerance parameter τ ∈ [0, 1]. When the algorithm asks a statistical query
(Q, τ), it receives a response P̂Q ∈ [PQ − τ,PQ + τ], where PQ = Pr[Q(x,y) is true].
Q is also required to be polynomially computable, i.e., for any (x,y) Q(x,y) can
be computed in polynomial time. Notice that a statistical query can be simulated
by empirical average of a large random sample of data of size roughly O(1/τ2) to
assure the tolerance τwith high probability.

Blum et al. (1994) introduces the notion of Statistical Query dimension, which
is convenient for our purpose.

Definition A.25 (Definition 2 in Blum et al. (1994)). For concept class C and distribu-
tion D, the statistical query dimension SQ-DIM(C,D) is the largest number d such that
C contains d concepts c1, . . . , cd that are nearly pairwise uncorrelated: specifically, for all
i ̸= j,

| Pr
x∼D

[ci(x) = cj(x)] − Pr
x∼D

[ci(x) ̸= cj(x)]| ⩽ 1/d3. (A.287)

216

Theorem A.26 (Theorem 12 in Blum et al. (1994)). In order to learn C to error less
than 1/2 − 1/d3 in the Statistical Query model, where d = SQ-DIM(C,D), either the
number of queries or 1/τ must be at least 1

2d
1/3.

We now use the above tools to prove our lower bound.

Theorem A.27 (Restatement of Theorem 2.4). For any algorithm in the Statistical
Query model that can learn over FΞ0 to error less than 1

2 −
1

(Dk)
3 , either the number of queries

or 1/τ must be at least 1
2

(
D
k

)1/3.

Proof of Theorem 2.4. Consider the following concept class and marginal distribu-
tion:

• Let D be the distribution over x̃, given by x̃ = Mϕ̃ and ϕ̃j are i.i.d. with
Pr[ϕ̃j = 0] = Pr[ϕ̃j = 1] = 1/2.

• Let C be the class of functions y = gA(ϕ̃) = I[
∑
j(1 − ϕ̃j) is odd] for different

A ⊆ [D].

The distributions over (x̃,y) induced by (C,D) are a subset ofFΞ0 . It is then sufficient
to show that SQ-DIM(C,D) ⩾

(
D
k

)
.

It is easy to see that C are essentially the sparse parity functions: if zj = 2ϕ̃j −
1, then gA(ϕ̃) =

∏
j∈A zj. This then implies that the gA’s are uncorrelated, so

SQ-DIM(C,D) ⩾
(
D
k

)
.

A.7 Complete Experimental Results
Our experiments mainly focus on feature learning and the effect of the input struc-
ture. We first perform simulations on our learning problems to (1) verify our main
theorems on the benefit of feature learning and the effect of input structure (2)
verify our analysis of feature learning in networks. We then check if our insights
carry over to real data: (3) whether similar feature learning is presented in real
network/data; (4) whether damaging the input structure lowers the performance.

217

The results are consistent with our analysis and provide positive support for the
theory.

The experiments were ran 5 times with different random seeds, and the average
results (accuracy) are reported. The standard deviations of the results are smaller
than 0.5% and thus we do not present them for clarity. The hardware specifications
are 4 Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz, 16 GB RAM, and one NVIDIA
GPU GTX1080.

A.7.1 Simulation

We train a two-layer network following our learning process. We use two fixed
feature methods: the NTK (Fang et al., 2021) and random feature (RF) methods
based on the same network and random initialization as the network learning. More
precisely, in the NTK method, we randomly initialize the network and take its NTK
and learn a classifier on it. In the RF method, we freeze the first layer of the network,
and train the second layer (on the random features given by the frozen neurons).
The training step number is the same as that in network learning. We also test these
three methods on the data distribution with input structure removed (i.e., FΞ0 in
Theorem 2.4). For comparison, we take the representation of our two-layer network
at step one/step two, named One Step/Two Step (fix the weight of the 1st layer
after the first step/second step to train the weight of the second layer), and train
the best classifiers on top of them.

Recall that our analysis is on the directions of the weights without considering
their scaling, and thus it is important to choose cosine similarity rather than the
typical ℓ2 distance. Thus, we use metric Cos Similarity max{i∈[2m]} cos(wi,

∑
j∈AMj)

in our tables, and use Multidimensional Scaling to plot the weights distribution.
The simulation dataset size is 50000. During training, the batch size is 1000, while
for the first two steps we use the approximate full gradient (batch size is 50000).
Each step is corresponding to one weights update.

218

Parity Labeling

Setting. We generate data according to the parity function data distributions used
in our proof of the lower bound for fixed features (Theorem 2.2), with d = 500,D =

100,k = 5,po = 1/2, with a randomly sampled A. More precisely, we consider D
defined as follows.

• Let P = {i ∈ [k] : i is odd}. That is, if there are odd numbers of 1’s in ϕ̃A, then
y = +1.

• Let D(0)
ϕ̃

be a distribution where all entries ϕ̃j are i.i.d. with Pr[ϕ̃j = 0] =
Pr[ϕ̃j = 1] = 1/2. Let D(0) be the distribution over (x̃,y) induced by D

(0)
ϕ̃

and
the above P.

• Let D(1)
ϕ̃

be a distribution where all entries ϕ̃j for j ̸∈ A are i.i.d. with Pr[ϕ̃j =
1] = po/(2 − 2po), while Pr[ϕ̃A = (0, 0, . . . , 0)] = Pr[ϕ̃A = (1, 1, . . . , 1)] = 1/2.
Let D(1) be the distribution over (x̃,y) induced by D

(1)
ϕ̃

and the above P.

• Let Dmix
A = poD

(0) + (1 − po)D
(1).

The network and the training follow Section 2.3, where the network size is
m = 300 and the training time T = 600 steps.

Model Network NTK RF One Step Two Step Network w/o structure
Train Acc (%) 100.0 84.0 74.7 51.3 100.0 100.0
Test Acc (%) 100.0 86.4 76.0 52.2 100.0 52.0

Cos Similarity 0.997 NA 0.114 0.848 0.997 0.253

Table A.1: Parity labeling results in six methods. The cosine similarity is computed
between the ground-truth

∑
j∈AMj and the closest neuron weight.

Verification of the Main Results. Figure A.1 shows that the results are consistent
with our analysis. Network learning gets high test accuracy while the two fixed
feature methods get significantly lower accuracy. Furthermore, when the input
structure is removed, all three methods get test accuracy similar to random guessing.
Feature Learning in Networks. Figure A.2 shows that the results are as predicted
by our analysis. After the first gradient step, some weights begin to cluster around

219

Figure A.1: Test accuracy on simulated data under parity labeling with or without
input structure.

Figure A.2: Visualization of the weights wi’s after initialization/one gradient
step/two gradient steps in network learning under parity labeling. The red star
denotes the ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The red dots are

the weights closest to the red star after two steps; the orange ones are for the orange
star.

the ground-truth
∑
j∈AMj (or −

∑
j∈AMj due to we have ai in the gradient update

which can be positive or negative). After the second step the weights get improved
and well-aligned with the ground-truth (with cosine similarity > 0.99).

Table A.1 shows the results for different methods. Recall that the Cos Similarity
metric is max{i∈[2m]} cos(wi,

∑
j∈AMj), which reports the cosine value of the closest

one. One Step refers to the method where we take the neurons after one gradient
step, freeze their weights, and train a classifier on top; similar for Two Step. One

220

Step gets test accuracy about 52%, while Two Step gets accuracy about 100%. This
demonstrates that while some effective feature emerge in the first step, they need
to be improved in the second step for accurate prediction. NTK, random feature,
One Step all failed, while Network and Two Step can achieve 100% test accuracy.
Network w/o structure refers to training the network on data without the input
structure. It overfits the training dataset with 52% test accuracy.

Interval Labeling

Figure A.3: Test accuracy on simulated data under interval labeling with or without
input structure.

Model Network NTK RF One Step Two Step Network w/o structure
Train Acc (%) 100.0 100.0 76.4 44.1 100.0 100.0
Test Acc (%) 100.0 100.0 73.2 41.0 100.0 100.0

Cos Similarity 1.00 NA 0.153 0.901 0.994 0.965

Table A.2: Interval labeling results in six methods.

Setting. We also tried interval function, where y = 1 if
∑
i∈A ϕ̃i is in the range

[t1, t2] with t1 = 20 and t2 = 30, otherwise y = −1. We use d = 500,D = 100,k = 30.
The ϕ̃i’s are independent, and Pr[ϕ̃i = 1] = 2/3 for any i ∈ A, and Pr[ϕ̃i = 1] = 1/2
otherwise. When the input structure is removed, we set Pr[ϕ̃i = 1] = 1/2 for all i’s.

221

Figure A.4: Visualization of the weights wi’s after initialization/one gradient
step/two gradient steps in network learning under interval labeling. The red
star denotes the ground-truth

∑
j∈AMj; the orange star is −

∑
j∈AMj. The red dots

are the weights closest to the red star after two steps; the orange ones are for the
orange star.

The network and training again follows Section 2.3 with a network sizem = 100
and the training time T = 200 steps.
Verification of the Main Results. Figure A.3 shows that network learning learns
the fastest, NTK learns slower but reaches similar test accuracy, while random
feature can only reach a decent but lower accuracy. This is because for such simpler
labeling functions, fixed feature methods can still achieve good performance (note
that the lower bound does not hold for such a case), while the performance depends
on what fixed features to use.

Furthermore, when the input structure is removed, the methods still get similar
(or only slightly worse) performance as with input structure. This shows that when
the labeling function is simple, the help of the input structure for learning may
not be needed. In the experiments on real data, we will show that when the input
structure is changed, it indeed leads to lower performance which suggests that
the labeling function in practice is typically more complicated than this interval
labeling setting, and the help of the input structure is significant for learning.
Feature Learning in Networks. Figure A.4 shows the phenomenon of feature
learning similar to that in the parity labeling setting. Table A.2 shows the test
accuracy of six different methods. Random feature and One Step failed, while
Network, NTK and Two Step succeed showing that interval labeling setting is a
simpler case than parity labeling setting.

222

A.7.2 More Simulation Result in Various Settings

We show the robustness of our simulation results by studying the learning behaviors
in a variety of settings including different sample size, input data dimension and
class imbalance. We reuse the same setting as the simulation in the main text (details
in A.7.1), vary different parameters, and report the accuracy, the cosine similarities
between the learned weights, and the visualization of the neuron weights.

Varying Input Data Dimension

In the simulation experiments in the main text, the input data dimension d is 500.
Here we change the input data dimension to 100 and 2000. All other configurations
follow A.7.1.
Verification of the Main Results. Figure A.5 shows that our claim is robust under
different input data dimensions. The performance of network learning is superior
over NTK and random feature approaches on inputs with structure, and on inputs
without structure, all three methods fail.

(a) d = 100 (b) d = 2000

Figure A.5: Test accuracy on simulated data under different input data dimensions.

Feature Learning in Networks. Figure A.6 visualizes the neuron weights. It shows
similar results to that in A.7.1: the weights gets updated to to the effective feature in
the first two steps, forming clusters. Table A.3 shows some quantitative results. In

223

Figure A.6: Visualization of the weights wi’s in early steps under different input
data dimensions. Upper row: input data dimension d = 100; lower row: d = 2000.

d = 100 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 83.1 78.9 53.0 100.0 100.0
Test Acc 100.0 81.5 78.3 51.1 100.0 51.0

Cos Similarity 1.000 NA 0.354 0.967 1.000 0.331

d = 2000 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 75.6 80.0 50.22 100.0 100.0
Test Acc 100.0 75.4 77.0 50.01 100.0 52.5

Cos Similarity 0.998 NA 0.056 0.560 0.998 0.309

Table A.3: Results of six methods for different input data dimensions. The cosine
similarity is computed between the ground-truth

∑
j∈AMj and the closest neuron

weight.

particular, the average cosine similarities between neuron weights and the effective
features after two steps are close to 1, showing that they match the effective features.

Varying Class Imbalance Ratio

The experiments in the main text has 25000 training samples for each class. Here
we keep the total sample size 50000 but use different class imbalance ratios, which
is the class −1 sample size divide by the total sample size.
Verification of the Main Results. Figure A.7 shows that our claim is robust under
different class imbalance ratios. The results are similar to those for balanced classes,

224

except that NTK becomes less stable.

(a) Negative class ratio = 0.8 (b) Negative class ratio = 0.9

Figure A.7: Test accuracy on simulated data under different negative class ratios.

Figure A.8: Visualization of the weights wi’s in early steps under different class
imbalance ratios. Upper row: negative class ratio 0.8; lower row: 0.9.

Feature Learning in Networks. Figure A.8 visualizes the neurons’ weights. Again,
the observation is similar to that for balanced classes. Table A.4 shows some
quantitative results which are also similar to those for balanced classes.

225

ratio = 0.8 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 62.9 72.7 78.3 100.0 100.0
Test Acc 100.0 82.7 70.4 75.7 100.0 61.7

Cos Similarity 0.999 NA 0.293 0.950 0.999 0.218

ratio = 0.9 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 84.0 73.6 92.3 100.0 100.0
Test Acc 100.0 81.7 72.4 89.2 100.0 71.8

Cos Similarity 0.997 NA 0.296 0.956 0.997 0.286

Table A.4: Results of six methods under different negative class ratios.

Varying Sample Size

Here we change the sample size 50000 in Section A.7.1 to be 25000 and 10000. For
sample size 25000, we observe similar results. For sample size 10000, we observe
over-fitting (test accuracy much lower than train accuracy). Therefore, for sample
size 10000 we reduces the size of the network (i.e., number of hidden neurons)
fromm = 300 tom = 50.
Verification of the Main Results. Figure A.9 shows that our claim is robust under
different sample sizes. In particular, the network learning still outperforms the
NTK and random feature approaches on structured inputs.

(a) n = 25000 (b) n = 10000

Figure A.9: Test accuracy on simulated data under different sample sizes n.

Feature Learning in Networks. Figure A.10 and Table A.5 show that the phe-
nomenon of feature learning for different samples is similar to that in A.7.1.

226

Figure A.10: Visualization of the weights wi’s in early steps under different sample
sizes. Upper row: sample size 25000; lower row: 10000.

n = 25000 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 84.0 78.6 50.6 100.0 100
Test Acc 100.0 84.1 74.7 50.0 100.0 50.2

Cos Similarity 0.997 NA 0.105 0.851 0.997 0.230

n = 10000 Network NTK RF One Step Two Step Network w/o structure
Train Acc 100.0 73.9 71.6 50.7 100.0 100.0
Test Acc 100.0 75.0 74.3 50.3 100.0 52.2

Cos Similarity 0.995 NA 0.096 0.974 0.994 0.176

Table A.5: Results of six methods for different sample size.

A.7.3 Experiments on More Data Generation Models

In this section we consider some additional data distributions and run the simu-
lation experiments, in particular, focusing on the feature learning phenomenon.
Note that our analysis is for the setting where the input distributions have struc-
ture revealing some information about the labeling function. (More precisely, the
labeling function is specified by A and P, while the input distribution also depends
on them.) We therefore consider two other data generation mechanisms where the
labeling function also has connections to the input distributions.

227

Hidden Representation Labeling

Here we consider the following data model: first uniformly at random select ϕ̃A

from a set of binary vectors, and assign label 1 to some and -1 to others; sample
irrelevant patterns ϕ̃−A uniformly at random; generate the input x = Mϕ̃. We
randomly select 50 binary vectors for each label, with d = 500,D = 250,k =

50,po = 1/2.
This is a generalization of the distribution D(1), a component in the distribution

of our simulation experiments (see the proof of Theorem 2.2 for details). Recall the
definition of D(1): ϕ̃A is uniform on only two values [+1, . . . ,+1] and [0, . . . , 0], and
uniform over irrelevant patterns; the value [+1, . . . ,+1] corresponds to one class
and [0, . . . , 0] correspond to another class. Our data model here generalizes D(1) to
more than 2 values.

The visualization is shown in Figure A.11. We can observe similar feature
learning phenomena, and the neuron weights are updated to form clusters.

Figure A.11: Visualization of the weights wi’s after initialization/one gradient
step/two gradient steps in network learning under hidden representation labeling.

Two-layer Networks on Mixture of Gaussians

To further support our intuition of feature learning, we run experiments on mixture
of Gaussians.

Data. Let X = Rd be the input space, and Y = {±1} be the label space. Suppose
M ∈ Rd×k is an dictionary with k orthonormal columns. Let εi, i = 1, . . . ,k be i.i.d

228

symmetric Bernoulli random variables, and g ∼ N(0,σ2
r
k
d
Id). Then we generate the

input x and class label y by:

x =

k∑
i=1

εiM:i + g, y =

k∏
i=1

εi (A.288)

In this case, 2k Gaussian clusters will be created. The centers of the Gaussian
clusters

∑k
i=1±M:i lie on the vertices of a hyper cube, and the label of each Gaussian

cluster is determined by the parity function on the vertices of the hyper cube.
Note that the labeling function is roughly equivalent to a network:

y =

n∑
i=1

aiReLU(⟨ci, x⟩)

where ci’s are the Gaussian centers, and ai ∝ 1 for Gaussian components with
label 1 and ai ∝ −1 for those with label -1.
Setting. We then train a two-layer network with m = 800 hidden neurons on data
sets generated as above with different chosen k’s and d’s. The training follows
typical practice (not the hyperparameters in our analysis). In this setting, we expect
the neural network to learn the effective features: the directions of Gaussian cluster
centers.

Result. We run experiments with different settings. The parameters are shown
in Table A.6. From Figure A.12 we can see that some neurons learn the directions
of Gaussian centers, and each Gaussian center is covered by some neurons, which
matches our expectation.

Parameters d k Number of Clusters σr
Experiment 1 100 4 16 1
Experiment 2 25 4 16 0.7
Experiment 3 100 5 32 1

Table A.6: Gaussian mixture setting.

229

(a) Experiment 1 with epoch 0/50/80

(b) Experiment 2 with epoch 0/30/50

(c) Experiment 3 with epoch 0/50/80

Figure A.12: Visualization of the weights wi’s (blue dots) and Gaussian centers
(red for positive labeled clusters and orange for negative labeled clusters).

Figure A.13: Visualization of the neurons’ weights in a two-layer network trained on
the subset of MNIST data with label 0/1. The weights gradually form two clusters.

230

Figure A.14: Visualization of the neurons’ weights in a two-layer network trained on
the subset of CIFAR10 data with label airplane/automobile. The weights gradually
form two clusters.

Figure A.15: Visualization of the neurons’ weights in a two-layer network trained on
the subset of SVHN data with label 0/1. The weights gradually form four clusters.

A.7.4 Real Data: Feature Learning in Networks

We take the subset of MNIST (Deng, 2012) with labels 0/1, CIFAR10 (Krizhevsky,
2012) with labels airplane/automobile and SVHN (Netzer et al., 2011) with labels
0/1, and train a two-layer network withm = 50. We use traditional weight initial-
ization method (random Gaussian) and training method (SGD with momentum
= 0.95 without regularization) in this section, for our purpose of investigating the
training dynamics in practice.

Then we visualize the neurons’ weights following the same method in the
simulation. Figure A.13, Figure A.14 and Figure A.15 show a similar feature learning
phenomenon: effective features emerge after a few steps, and then get improved to
form clusters. This shows the insights obtained on our learning problems are also
applicable to the real data.

231

cos(v1, v̄) cos(v2, v̄) cos(v3, v̄) cos(v1,v2) cos(v1,v3) cos(v2,v3)
ResNet(128) 0.9727 0.8655 0.6549 0.7454 0.5083 0.6533
ResNet(256) 0.8646 0.9665 0.9121 0.7087 0.6919 0.9135

Table A.7: Cosine similarities between the gradients in the early steps. We choose
the neuron weight closest to the average weight of the green cluster at the end of
the training (in Figure A.16 for ResNet(128) and Figure A.17 for ResNet(256)). We
record the gradients of the first 30 steps and divide them to three trunks of 10 steps
evenly and sequentially. For the three trunks, we get the average gradients v1, v2, v3.
We calculate their cosine similarities to their average v̄ = (v1 + v2 + v3)/3 and those
between them.

CNNs on Binary Cifar10: Feature Learning in Networks

Setting. We use ResNet(m), which is a ResNet-18 convolutional neural network (He
et al., 2016) with m filters in the first residual block. It is obtained by scaling the
number of filters in each block proportionally from the standard ResNet-18 network
which is ResNet(64). We use ResNet(128) and ResNet(256) in this experiment. We
train our model on Binary CIFAR10 (Krizhevsky, 2012) with labels airplane/auto-
mobile for 20 epochs. The final test accuracy of ResNet(128) is 95.75% and that of
ResNet(256) is 93.8%.

Results. Figure A.16 visualizes the filters’ weights of different residual blocks in
ResNet(128) at Epoch 0, 3, and 20, and Figure A.17 shows those in ResNet(256).
They show that feature learning happens in the early stage, and show that there are
some clusters of weights (e.g., the red and green points). These colored points are
selected at Epoch 20. We first visualize the weights at Epoch 20, and then hand pick
the points that roughly form two clusters (i.e., the points in the same cluster are
close to each other while those in different clusters are far away). We assign red and
green colors to the two clusters at Epoch 20, and then assign these weights with the
same color in Epoch 0 and 3. Finally, we compute the cosine similarities and show
that the hand picked points are indeed roughly clusters in the high-dimension.

In particular, we have the following three observations.
First, we can see that the filter weights change significantly during the early

stage of the training, indicating feature learning happens in the early stage: the

232

change between Epoch 0 and Epoch 3 is much more significant than that between
Epoch 3 and Epoch 20.

Second, we can also verify that the feature learning is guided by the gradients:
the gradients of a filter in the early gradient steps point to similar directions (and
thus the updated filter will learn this direction). More precisely, for a selected filter,
we average the gradients every 10 gradient steps (so to reduce the variance due
to mini-batch), and get v1, v2 and v3 for the first 30 steps and compute their cosine
similarities and those to their average. Table A.7 shows the results. In general
the similarities are high indicating they point to similar directions. (Note that a
similarity of 0.6 is regarded as very significant as the filters are in a high dimension
of 3× 3× 1024 = 9216).

Third, we also observe some clustering effect of the filter weights, though not
as significant as in our simulations. For example, in the red and green clusters in
Figure A.16(a) for the first residual block, the average cosine similarity for filter
weights in the red cluster is about 0.62 and that for the green is about 0.7, while
the cosine similarity between the two clusters’ centers is about -0.72. This shows
significant similarities within the cluster while difference between clusters.

Note that the clustering is less significant than our simulation experiments.
This is because practical data have more patterns (i.e., effective feature directions)
to be learned than our synthetic data, and also the practical network is not as
overparameterized as in our simulation. Then filters are likely to learn different
patterns (or their mixtures) without forming significant clusters. The results of
ResNet(256) show more significant clustering than ResNet(128), which supports
our explanation. On the other hand, we emphasize that the key insight of our
analysis is that the gradient guides the learning of effective features in the early
stage of training (rather than the clustering), which is verified as discussed above.

A.7.5 Real Data: The Effect of Input Structure

To study the influence of the input structure, we propose to keep the labeling
function unchanged, vary the input distributions, and exam the change of the

233

loss surface and the training dynamics. We first describe the detailed experimen-
tal methodology, which allows us to generate data with similar labeling function
but different input distributions. Then we perform experiments on the generated
datasets to investigate the change of the learning due to the change in the input
distributions, and present the experimental results. Finally, we also perform experi-
ments to verify the intuition behind our experimental method.

Experimental Methodology

We consider the following experimental method. Given an original dataset L =

{(xi,yi)}ni=1 (e.g., CIFAR10) and an unlabeled dataset U = {x̃i}
m
i=1 from a proposed

distribution PU (e.g., Gaussians), first extend the labeling function of L to U, giving
synthetic labels ỹi to x̃i. Then train a neural network on the union of L and the
synthetic data LU = {(x̃i, ỹi)}mi=1. By investigating the new training dynamics, in
particular the difference on the original part L and the synthetic part LU, we can
see the effect of the input structure. The original dataset should be from real-world
data, since one of our goals is to compare them with synthetic data, and identify
the properties of real-world data important for the success of learning.

A natural idea is to first learn a powerful network f(x) (called the teacher)
on L to approximate the true labeling function, then apply f on U to generate
synthetic labels, and finally train another network (called the student) on the
synthetic data and original data. However, we found that naïvely implementation
of this idea fails miserably: the support of L and U can be typically different, and
the powerful network learned over L can have entirely different behavior on U.
Therefore, we need to control the size of the teacher f so that the labeling on U has
similar complexity as that on L. For our purpose, we can define the complexity of
the labeling on L as the minimum size of the teacher achieving an approximation
error ϵ for a chosen ϵ, if the ground-truth data distribution of L is known. However,
given only limited data, we cannot faithfully estimate the needed size of the teacher,
and need to take into account the variance introduced by the finite data.

Our key idea is to use the U-shaped curve of the bias-variance trade-off and

234

select the size of the teacher at the minimum of the U-shaped curve. Since recent
works (Belkin et al., 2019; Nakkiran et al., 2020) show that neural networks can have
a double descent curve for the error v.s. model complexity, we thus plot the double
descent curve, and find the minimum in the classical regime (corresponding to the
traditional U-shape curve).

Our method is designed based on the following two reasons. First, on the U-
shaped curve, the complexity of the network is still roughly controlled by that of
the number of parameters. The local minimum of the U-shaped curve is a good
measurement of the complexity of the data. If the ground-truth is much more
complicated than the teacher, then increasing the teacher’s size leads to a significant
decrease in the approximation error (bias) compared to a small increase in the
variance, that is, we will be on the left-hand side of the U-shaped. In contrast, on
the right-hand side of the U-shaped, increasing the teacher’s size leads to a small
decrease in the bias compared to a significant increase in the variance. That is, the
complexity of the ground-truth is comparable to or lower than the teacher. So the
local minimum approximates the complexity of the ground-truth labeling function.

Second, the local minimum point is chosen to get the best approximation of the
true labels. This helps to maintain the labeling from the real-world data and thus
helps our investigation on the input, since too drastic change in the labeling can
affect the training.

We note that the method is not perfect. First, the teacher at the local minimum of
U-shape may not have very high accuracy, especially on more complicated data. To
alleviate this, we also use the teacher to give synthetic labels y ′

i to xi in L, and train
the student network on L ′ = {(xi,y ′

i)}
n
i=1. Though this introduces some differences

from the original labels, it is acceptable for our purpose of studying the inputs.
Furthermore, ensuring the consistency of the labels on the original input in L and
U is important in our experiments. Second, the measurement is an approximation
due to variance. Since only limited labeled data is available, it’s important and
necessary to calibrate the measurement w.r.t. the level of variance on the given
dataset.
Method Description. Algorithm 3 presents the details. For a fixed network archi-

235

tecture for the teacher f, it first varies the network size and plots the double descent
curve. Then it selects the local minimum in the classic regime of U-shape and trains
the teacher with the corresponding size. In practice, we observed that the teacher
might have unbalanced probabilities for different classes on U if its training does not
take into account U. Therefore, we propose the following heuristic regularization
using x ∈ U, where λ is a regularization weight, and f(x) is the probabilities over
classes given by the teacher:

R(x) = R1(x) + λR2(x) (A.289)

R1(x) =
∑
j

(∑
i f(x)j
m

ln
∑
i f(x)j
m

)
(A.290)

R2(x) = −
1
m

∑
i

∑
j

(f(x)j ln(f(x)j)). (A.291)

Here, R1(x) guarantees that each kind of label has the same average probability to
be generated, and R2(x) pushes the probability away from uniform to avoid the
case that the class probabilities for each data point converge to uniform.

Algorithm 3 Learning the teacher network to generate synthetic labels for studying
the effect of the input structure

Input: teacher architecture f, labeled dataset L = {(xi,yi)}ni=1, unlabeled dataset
U = {x̃i}

m
i=1.

Let i to be the size of f, fi to be the teacher of size i.
for i = 1 to n do

Train fi on L and let li denote the test loss
end for
Plot li v.s. i, identify the classical regime, and the size it corresponding to the
local minimum in classical regime.
Train fit on L with a regularizer R(x) on U defined in (A.289).
Output: fit

236

Experimental Results

Network models. Here we use one-hidden-layer fully-connected networks with m
hidden units and quadratic activation functions. The network is denoted as FC(m).
We use ResNet(m), which is a ResNet-18 convolutional neural network (He et al.,
2016) with m filters in the first residual block. It is obtained by scaling the number
of filters in each block proportionally from the standard ResNet-18 network which
is ResNet(64).
Datasets. We use MNIST (Deng, 2012), CIFAR10 (Krizhevsky, 2012) and SVHN (Net-
zer et al., 2011) as L, and use Gaussian and images in Tiny ImageNet (Le and Yang,
2015) as U. We generate the mixture data, where the fraction of the unlabeled data
is denoted as α.
Setup. We first use Algorithm 3 on the labeled data L and the unlabeled data U

to get a synthetic labeling function (the teacher network) and then use it to give
synthetic labels on a mixture of inputs from L and U. For MNIST, the teacher
network learned is FC(9), where the number of the hidden units is determined by
Algorithm 3. See empirical verification in Figure A.22. For CIFAR10 and SVHN,
the teacher networks are ResNet(5) and ResNet(2), respectively, as determined by
our method. The student network for MNIST is FC(9), and those for CIFAR10
and SVHN are ResNet(9) and ResNet(8), respectively. Finally, we train the student
networks on these new datasets with perturbed input distributions.

Figure A.18 shows the results on an equal mixture of data and Gaussian. It
presents the test accuracy of the student on the original data part, the Gaussian
part, and the whole mixture. For example, for CIFAR10, the test accuracy on the
whole mixture is lower than that of training on the original CIFAR10, showing that
the input structure indeed has a significant impact on the learning. Furthermore,
the network learns well over the CIFAR10 part (with accuracy similar to that on
the original data) but learns slower with worse accuracy on the Gaussian part.
This suggests that the CIFAR10 input structure is still helping the network to learn
effective features. While the results on MNIST+Gaussian do not show a significant
trend (possibly because the tasks there are simpler), the results on SVHN+Gaussian

237

show similar significant trends as CIFAR10+Gaussian.
Figure A.20 shows the results when we vary the fraction of the Gaussian data α.

We observe that the test accuracy curve on the original part and that on the synthetic
part have roughly the same trend for different α as before, further verifying our
insights.

Figure A.19 shows the results when mixed with Tiny ImageNet data instead of
Gaussians. It shows a similar trend, while the performance on the Tiny ImageNet
part is higher than that on the Gaussian part. This suggests that compared to
Gaussians, the Tiny ImageNet data has helpful input structures, though not as
helpful as that on the original data for learning the particular labeling.

Larger Network on MNIST for Checking The Effect of Input Structure

Here we perform the experiment on MNIST as in A.7.5, but for a network with
m = 50 hidden neurons rather than m = 9. Figure A.21 shows similar results as
those for m = 9: the learning on the MNIST input part is faster and better than
that on the Gaussian input part. The separation between the two is actually more
significant than that for m = 9. This then also supports our insight about the effect
of input structures.

Empirical Verification of Our Method

We also perform experiments to verify the intuition behind our methodology, i.e.,
the method gives a synthetic labeling function with roughly the same complexity on
the original inputs and the injected inputs. We first use our method on MNIST and
samples (of the same size as MNIST) from a Gaussian to get the teacher FC(9); the
double descent curve is in Figure A.22(a). Then we train students on the Gaussian
data with synthetic labels from the teacher, and plot the double descent curve for the
students in Figure A.22(b). The local minimums of the two U-shapes are roughly
the same, matching our reasoning. Then we also train larger teachers and plot the
double descent curve for students on Gaussian data. Figure A.22(c) Teacher size

238

50. Figure A.22(d) Teacher size 500. The local minimum of the U-shape becomes
larger when the teacher gets larger, again matching our reasoning.

A.8 Provable Guarantees for Neural Networks in A
More General Setting

This section provides the analysis in a more general setting. We first describe the
learning problems, and then provide the proofs following similar intuitions as for
the simpler settings in the main text.

A.8.1 Problem Setup

Let X = Rd be the input space, and Y = {±1} be the label space. SupposeM ∈ Rd×D

is a dictionary withD elements, where each elementMj can be regarded as a pattern.
We assume quite general incoherent dictionary:

(D) M is µ-incoherent, i.e., the columns of M are unit vectors, and for any i ̸=
j, |⟨Mi,Mj⟩| ⩽ µ/

√
d.

Note that the setting in the main text corresponds to µ = 0.
Let ϕ̃ ∈ {0, 1}D be a hidden vector that indicates the presence of each pattern,

and Dϕ̃ a distribution for ϕ̃. Let A ⊆ [D] be a subset of size k corresponding to the
class relevant patterns. Let P ⊆ [k]. We first sample ϕ̃ from Dϕ̃, and then generate
the input x̃ and the class label y from ϕ̃, A,P by:

x̃ =Mϕ̃+ ζ, y =

+1, if
∑
i∈A ϕ̃i ∈ P,

−1, otherwise
(A.292)

where the Gaussian noise ζ ∼ N(0,σ2
ζId×d) is independent from ϕ̃. Note that the

setting in the main text corresponds to σζ = 0.
We allow general Dϕ̃ with the following assumptions:

239

(A1) The patterns in A are correlated with the labels: for any i ∈ A, for v ∈ {±1} let
γv = E[yϕ̃i|y = v], then γ := (γ+1 + γ−1)/2 > 0.

(A2) The patterns outside A are independent of the patterns in A.

Note that we allow imbalanced classes. Let pmin := min(Pr[y = −1], Pr[y = +1]). If
the classes are balanced, then the assumption (A1) implies the assumption (A1)
in the main text, so the setting here is more general. (A2) is also more general,
in particular, allowing dependence between irrelevant patterns and non-identical
distributions for them.

Let D(A,P,Dϕ̃) denote the distribution on (x̃,y) corresponding to some A,P,
and Dϕ̃. Given parameters Ξ = (d,D,k,γ,po,µ,σζ), the family FΞ of distributions
for learning is the set of all D(A,P,Dϕ̃) with A ⊆ [D], P ⊆ [k], and Dϕ̃ satisfying
the above assumptions.

One special case is the mixture of two Gaussians.
Example. Suppose M has one single column v, and y = +1 if ϕ̃ = 1 and

y = −1 otherwise. Then the data distribution is simply a mixture of two Gaussians:
x̃ ∼ v

2 +N(yv2 ,σ2
ζId×d).

Neural Network Learning

Again, we will normalize the data for learning: we first compute x = (x̃− E[x̃])/σ̃
where σ̃2 :=

∑d
i=1(x̃i−E[x̃i])2 =

∑
j∈[D] Var(ϕ̃j)+dσ2

ζ is the variance of the data, and
then train on (x,y). This is equivalent to setting ϕ = (ϕ̃− E[ϕ̃])/σ̃ and generating
x = Mϕ + ζ/σζ. For (x̃,y) from D and the normalized (x,y), we will simply say
(x,y) ∼ D.

The learning will be the same as that in the main text, except the following. We
will use a small σ2

w = σ̃2/poly(Dm). And we will use a weighted loss to handle
the imbalanced classes in the first two steps for feature learning, and then use the
unweighted loss in the remaining steps. Formally, the weighted loss is:

LαD(g;σξ) = E(x,y)[αyℓ(y,g(x; ξ))], (A.293)

240

where the class weights αv = 1
2 Pr[y=v] for v ∈ {±1}.

A.8.2 Main Result

In this setting, we have the following theorem:

Theorem A.28. Set

η(1) =
γ2pminσ̃

km3 , λ(1)
a = 0, λ(1)

w = 1/(2η(1)),σ(1)
ξ = 1/k3/2, (A.294)

η(2) = 1, λ(2)
a = λ(2)

w = 1/(2η(2)),σ(2)
ξ = 1/k3/2, (A.295)

η(t) = η =
k2

Tm1/3 , λ(t)a = λ(t)w = λ ⩽
k3

σ̃m1/3 ,σ(t)ξ = 0, for 2 < t ⩽ T . (A.296)

For any δ ∈ (0,O(1/k3)), ifµ ⩽ O(
√
d/D), σζ ⩽ O(min{1/σ̃, σ̃/

√
d}), k = Ω

(
log2

(
Dmd
δγpmin

))
,

m ⩾ max{Ω(k4),D,d}, then we have for any D ∈ FΞ, with probability at least 1 − δ,
there exists t ∈ [T] such that

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) = O
(
k8

m2/3 +
k3T

m2 +
k2m2/3

T

)
. (A.297)

Consequently, for any ϵ ∈ (0, 1), if T = m4/3, andm ⩾ max{Ω(k12/ϵ3/2),D}, then

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) ⩽ ϵ. (A.298)

The rest of the section is devoted to the proof of this theorem.

A.8.3 Notations

Recall some notations that we will use throughout the analysis.
For a vector v and an index set I, let vI denote the vector containing the entries

of v indexed by I, and v−I denote the vector containing the entries of v with indices
outside I.

Let ρ :=M⊤M. Then we have ρjj = 1 for any j, and |ρjℓ| ⩽ µ/
√
d for any j ̸= ℓ.

241

By initialization, w(0)
i for i ∈ [m] are i.i.d. copies of the same random variable

w(0) ∼ N(0,σ2
wId×d); similar for a(0) and b(0). Let σ2

ϕj
:= poj(1 − poj)/σ̃

2 denote the
variance of ϕℓ for ℓ ̸∈ A, where poj = Pr[ϕ̃j = 1]. Let po be the value such that with
probability 1 − exp(−Ω(k)),

∑
j̸∈A ϕ̃j ⩽ po(D− k) for some po ∈ [0, 1]. That is, po

is an upper bound on the density of ϕ̃j with high probability.
Let qℓ := ⟨w(0),Mℓ⟩. Similarly, define q(t)

i,ℓ := ⟨w(t)
i ,Mℓ⟩.

We also define the following sets to denote typical initialization. For a fixed
δ ∈ (0, 1), define

Gw(δ) :=

{
w ∈ Rd : qℓ = ⟨w,Mℓ⟩,

σ2
wd

2 ⩽ ∥w(0)∥2
2 ⩽

3σ2
wd

2 , (A.299)

σ2
w(D− k)

2 ⩽
∑
ℓ ̸∈A

q2
ℓ ⩽

3σ2
w(D− k)

2 ,

max
ℓ

|qℓ| ⩽ σw

√
2 log(Dm/δ)

}
, (A.300)

Ga(δ) := {a ∈ R : |a| ⩽ σa
√

2 log(m/δ)}. (A.301)

Gb(δ) := {b ∈ R : |b| ⩽ σb
√

2 log(m/δ)}. (A.302)

A.8.4 Existence of A Good Network

We first show that there exists a network that can fit the data distribution.

Lemma A.29. Suppose kµ√
d

poD
σ̃

⩽ 1
16 . For any D ∈ FΞ, there exists a network g∗(x) =∑n

i=1 a
∗
iσ(⟨w∗

i , x⟩+ b∗i) which satisfies

Pr
(x,y)∼D

[yg∗(x) ⩽ 1] ⩽ exp(−Ω(k)) + exp
(
−Ω

(
1

σ2
ζ(k+ k

2µ/
√
d)

))
.

242

Furthermore, the number of neurons n = 3(k + 1), |a∗
i | ⩽ 64k, 1/(64k) ⩽ |b∗i | ⩽ 1/4,

w∗
i = σ̃

∑
j∈AMj/(8k), and |⟨w∗

i , x⟩+ b∗i | ⩽ 1 for any i ∈ [n] and (x,y) ∼ D.
Consequently, if furthermore we have kµ/

√
d < 1 and σζ < 1/k, then

Pr
(x,y)∼D

[yg∗(x) ⩽ 1] ⩽ exp(−Ω(k)).

Proof of Lemma A.29. Let w = σ̃
∑
j∈AMj and let u =

∑
j∈A E[ϕ̃j]. We have

⟨w, x⟩ = σ̃
∑
j∈A

⟨Mj,Mϕ⟩+ ⟨w, ζ/σ̃⟩ (A.303)

=
∑
j∈A

ϕj +
∑

j∈A,ℓ ̸=j

ρjℓϕℓ + ⟨w, ζ/σ̃⟩ (A.304)

=
∑
j∈A

ϕ̃j − u+
∑

j∈A,ℓ ̸=j

ρjℓϕℓ + ⟨w, ζ/σ̃⟩︸ ︷︷ ︸
:=ϵx

. (A.305)

With probability ⩾ 1 − exp(−Ω(k)), among all j ̸∈ A, we have that at most
po(D− k) of ϕj are (1 − po)/σ̃, while the others are −po/σ̃, and thus∣∣∣∣∣ ∑

j∈A,ℓ ̸=j

ρjℓϕℓ

∣∣∣∣∣ ⩽ kµ√
d

poD

σ̃
⩽

1
16. (A.306)

Furthermore, ⟨w, ζ⟩ ∼ N(0,σ2
ζ∥w∥2

2) and ∥w∥2
2 ⩽ σ̃

2(k+ k2µ/
√
d), we have

Pr[|⟨w, ζ/σ̃⟩| ⩽ 1/16] ⩾ 1 − exp
(
−Θ

(
1

σ2
ζ∥w∥2

2/σ̃
2

))
(A.307)

⩾ 1 − exp
(
−Θ

(
1

σ2
ζ(k+ k

2µ/
√
d)

))
. (A.308)

For good data points with ϕ and ζ satisfying the above, we have |ϵx| ⩽ 1/8. By
Lemma A.1,

g∗1(x) :=
∑
p∈P

δp−µ,4,1/2(⟨w, x⟩) −
∑

p̸∈P,0⩽p⩽k

δp−µ,4,1/2(⟨w, x⟩) (A.309)

243

=
∑
p∈P

δp,4,1/2(⟨w, x⟩+ u) −
∑

p̸∈P,0⩽p⩽k

δp,4,1/2(⟨w, x⟩+ u) (A.310)

=
∑
p∈P

δp,4,1/2

(∑
j∈A

ϕ̃j + ϵx

)
−

∑
p̸∈P,0⩽p⩽k

δp,4,1/2

(∑
j∈A

ϕ̃j + ϵx

)
. (A.311)

Then for good data points, we have yg∗1(x) ⩾ 1. Similarly,

g∗2(x) :=
∑
p∈P

δp−µ+1/4,8,1/2(⟨w, x⟩) −
∑

p̸∈P,0⩽p⩽k

δp−µ+1/4,8,1/2(⟨w, x⟩) (A.312)

=
∑
p∈P

δp+1/4,8,1/2(⟨w, x⟩+ u) −
∑

p̸∈P,0⩽p⩽k

δp+1/4,8,1/2(⟨w, x⟩+ u) (A.313)

=
∑
p∈P

δp+1/4,8,1/2

(∑
j∈A

ϕ̃j + ϵx

)
−

∑
p̸∈P,0⩽p⩽k

δp+1/4,8,1/2

(∑
j∈A

ϕ̃j + ϵx

)
.

(A.314)

Then for good data points, we have yg∗2(x) ⩾ 1.
Note that the bias terms in g∗1 and g∗2 have distance at least 1/4, then at least one

of them satisfies that all its bias terms have absolute value ⩾ 1/8. Pick that one and
denote it as g(x) =

∑n
i=1 aiœr(⟨wi, x⟩+ bi). By the positive homogeneity of œr, we

have

g(x) =
n∑
i=1

8kaiœr(⟨wi, x⟩/(8k) + bi/(8k)). (A.315)

Since for any good data points, |⟨wi, x⟩/(8k) + bi/(8k)| ⩽ 1, then

g(x) =
n∑
i=1

8kaiσ(⟨wi, x⟩/(8k) + bi/(8k)) (A.316)

where σ is the truncated ReLU. Now we can set a∗
i = 8kai, w∗

i = wi/(8k),b∗i =

bi/(8k), to get our final g∗.

244

A.8.5 Initialization

We first show that with high probability, the initial weights are in typical positions.

Lemma A.30. Suppose Dµ/
√
d ⩽ 1/16. For any δ ∈ (0, 1), with probability at least

1 − δ− 2 exp (−Θ(D− k)) over w(0),

σ2
wd/2 ⩽ ∥w(0)∥2

2 ⩽ 3σ2
wd/2,

σ2
w(D− k)/2 ⩽

∑
ℓ ̸∈A

q2
ℓ ⩽ 3σ2

w(D− k)/2,

max
ℓ

|qℓ| ⩽ σw

√
2 log(D/δ).

With probability at least 1 − δ over b(0),

|b(0)| ⩽ σb
√

2 log(1/δ).

With probability at least 1 − δ over a(0),

|a(0)| ⩽ σa
√

2 log(1/δ).

Proof of Lemma A.30. The bound on ∥w(0)∥2
2 follows from the property of Gaussians.

Note that q = M⊤w(0) ∼ N(0,σ2
wρ) for the matrix ρ = M⊤M. We have with

probability ⩾ 1 − δ/2, maxℓ |qℓ| ⩽
√

2σ2
w log D

δ
.

For any subset S ⊆ [D], let ρS denote the submatrix of ρ containing the rows
and columns indexed by S. Then qS = M⊤w(0) ∼ N(0,σ2

wρS). By diagonal-
izing ρS and then applying Bernstein’s inequality, we have with probability ⩾

1−2 exp (−Θ(|S|/∥ρ∥2), ∥qS∥2
2 ∈

(
(∥ρS∥2

F −
|S|

4)σ2
w, (∥ρS∥2

F +
|S|

4)σ2
w

)
. By Gershgorin

circle theorem, we have

∥ρ∥2 ⩽ 1 + (|S|− 1)µ/
√
d ⩽ 17/16.

245

Similarly, we have

3
4 |S| ⩽

(
15
16

)2

|S| ⩽ ∥ρS∥2
F ⩽

(
17
16

)2

|S| ⩽
5
4 |S|.

The bounds on q then follow.
The bounds on b(0) and a(0) follow from the property of Gaussians.

Lemma A.31. Suppose Dµ/
√
d ⩽ 1/16. We have:

• With probability ⩾ 1 − δ − 2m exp(−Θ(D − k)) over w(0)
i ’s, for all i ∈ [2m],

w(0)
i ∈ Gw(δ).

• With probability ⩾ 1 − δ over b(0)
i ’s, for all i ∈ [2m], b(0)

i ∈ Gb(δ).

• With probability ⩾ 1 − δ over a(0)
i ’s, for all i ∈ [2m], a(0)

i ∈ Ga(δ).

Proof of Lemma A.31. This follows from Lemma A.30 by union bound.

A.8.6 Some Auxiliary Lemmas

The expression of the gradients will be used frequently.

Lemma A.32.

∂

∂wi

LαD(g;σξ) = −aiE(x,y)∼D {αyyI[yg(x; ξ) ⩽ 1]EξiI[⟨wi, x⟩+ bi + ξi ∈ (0, 1)]x} ,

(A.317)
∂

∂bi
LαD(g;σξ) = −aiE(x,y)∼D {αyyI[yg(x; ξ) ⩽ 1]EξiI[⟨wi, x⟩+ bi ∈ (0, 1)]} ,

(A.318)
∂

∂ai
LαD(g;σξ) = −E(x,y)∼D {αyyI[yg(x; ξ) ⩽ 1]Eξiσ(⟨wi, x⟩+ bi + ξi)} . (A.319)

Proof of Lemma A.32. It follows from straightforward calculation.

We also have the following auxiliary lemma for later calculations.

246

Lemma A.33.

EϕA {αyy} = 0, (A.320)

EϕA {|αyy|} = 1, (A.321)

Eϕj {|ϕj|} = 2σ2
ϕj
σ̃, for j ̸∈ A, (A.322)

EϕA {αyyϕj} =
γ

σ̃
, for j ∈ A, (A.323)

EϕA {|αyyϕj|} ⩽
1
σ̃

, for all j ∈ [D]. (A.324)

Proof of Lemma A.33.

EϕA {αyy} =
∑
v∈{±1}

EϕA {αyy|y = v}Pr[y = v] (A.325)

=
1
2

∑
v∈{±1}

EϕA {y|y = v} (A.326)

= 0. (A.327)

EϕA {|αyy|} =
∑
v∈{±1}

EϕA {|αyy| |y = v}Pr[y = v] (A.328)

=
1
2

∑
v∈{±1}

EϕA {|y| |y = v} (A.329)

= 1. (A.330)

Eϕj {|ϕj|} =
|− poj|(1 − poj) + |1 − poj|poj

σ̃
= 2σ2

ϕj
σ̃. (A.331)

EϕA {αyyϕj} =
∑
v∈{±1}

EϕA {αyyϕj|y = v}Pr[y = v] (A.332)

=
1
2

∑
v∈{±1}

EϕA {yϕj|y = v} (A.333)

=
1
2

∑
v∈{±1}

EϕA

{
y
ϕ̃j − E[ϕ̃j]

σ̃

∣∣∣∣∣y = v

}
(A.334)

=
1

2σ̃(γ+1 + γ−1) =
γ

σ̃
. (A.335)

247

EϕA {|αyyϕj|} =
∑
v∈{±1}

EϕA {|αvyϕj| |y = v}Pr[y = v] (A.336)

⩽
1
2

∑
v∈{±1}

EϕA {|yϕj| |y = v} (A.337)

⩽
1
2

∑
v∈{±1}

EϕA {|yϕj| |y = v} (A.338)

⩽
1
σ̃

. (A.339)

A.8.7 Feature Emergence: First Gradient Step

We will show that w.h.p. over the initialization, after the first gradient step, there
are neurons that represent good features.

We begin with analyzing the gradients.

Lemma A.34. Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ) for all i ∈ [2m].
Let

ϵe :=
Dσw

√
2 log(D/δ)
σ̃2σ

(1)
ξ

+

√
dσξσw

√
2 log(D/δ)

σ̃σ
(1)
ξ

, ϵν := ϵe.

If σ2
ζσ

2
wd/σ̃

2 = O(1/k), po = Ω(k2/D), k = Ω(log2(Dmd/δ)), and σ(1)
ξ = O(1/k),

then

∂

∂wi

LαD(g
(0);σ(1)

ξ) = −a
(0)
i

(
D∑
j=1

MjTj + ν

)
(A.340)

where Tj satisfies:

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ O(ϵe/σ̃), where β ∈ [Ω(1), 1] and depends only on
w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ O(σ2
ϕj
ϵeσ̃);

248

• |νj| ⩽ O

(
σζ
√

log(k)
σ̃

ϵν

)
+ σζd

σ̃
e−Θ(k).

Proof of Lemma A.34. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂wL
α
D(g

(0);σ(1)
ξ) (A.341)

= −a(0)E(x,y)∼D
{
αyyI[yg(0)(x; ξ(1)) ⩽ 1]Eξ(1)I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]x

}
(A.342)

= −a(0)E(x,y)∼D,ξ(1)
{
αyyI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]x

}
(A.343)

= −a(0)
D∑
j=1

Mj E(x,y)∼D,ξ(1)
{
αyyϕjI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}︸ ︷︷ ︸
:=Tj

(A.344)

− a(0) E(x,y)∼D,ξ(1)

{
αyyζ

σ̃
I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
︸ ︷︷ ︸

:=ν

(A.345)

First, consider j ∈ A.

Tj = E(x,y)∼D,ξ(1)
{
αyyϕjI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.346)

= EϕA,ζ

{
αyyϕj Pr

ϕ−A,ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]}
. (A.347)

where ι := ⟨w(0), ζ/σ̃⟩.
Let

Ia := Pr
ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
, (A.348)

I ′a := Pr
ξ(1)

[
⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
. (A.349)

Note that |⟨ϕA,qA⟩| = O(
kσw
√

2 log(D/δ)
σ̃2), and that |ι| = |⟨w(0)

i , ζ/σ̃⟩| = O(
√
dσξσw

√
2 log(D/δ)
σ̃

),

and that |⟨ϕ,q⟩|, |⟨ϕ−A,q−A⟩| are O(Dσw
√

2 log(D/δ)
σ̃2). When σw is sufficiently small,

249

by the property of the Gaussian ξ(1), we have

|Ia − I
′
a| (A.350)

⩽

∣∣∣∣Pr
ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ⩾ 0

]
− Pr
ξ(1)

[
⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ⩾ 0

]∣∣∣∣
(A.351)

+ Pr
ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ⩾ 1

]
+ Pr
ξ(1)

[
⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ⩾ 1

]
(A.352)

= O(ϵe). (A.353)

In summary,

|Eζ,ϕ−A(Ia − I
′
a)| = O(ϵe). (A.354)

Then we have

∣∣Tj − EϕA,ζ,ϕ−A {αyyϕjI
′
a}
∣∣ (A.355)

⩽ EϕA

{
|αyyϕj|

∣∣Eζ,ϕ−A(Ia − I
′
a)
∣∣} (A.356)

⩽ O(ϵe)EϕA {|αyyϕj|} (A.357)

⩽ O(ϵe/σ̃) (A.358)

where the last step is from Lemma A.33. Furthermore,

EϕA,ζ,ϕ−A {αyyϕjI
′
a} (A.359)

= EϕA {αyyϕj}Eζ,ϕ−A [I
′
a] (A.360)

= EϕA {αyyϕj} Pr
ϕ−A,ζ,ϕ−A

[
⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
(A.361)

When σw is sufficiently small, we have

Pr
ϕ−A

[
⟨ϕ−A,q−A⟩+ b(0) ∈ (0, 1/2)

]
⩾ Ω(1), (A.362)

250

Pr
ζ,ξ(1)

[
ι+ ξ(1) ∈ (0, 1/2)

]
= 1/2 − exp(−Ω(k)), (A.363)

This leads to

β := Eζ,ϕ−A [I
′
a] = Pr

ϕ−A,ζ,ξ(1)

[
⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
⩾ Ω(1). (A.364)

By Lemma A.33, EϕA {αyyϕj} = γ/σ̃. Therefore,

|Tj − βγ/σ̃| ⩽ O(ϵe/σ̃). (A.365)

Now, consider j ̸∈ A. Let B denote A ∪ {j}.

Tj = E(x,y)∼D,ζ,ξ(1)
{
αyyϕjI

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]}
(A.366)

= EϕBEϕ−B,ζ,ξ(1)
{
αyyϕjI

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]}
(A.367)

= EϕB,ζ

{
αyyϕj Pr

ϕ−B,ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]}
. (A.368)

Let

Ib := Pr
ξ(1)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
, (A.369)

I ′b := Pr
ξ(1)

[
⟨ϕ−B,q−B⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
. (A.370)

Similar as above, we have |Eζ,ξ(1)(Ib − I
′
b)| ⩽ O(ϵe). Then by Lemma A.33,

∣∣Tj − EϕB,ζ,ϕ−B
{αyyϕjI

′
b}
∣∣ (A.371)

⩽ EϕB
{
|αyyϕj||Eζ,ϕ−B

(Ib − I
′
b)|

}
(A.372)

⩽ O(ϵe)EϕA {|αyy|}Eϕj {|ϕj|} (A.373)

⩽ O(ϵe)× 1×O(σ2
ϕj
σ̃) (A.374)

= O(σ2
ϕj
ϵeσ̃). (A.375)

251

Furthermore,

EϕB,ζ,ϕ−B
{αyyϕjI

′
b} = EϕA {αyy}Eϕj {ϕj}Eζ,ϕ−B

[I ′b] = 0. (A.376)

Therefore,

|Tj| ⩽ O(σ
2
ϕϵeσ̃). (A.377)

Finally, consider νj.

νj = E(x,y)∼D,ξ(1)

{
αyyζj

σ̃
I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.378)

= EϕA,ϕ−A,ζ,ξ(1)

{
αyyζj

σ̃
I[⟨ϕ,q⟩+ ιj + ι−j + b(0) + ξ(1) ∈ (0, 1)]

}
(A.379)

= EϕA,ζ

{
αyyζj

σ̃
Pr

ϕ−A,ξ(1)
[⟨ϕ,q⟩+ ιj + ι−j + b(0) + ξ(1) ∈ (0, 1)]

}
(A.380)

where ιj := w(0)
j ζj/σ̃ and ι−j := ⟨w(0), ζ/σ̃⟩− ιj.

With probability ⩾ 1−d exp(−Θ(k)) over ζ, for any j, |ζj| ⩽ O(σζ
√

log(k)). Let
Gζ denote this event.

Let

Ij := Pr
ξ(1)

[
⟨ϕ,q⟩+ ιj + ι−j + b(0) + ξ(1) ∈ (0, 1)

]
, (A.381)

I ′j := Pr
ξ(1)

[
⟨ϕ,q⟩+ ι−j + b(0) + ξ(1) ∈ (0, 1)

]
. (A.382)

Similar as above, we have |Eζ[Ij − I ′j|Gζ]| ⩽ O(ϵν). Then

|Eζ,ϕ−A(Ij − I
′
j)| ⩽ |Eζ,ϕ−A [(Ij − I

′
j)|Gζ]|+ Pr[−Gζ] (A.383)

⩽ O(ϵν + d exp(−Θ(k))). (A.384)

∣∣∣∣νj − EϕA,ζ,ϕ−A

{
αyyζj

σ̃
I ′j

}∣∣∣∣ (A.385)

252

=

∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)

}∣∣∣∣ (A.386)

⩽

∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)|Gζ

}∣∣∣∣+ ∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)|− Gζ

}∣∣∣∣Pr[−Gζ].

(A.387)

The first term is bounded by∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)|Gζ

}∣∣∣∣ (A.388)

⩽ EϕA

{
αyyσζ

√
log(k)

σ̃
|Eζ,ϕ−A [Ib − I

′
b|Gζ]|

}
(A.389)

⩽ O(ϵν)EϕA {|αyy|}
σζ
√

log(k)
σ̃

(A.390)

⩽ O(ϵν)× 1×
σζ
√

log(k)
σ̃

(A.391)

= O

(
σζ
√

log(k)
σ̃

ϵν

)
. (A.392)

The second term is bounded by∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)|− Gζ

}∣∣∣∣Pr[−Gζ] (A.393)

⩽

∣∣∣∣EϕA,ζ,ϕ−A

{
αyyζj

σ̃
(Ij − I

′
j)|− Gζ

}∣∣∣∣× de−Θ(k) (A.394)

⩽ EϕA

∣∣∣αyy
σ̃

∣∣∣× Eζ {|ζj||− Gζ}× de−Θ(k) (A.395)

⩽
σζ

σ̃
× de−Θ(k) (A.396)

⩽
σζd

σ̃
e−Θ(k). (A.397)

Furthermore,

EϕA,ζ,ϕ−A

{
αyyζj

σ̃
I ′j

}
= EϕA {αyy}Eζj

{
ζj

σ̃

}
Eζ−j [I

′
j] = 0. (A.398)

253

Therefore,

|νj| ⩽ O

(
σζ
√

log(k)
σ̃

ϵν

)
+
σζd

σ̃
e−Θ(k). (A.399)

Lemma A.35. Under the same assumptions as in Lemma A.34,

∂

∂bi
LαD(g

(0);σ(1)
ξ) = −a

(0)
i Tb (A.400)

where |Tb| ⩽ O(ϵe).

Proof of Lemma A.35. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂b
LαD(g

(0);σ(1)
ξ) (A.401)

= −a(0)E(x,y)∼D
{
αyyI[yg(0)(x; ξ(1)) ⩽ 1]Eξ(1)I[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.402)

= −a(0)E(x,y)∼D,ξ(1)
{
αyyI[⟨w(0), x⟩+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.403)

= −a(0) EϕA,ζ,ξ(1)

{
αyy Pr

ϕ−A

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]}
︸ ︷︷ ︸

:=Tb

. (A.404)

where ι := ⟨w(0), ζ/σ̃⟩. Similar to the proof in Lemma A.34,∣∣∣∣∣Eζ
(

Pr
ϕ−A,ξ(1)

[⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)] (A.405)

− Pr
ϕ−A,ξ(1)

[⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)]
)∣∣∣∣∣ = O(ϵe). (A.406)

254

Then ∣∣∣∣Tb − EϕA,ζ

{
αyy Pr

ϕ−A,ξ(1)
[⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)]

}∣∣∣∣ (A.407)

= EϕA,ζ

{
|αyy|

∣∣∣∣∣ Pr
ϕ−A,ξ(1)

[⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)] (A.408)

− Pr
ϕ−A,ξ(1)

[⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)]

∣∣∣∣∣
}

(A.409)

⩽ O(ϵe)EϕA {|αyy|} (A.410)

⩽ O(ϵe). (A.411)

Also,

EϕA,ζ

{
αyy Pr

ϕ−A,ξ(1)
[⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)]

}
(A.412)

= EϕA {αyy} Pr
ϕ−A,ζ,ξ(1)

[⟨ϕ−A,q−A⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)] (A.413)

= 0. (A.414)

Therefore, |Tb| ⩽ O(ϵe).

Lemma A.36. We have

∂

∂ai
LαD(g

(0);σ(1)
ξ) = −Ta (A.415)

where |Ta| ⩽ O(maxℓ q(0)
i,ℓ). So if w(0)

i ∈ G(δ), |Ta| ⩽ O(σw
√

log(Dm/δ)).

Proof of Lemma A.36. Consider one neuron index i and omit the subscript i in the
parameters. Since the unbiased initialization leads to g(0)(x; ξ(1)) = 0, we have

∂

∂a
LαD(g

(0);σ(1)
ξ) (A.416)

= −E(x,y)∼D
{
αyyI[yg(0)(x; ξ(1)) ⩽ 1]Eξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))

}
(A.417)

255

= −E(x,y)∼D,ξ(1)
{
αyyσ(⟨w(0), x⟩+ b(0) + ξ(1))

}︸ ︷︷ ︸
:=Ta

. (A.418)

Let ϕ ′
A be an independent copy of ϕA, ϕ ′ be the vector obtained by replacing in ϕ

the entries ϕA with ϕ ′
A, and let x ′ =Mϕ ′ + ζ/σ̃ and its label is y ′. Then

|Ta| =
∣∣EϕA

{
αyyEϕ−A,ζ,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))

}∣∣ (A.419)

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ζ,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = 1

}
(A.420)

− EϕA

{
Eϕ−A,ζ,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = −1

} ∣∣∣∣∣ (A.421)

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ζ,ξ(1)σ(⟨w(0), x⟩+ b(0) + ξ(1))|y = 1

}
(A.422)

− Eϕ ′
A

{
Eϕ−A,ζ,ξ(1)σ(⟨w(0), x ′⟩+ b(0) + ξ(1))|y ′ = −1

} ∣∣∣∣∣. (A.423)

Since σ is 1-Lipschitz,

|Ta| ⩽
1
2EϕA,ϕ ′

A

{
Eϕ−A

∣∣⟨w(0),Mϕ⟩− ⟨w(0),Mϕ ′⟩
∣∣ |y = 1,y ′ = −1

}
(A.424)

⩽
1
2Eϕ−A

(
EϕA

{∣∣⟨w(0),Mϕ⟩
∣∣ |y = 1

}
+ Eϕ ′

A

{∣∣⟨w(0),Mϕ ′⟩
∣∣ |y ′ = −1

})
(A.425)

⩽ max
ℓ
q
(0)
i,ℓ

√√√√√Eϕ

∑
ℓ∈[D]

ϕ2
ℓ +

∑
j̸=ℓ:j,ℓ∈A

|ϕjϕℓ|

 (A.426)

⩽ max
ℓ
q
(0)
i,ℓ

√
Eϕ (1 +O(1)) (A.427)

= Θ(max
ℓ
q
(0)
i,ℓ). (A.428)

With the bounds on the gradient, we now summarize the results for the weights

256

after the first gradient step.

Lemma A.37. Set

λ(1)
w = 1/(2η(1)), λ(1)

a = λ
(1)
b = 0,σ(1)

ξ = 1/k3/2.

Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ) for all i ∈ [2m]. If k =

Ω(log2(Dm/δ)), then for all i ∈ [m], w(1)
i =

∑D
ℓ=1 q

(1)
i,ℓMℓ + υ satisfying

• if ℓ ∈ A, then |q
(1)
i,ℓ − η(1)a

(0)
i βγ/σ̃| ⩽ O

(
|η(1)a

(0)
i |ϵe
σ̃

)
, where β ∈ [Ω(1), 1] and

depends only on w(0)
i ,b(0)

i ;

• if ℓ ̸∈ A, then |q
(1)
i,ℓ | ⩽ O

(
|η(1)a

(0)
i |σ2

ϕℓ
ϵeσ̃
)

;

• |υj| ⩽ O

(
|η(1)a

(0)
i |

(
σζ
√

log(k)
σ̃

ϵν +
σζd

σ̃
e−Θ(k)

))
.

and

• b
(1)
i = b

(0)
i + η(1)a

(0)
i Tb where |Tb| = O (ϵe);

• a
(1)
i = a

(0)
i + η(1)Ta where |Ta| = O(σw

√
log(Dm/δ)).

Proof of Lemma A.37. This follows from Lemma A.31 and Lemma A.34-A.36.

A.8.8 Feature Improvement: Second Gradient Step

We first show that with properly set η(1), for most x, |g(1)(x;σ(2)
ξ)| < 1 and thus

yg(1)(x;σ(2)
ξ) < 1.

Lemma A.38. Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ),a(0)
i ∈ Ga(δ) for

all i ∈ [2m]. If Dµ/
√
d ⩽ 1/16, σζσ̃ = O(1), σ2

ζd/σ̃
2 = O(1), k = Ω(log2(Dm/δ)),

σa ⩽ σ̃2/(γk2), η(1) = O
(

γ
kmσaσ̃

)
, and σ(2)

ξ ⩽ 1/k, then with probability ⩾ 1 −

(d +D) exp(−Ω(k)) over (x,y), we have yg(1)(x;σ(2)
ξ) < 1. Furthermore, for any i ∈

[2m],
∣∣∣⟨w(1)

i , ζ/σ̃⟩
∣∣∣ = O(η(1)σ̃/γ),

∣∣∣⟨q(1)
i ,ϕ⟩

∣∣∣ = O(η(1)σ̃/γ), and
∣∣∣⟨(q(1)

i)−A,ϕ−A⟩
∣∣∣ =

257

O(η(1)σ̃/γ), and for any j ∈ [d], ℓ ∈ [D], |ζj| ⩽ O(σζ
√

log(k)) and |⟨ζ,Dℓ⟩| ⩽

O(σζ
√

log(k)).

Proof of Lemma A.38. Note that w(0)
i = w(0)

m+i, b
(0)
i = b

(0)
m+i, and a(0)

i = a
(0)
m+i. Then

the gradient for wm+i is the negation of that for wm+i, the gradient for bm+i is the
negation of that for bm+i, and the gradient for am+i is the same as that for am+i.∣∣∣g(1)(x;σ(2)

ξ)
∣∣∣ (A.429)

=

∣∣∣∣∣
2m∑
i=1

a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i)

∣∣∣∣∣ (A.430)

=

∣∣∣∣∣
m∑
i=1

(
a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

m+i, x⟩+ b(1)
m+i + ξ

(2)
m+i)

)∣∣∣∣∣
(A.431)

⩽

∣∣∣∣∣
m∑
i=1

(
a
(1)
i Eξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i)
)∣∣∣∣∣

(A.432)

+

∣∣∣∣∣
m∑
i=1

(
−a

(1)
m+iEξ(2)σ(⟨w(1)

i , x⟩+ b(1)
i + ξ

(2)
i) + a

(1)
m+iEξ(2)σ(⟨w(1)

m+i, x⟩+ b(1)
m+i + ξ

(2)
i)
)∣∣∣∣∣ .

(A.433)

Then we have∣∣∣g(1)(x;σ(2)
ξ)
∣∣∣ ⩽ m∑

i=1

∣∣∣2η(1)TaEξ(2)σ(⟨w(1)
i , x⟩+ b(1)

i + ξ
(2)
i)
∣∣∣ (A.434)

+

m∑
i=1

∣∣∣a(1)
m+i

∣∣∣ (∣∣∣⟨w(1)
i − w(1)

m+i, x⟩
∣∣∣+ ∣∣∣b(1)

i − b
(1)
m+i

∣∣∣) (A.435)

⩽
m∑
i=1

∣∣2η(1)Ta
∣∣ (∣∣∣⟨w(1)

i , x⟩+ b(1)
i

∣∣∣+ Eξ(2)

∣∣∣ξ(2)
i

∣∣∣) (A.436)

+

m∑
i=1

∣∣∣a(1)
m+i

∣∣∣ (∣∣∣⟨w(1)
i − w(1)

m+i, x⟩
∣∣∣+ ∣∣∣b(1)

i − b
(1)
m+i

∣∣∣) . (A.437)

258

With probability ⩾ 1 − exp(−Ω(k)), among all j ̸∈ A, we have that at most
po(D − k) of ϕj are (1 − poj)/σ̃, while the others are −poj/σ̃. With probability
⩾ 1 − (d + D) exp(−Ω(k)) over ζ, for any j, |ζj| ⩽ O(σζ

√
log(k)) and |⟨ζ,Dℓ⟩| ⩽

O(σζ
√

log(k)). For data points with ϕ and ζ satisfying these, we have:

Claim A.39.
∣∣∣⟨w(1)

i , x⟩
∣∣∣ ⩽ O(η(1)/γ)(1 + σ̃+ σ̃/

√
k).

Proof of Claim A.39.

∣∣∣⟨w(1)
i , x⟩

∣∣∣ = ∣∣∣∣∣⟨
D∑
ℓ=1

q
(1)
i,ℓMℓ + υ,

D∑
j=1

ϕjMj + ζ/σ̃⟩

∣∣∣∣∣ (A.438)

⩽

∣∣∣∣∣⟨
D∑
ℓ=1

q
(1)
i,ℓMℓ,

D∑
j=1

ϕjMj⟩

∣∣∣∣∣+
∣∣∣∣∣⟨
D∑
ℓ=1

q
(1)
i,ℓMℓ, ζ/σ̃⟩

∣∣∣∣∣+
∣∣∣∣∣⟨υ,

D∑
j=1

ϕjMj⟩

∣∣∣∣∣+ |⟨υ, ζ/σ̃⟩| .

(A.439)

For each term above we bound as follows. Note that when σw is sufficiently small,
ϵe = O(k log1/2(Dm/δ)/

√
D). Let

B1 := βγ/σ̃+ ϵe/σ̃, (A.440)

B2 := σ
2
ϕϵeσ̃ = O(ϵe/

√
D), (A.441)

C1 =
k

σ̃
, (A.442)

C2 := poD/σ̃ = O(D/σ̃). (A.443)

Then

|a
(0)
i |B1C1 = O(log(Dm/δ)/k+ log(Dm/δ)ϵe/(γk)) = O(1/γ), (A.444)

|a
(0)
i |B2C2 = O(σ̃/γ), (A.445)

|a
(0)
i |B1C2 = O(D/k+

√
D/γ), (A.446)

|a
(0)
i |B2C1 = O(ϵe/(γ

√
k)) = O(1/γ), (A.447)

259

Then by the assumption on µ,∣∣∣∣∣⟨
D∑
ℓ=1

q
(1)
i,ℓMℓ,

D∑
j=1

ϕjMj⟩

∣∣∣∣∣ (A.448)

=

∣∣∣∣∣∑
ℓ∈A

⟨q(1)
i,ℓMℓ,Mℓϕℓ⟩

∣∣∣∣∣+
∣∣∣∣∣∑
ℓ ̸∈A

⟨q(1)
i,ℓMℓ,Mℓϕℓ⟩

∣∣∣∣∣+
∣∣∣∣∣∑
ℓ ̸=j

⟨q(1)
i,ℓMℓ,Mjϕj⟩

∣∣∣∣∣ (A.449)

⩽ O(|η(1)a
(0)
i |)

(
B1C1 + B2C2 +

µ√
d
(kB1(C1 + C2) +DB2(C1 + C2))

)
(A.450)

⩽ O(|η(1)a
(0)
i |)

(
B1C1 + B2C2 +

kµ√
d
B1C2 + B2C1

)
(A.451)

⩽ O(η(1))(1/γ+ σ̃/γ+ 1/γ+ 1/γ) (A.452)

⩽ O(η(1)/γ)(1 + σ̃). (A.453)

By the assumption on σζ,∣∣∣∣∣⟨
D∑
ℓ=1

q
(1)
i,ℓMℓ, ζ/σ̃⟩

∣∣∣∣∣ (A.454)

⩽ O(|η(1)a
(0)
i |)(kB1 +DB2)

σζ
√

log(k)
σ̃

(A.455)

⩽ O(η(1))(kB1 +DB2)
σζ
√

log(k)
σ̃

σ̃2
√

log(Dm/δ)
γk2 (A.456)

⩽ O(η(1))

(
σζ log(Dm/δ)

(
1
k
+
ϵe

γk

)
+ σζσ̃

log(k) log(Dm/δ)
γk

)
(A.457)

⩽ O(η(1)/γ). (A.458)

Also note that |νj| ⩽ O
(
σζ log2(Dm/δ)

σ̃
√
D

)
. Then by the assumption on σζ,

∣∣∣∣∣⟨υ,
D∑
j=1

ϕjMj⟩

∣∣∣∣∣ (A.459)

⩽ O(|η(1)a
(0)
i |)×

√
d×O

(
σζ log2(Dm/δ)

σ̃
√
D

)
× (C1 + C2) (A.460)

260

⩽ O(|η(1)/γ). (A.461)

Finally, we have

|⟨υ, ζ/σ̃⟩| ⩽
d∑
j=1

|υj||ζj/σ̃| (A.462)

⩽ O(|η(1)a
(0)
i |)× d× σζ log2(Dm/δ)

σ̃
√
D

σ̃
√

log(k)
σ̃

(A.463)

⩽ O(η(1)/γ)
σ̃√
k

. (A.464)

We also have:

|Ta| = O(σw

√
log(Dm/δ)) (A.465)∣∣∣b(1)

i

∣∣∣ ⩽ ∣∣∣b(0)
i

∣∣∣+ ∣∣∣η(1)a
(0)
i Tb

∣∣∣ (A.466)

⩽

√
log(m/δ)
k2 +

∣∣∣η(1)a
(0)
i ϵe

∣∣∣ . (A.467)

Eξ(2)

∣∣∣ξ(2)
i

∣∣∣ ⩽ O(σ(2)
ξ). (A.468)

|a
(1)
m+i| ⩽ |a

(0)
i |+ |η(1)Ta| ⩽ |a

(0)
i |+O(η(1)σw

√
log(Dm/δ)). (A.469)∣∣∣⟨w(1)

i − w(1)
m+i, x⟩

∣∣∣ = 2
∣∣∣⟨w(1)

i , x⟩
∣∣∣ = O(η(1)σ̃/γ). (A.470)∣∣∣b(1)

i − b
(1)
m+i

∣∣∣ = 2|η(1)a
(0)
i Tb| = O(|η

(1)a
(0)
i |ϵe). (A.471)

Then we have∣∣∣g(1)(x;σ(2)
ξ)
∣∣∣ (A.472)

261

⩽ O

(
mη(1)σw

√
log(Dm/δ)

)(
η(1)σ̃

γ
+

√
log(m/δ)
k2 +

∣∣∣η(1)a
(0)
i ϵe

∣∣∣+ σ(2)
ξ

)
(A.473)

+O

(
m(|a

(0)
i |+ η(1)σw

√
log(Dm/δ))

)(
η(1)σ̃

γ
+
∣∣∣η(1)a

(0)
i ϵe

∣∣∣) (A.474)

= O

(
mη(1)σw

log(Dm/δ)
k

+m|a
(0)
i |

(
η(1)σ̃

γ
+
∣∣∣η(1)a

(0)
i ϵe

∣∣∣)) (A.475)

= O

(
mη(1)σw

log(Dm/δ)
k

+m|a
(0)
i |
η(1)σ̃

γ
+m|a

(0)
i |
η(1)σ̃

γ
√
k

)
(A.476)

< 1. (A.477)

Then
∣∣∣yg(1)(x;σ(2)

ξ)
∣∣∣ < 1. Finally, the statement on

∣∣∣⟨(q(1)
i)−A,ϕ−A⟩

∣∣∣ follows from a

similar calculation on
∣∣∣⟨w(1)

i , x⟩
∣∣∣ = ∣∣∣⟨q(1)

i ,ϕ⟩
∣∣∣.

We are now ready to analyze the gradients in the second gradient step.

Lemma A.40. Fix δ ∈ (0, 1) and suppose w(0)
i ∈ Gw(δ),b(0)

i ∈ Gb(δ),a(0)
i ∈ Ga(δ) for

all i ∈ [2m]. Let ϵe2 := O

(
η(1)|a

(0)
i |k(γ+ϵe)

σ̃2σ
(2)
ξ

)
+ exp(−Θ(k)). If Dµ/

√
d ⩽ 1/16, σζσ̃ =

O(1), σ2
ζd/σ̃

2 = O(1), k = Ω(log2(Dm/δ)), σa ⩽ σ̃2/(γk2), η(1) = O
(

γ
kmσaσ̃

)
, and

σ
(2)
ξ = 1/k3/2, then

∂

∂wi

LD(g
(1);σ(2)

ξ) = −a
(1)
i

(
D∑
j=1

MjTj + ν

)
(A.478)

where Tj satisfies:

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ O(ϵe2/σ̃ + η(1)/σ
(2)
ξ + η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)), where

β ∈ [Ω(1), 1] and depends only on w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ 1
σ̃

exp(−Ω(k)) +O(σ2
ϕσ̃ϵe2);

• |νj| ⩽ O

(
η(1)σζ

γσ
(2)
ξ

)
+ exp(−Ω(k)).

262

Proof of Lemma A.40. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.38, with probability at least 1 − (d+D) exp(−Ω(k)) =

1 − exp(−Ω(k)) over (x,y), yg(1)(x; ξ(2)) > 1 and furthermore, for any i ∈ [2m],∣∣∣⟨w(1)
i , ζ/σ̃⟩

∣∣∣ = O(η(1)σ̃/γ),
∣∣∣⟨q(1)

i ,ϕ⟩
∣∣∣ = O(η(1)σ̃/γ), and

∣∣∣⟨(q(1)
i)−A,ϕ−A⟩

∣∣∣ = O(η(1)σ̃/γ),
and for any j ∈ [d], ℓ ∈ [D], |ζj| ⩽ O(σζ

√
log(k)) and |⟨ζ,Dℓ⟩| ⩽ O(σζ

√
log(k)). Let

Ix be the indicator of this event.

∂

∂wL
α
D(g

(1);σ(2)
ξ) (A.479)

= −a(1)E(x,y)∼D
{
αyyIxEξ(2)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]x

}
(A.480)

= −a(1)
D∑
j=1

Mj E(x,y)∼D,ξ(2)
{
αyyIxI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}︸ ︷︷ ︸
:=Tj

(A.481)

− a(1) E(x,y)∼D,ξ(2)

{
αyyζ

σ̃
IxI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}
︸ ︷︷ ︸

:=ν

. (A.482)

Let Tj1 := E(x,y)∼D,ξ(2)
{
αyyI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}
. We have

|Tj − Tj1| (A.483)

=
∣∣E(x,y)∼D,ξ(2)

{
αyy(1 − Ix)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}∣∣ (A.484)

⩽
1
σ̃

exp(−Ω(k)). (A.485)

Similarly, let ν ′ := E(x,y)∼D,ξ(2)

{
αyyζ

σ̃
I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}
. We have

|ν− ν ′| (A.486)

=

∣∣∣∣E(x,y)∼D,ξ(2)

{
αyyζ

σ̃
(1 − Ix)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}∣∣∣∣ (A.487)

⩽
σζ

σ̃
exp(−Ω(k)). (A.488)

So it is sufficient to bound Tj1 and ν ′. For simplicity, we use q as a shorthand for
q
(1)
i .

263

First, consider j ∈ A.

Tj1 = E(x,y)∼D,ξ(2)
{
αyyI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]ϕj

}
(A.489)

= EϕA

{
αyyϕj Pr

ϕ−A,ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.490)

where ι := ⟨w(1), ζ/σ̃⟩. Let

Ia := Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.491)

I ′a := Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.492)

By the property of the Gaussian ξ(2), that |⟨ϕA,qA⟩| = O(
η(1)|a

(0)
i |k(γ+ϵe)

σ̃2), and that
|ι| = |⟨w(1)

i , ζ/σ̃⟩|, |⟨ϕ,q⟩|, |⟨ϕ−A,q−A⟩| are all O(η(1)σ̃/γ) < O(1/k), we have

|Ia − I
′
a| (A.493)

⩽

∣∣∣∣Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ⩾ 0

]
− Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ⩾ 0

]∣∣∣∣
(A.494)

+ Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ⩾ 1

]
+ Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ⩾ 1

]
(A.495)

= O

(
η(1)|a

(0)
i |k(γ+ ϵe)

σ̃2σ
(2)
ξ

)
+ exp(−Θ(k)) = O(ϵe2). (A.496)

This leads to

∣∣Tj1 − EϕA,ϕ−A {αyyϕjI
′
a}
∣∣ (A.497)

⩽ EϕA

{
|αyyϕj|

∣∣Eϕ−A(Ia − I
′
a)
∣∣} (A.498)

⩽ O(ϵe2)EϕA {|αyyϕj|} (A.499)

⩽ O(ϵe2/σ̃) (A.500)

264

where the last step is from Lemma A.33. Furthermore,

EϕA,ϕ−A {αyyϕjI
′
a} (A.501)

= EϕA {αyyϕj}Eϕ−A [I
′
a] (A.502)

= EϕA {αyyϕj} Pr
ϕ−A,ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.503)

By Lemma A.13, we have |⟨ϕ−A,q−A⟩ + ι| ⩽ O(η(1)σ̃/γ). Also, |b(1) − b(0)| ⩽

O(η(1)|a
(0)
i |ϵe). By the property of ξ(2),∣∣∣∣Pr

ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
− Pr
ξ(2)

[
b(0) + ξ(2) ∈ (0, 1)

]∣∣∣∣ (A.504)

⩽ O(η(1)σ̃/(γσ
(2)
ξ)) +O(η(1)|a

(0)
i |ϵe/σ

(2)
ξ). (A.505)

On the other hand,

β := Pr
ϕ−A,ξ(2)

[
b(0) + ξ(2) ∈ (0, 1)

]
= Pr
ξ(2)

[
ξ(2) ∈ (−b(0), 1 − b(0))

]
(A.506)

= Ω(1) (A.507)

and β only depends on b(0). By Lemma A.33, EϕA {αyyϕj} = γ/σ̃. Therefore,

|Tj1 − βγ/σ̃| ⩽ O(ϵe2/σ̃) +O(η
(1)/σ

(2)
ξ) +O(η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)). (A.508)

Now, consider j ̸∈ A. Let B denote A ∪ {j}.

Tj1 = E(x,y)∼D,ξ(2)
{
αyyϕjI

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.509)

= EϕBEϕ−B,ζ,ξ(2)
{
αyyϕjI

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.510)

= EϕB

{
αyyϕj Pr

ϕ−B,ζ,ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
. (A.511)

Let

Ib := Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.512)

265

I ′b := Pr
ξ(2)

[
⟨ϕ−B,q−B⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.513)

Similar as above, we have |Ib − I
′
b| ⩽ ϵe2. Then by Lemma A.33,

∣∣Tj1 − EϕB,ϕ−B,ζ {αyyϕjI
′
b}
∣∣ (A.514)

⩽ EϕB
{
|αyyϕj||Eϕ−B,ζ(Ib − I

′
b)|

}
(A.515)

⩽ O(ϵe2)EϕA {|αyy|}Eϕj {|ϕj|} (A.516)

⩽ O(ϵe2)×O(σ2
ϕσ̃) (A.517)

= O(σ2
ϕσ̃ϵe2). (A.518)

Furthermore,

EϕB,ϕ−B,ζ {αyyϕjI
′
b} = EϕA {αyy}Eϕj {ϕj}Eϕ−B

[I ′b] = 0. (A.519)

Therefore,

|Tj1| ⩽ O(σ
2
ϕσ̃ϵe2). (A.520)

Finally, consider ν ′
j.

ν ′
j = E(x,y)∼D,ξ(2)

{
αyyζj

σ̃
I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}
(A.521)

= EϕA,ϕ−A,ζ,ξ(2)

{
αyyζj

σ̃
I[⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)]

}
(A.522)

= EϕA,ϕ−A,ζ

{
αyyζj

σ̃
Pr
ξ(2)

[⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)]
}

(A.523)

Let

Ij := Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(0) + ξ(1) ∈ (0, 1)

]
, (A.524)

I ′j := Pr
ξ(2)

[
⟨ϕ,q⟩+ b(0) + ξ(1) ∈ (0, 1)

]
. (A.525)

266

Since |ι| ⩽ O(η(1)σ̃/γ), we have |Ij − I
′
j| ⩽ O(η

(1)σ̃/(γσ
(2)
ξ)). Then∣∣∣∣ν ′

j − EϕA,ϕ−A,ζ

{
αyyζj

σ̃
I ′j

}∣∣∣∣ (A.526)

=

∣∣∣∣EϕA,ϕ−A,ζ

{
αyyζj

σ̃
(Ij − I

′
j)

}∣∣∣∣ (A.527)

⩽ O(η(1)σ̃/(γσ
(2)
ξ))EϕA,ϕ−A,ζ

∣∣∣∣αyyζjσ̃

∣∣∣∣ (A.528)

⩽ O(η(1)σ̃/(γσ
(2)
ξ))EϕA |αyy|Eζ

∣∣∣∣ζjσ̃
∣∣∣∣ (A.529)

⩽ O(η(1)σ̃/(γσ
(2)
ξ))× 1× σζ

σ̃
(A.530)

⩽ O(η(1)σζ/(γσ
(2)
ξ)). (A.531)

Furthermore,

EϕA,ϕ−A,ζ

{
αyyζj

σ̃
I ′j

}
= EϕA,ϕ−A

{αyy
σ̃
I ′j

}
Eζ {ζj} = 0. (A.532)

Therefore,

|νj| ⩽ O

(
η(1)σζ

γσ
(2)
ξ

)
+ exp(−Ω(k)). (A.533)

Lemma A.41. Under the same assumptions as in Lemma A.40,

∂

∂b
LD(g

(1);σ(2)
ξ) = −a

(1)
i Tb (A.534)

where |Tb| ⩽ exp(−Ω(k)) +O(ϵe2).

Proof of Lemma A.41. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.38, Pr[yg(1)(x; ξ(2)) > 1] ⩽ exp(−Ω(k)). Let Ix =

267

I[yg(1)(x; ξ(2)) ⩽ 1].

∂

∂b
LαD(g

(1);σ(2)
ξ) (A.535)

= −a(1) E(x,y)∼D
{
αyyIxEξ(2)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}︸ ︷︷ ︸
:=Tb

. (A.536)

Let Tb1 := E(x,y)∼D,ξ(2)
{
αyyI[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}
. We have

|Tb − Tb1| (A.537)

=
∣∣E(x,y)∼D,ξ(2)

{
αyy(1 − Ix)I[⟨w(1), x⟩+ b(1) + ξ(2) ∈ (0, 1)]

}∣∣ (A.538)

⩽ exp(−Ω(k)). (A.539)

So it is sufficient to bound Tb1. For simplicity, we use q as a shorthand for q(1)
i .

Tb1 = E(x,y)∼D,ξ(2)
{
αyyI

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.540)

= EϕAEϕ−A,ξ(2)
{
αyyI

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
(A.541)

= EϕA

{
αyy Pr

ϕ−A,ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]}
. (A.542)

Let

Ib := Pr
ξ(2)

[
⟨ϕ,q⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
, (A.543)

I ′b := Pr
ξ(2)

[
⟨ϕ−A,q−A⟩+ ι+ b(1) + ξ(2) ∈ (0, 1)

]
. (A.544)

Similar as in Lemma A.14, we have |Ib − I
′
b| ⩽ ϵe2. Then by Lemma A.33,

∣∣Tb1 − EϕA,ϕ−A {αyyI
′
b}
∣∣ (A.545)

=
∣∣EϕA,ϕ−A {αyy(Ib − I

′
b)}
∣∣ (A.546)

= O(ϵe2)EϕA,ϕ−A |αyy| (A.547)

⩽ O(ϵe2). (A.548)

268

Furthermore,

EϕA,ϕ−A {αyyI
′
b} = EϕA {αyy}Eϕ−A [I

′
b] = 0. (A.549)

Therefore, |Tb1| ⩽ O(ϵe2) and the statement follows.

Lemma A.42. Under the same assumptions as in Lemma A.40,

∂

∂ai
LD(g

(1);σ(2)
ξ) = −Ta (A.550)

where |Ta| = O
(
η(1)σ̃
γpmin

)
+ exp(−Ω(k))poly

(
dD
pmin

)
.

Proof of Lemma A.42. Consider one neuron index i and omit the subscript i in the
parameters. By Lemma A.38, Pr[yg(1)(x; ξ(2)) > 1] ⩽ exp(−Θ(k)). Let Ix =

I[yg(1)(x; ξ(2)) ⩽ 1].

∂

∂a
LαD(g

(1);σ(2)
ξ) (A.551)

= −E(x,y)∼D
{
αyyIxEξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}︸ ︷︷ ︸
:=Ta

. (A.552)

Let Ta1 := E(x,y)∼D
{
αyyEξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}
. We have

|Ta − Ta1| (A.553)

=
∣∣E(x,y)∼D

{
αyy(1 − Ix)Eξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}∣∣ (A.554)

⩽ exp(−Ω(k)). (A.555)

So it is sufficient to bound Ta1. For simplicity, we use q as a shorthand for q(1)
i .

Let ϕ ′
A be an independent copy of ϕA, ϕ ′ be the vector obtained by replacing in

ϕ the entries ϕA with ϕ ′
A, and let x ′ =Mϕ ′ + ζ and its label is y ′. Then

|Ta1| :=
∣∣EϕA

{
αyyEϕ−A,ζ,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))

}∣∣ (A.556)

269

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ζ,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(1))|y = 1

}
(A.557)

− EϕA

{
Eϕ−A,ζ,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))|y = −1

} ∣∣∣∣∣ (A.558)

⩽
1
2

∣∣∣∣∣EϕA

{
Eϕ−A,ζ,ξ(2)σ(⟨w(1), x⟩+ b(1) + ξ(2))|y = 1

}
(A.559)

− Eϕ ′
A

{
Eϕ−A,ζ,ξ(2)σ(⟨w(1), x ′⟩+ b(1) + ξ(2))|y ′ = −1

} ∣∣∣∣∣ (A.560)

⩽
1
2EϕA,ϕ ′

A

{
Eϕ−A

∣∣⟨w(1), x⟩− ⟨w(1), x ′⟩
∣∣ |y = 1,y ′ = −1

}
(A.561)

⩽
1
2Eϕ−A

(
EϕA

{∣∣⟨w(1),Mϕ⟩
∣∣ |y = 1

}
+ Eϕ ′

A

{∣∣⟨w(1),Mϕ ′⟩
∣∣ |y ′ = −1

})
(A.562)

⩽ Eϕ−A,ϕA

∣∣αy⟨w(1),Mϕ⟩
∣∣ (A.563)

= Eϕ
∣∣αy⟨w(1),Mϕ⟩

∣∣ (A.564)

= O(η(1)σ̃/γ) + exp(−Ω(k))×
√
dD

σ̃
× ∥w(1)∥∞ (A.565)

= O

(
η(1)σ̃

γpmin

)
+ exp(−Ω(k))poly(dD/pmin) (A.566)

where the fourth step follows from that σ is 1-Lipschitz, and the second to the last
line from Lemma A.38 and that

∣∣⟨w(1),Mϕ⟩
∣∣ ⩽ ∥w(1)∥∞√d∥Mϕ∥2

2.

With the above lemmas about the gradients, we are now ready to show that at
the end of the second step, we get a good set of features for accurate prediction.

Lemma A.43. Set

η(1) =
γ2pminσ̃

km3 , λ(1)
a = 0, λ(1)

w = 1/(2η(1)),σ(1)
ξ = 1/k3/2, (A.567)

η(2) = 1, λ(2)
a = λ(2)

w = 1/(2η(2)),σ(2)
ξ = 1/k3/2. (A.568)

Fix δ ∈ (0,O(1/k3)). If Dµ/
√
d ⩽ 1/16, σζσ̃ = O(1), σ2

ζd/σ̃
2 = O(1), k =

270

Ω
(

log2
(
Dmd
δγpmin

))
, andm ⩾ max{Ω(k4),D,d}, then with probability at least 1 − δ over

the initialization, there exist ãi’s such that g̃(x) :=
∑2m
i=1 ãiσ(⟨w

(2)
i , x⟩ + b(2)

i) satisfies
LD(g̃) ⩽ exp(−Ω(k)). Furthermore, ∥ã∥0 = O(m/k), ∥ã∥∞ = O(k5/m), and ∥ã∥2

2 =

O(k9/m). Finally, ∥a(2)∥∞ = O
(1
km2

)
, ∥w(2)

i ∥2 = O(σ̃/k), and |b
(2)
i | = O(1/k2) for all

i ∈ [2m].

Proof of Lemma A.43. By Lemma A.29, there exists a network

g∗(x) =
3(k+1)∑
ℓ=1

a∗
ℓσ(⟨w∗

ℓ , x⟩+ b∗ℓ)

satisfying
Pr

(x,y)∼D
[yg∗(x) ⩽ 1] ⩽ exp(−Ω(k)).

Furthermore, the number of neurons n = 3(k+ 1), |a∗
i | ⩽ 64k, 1/(64k) ⩽ |b∗i | ⩽ 1/4,

w∗
i = σ̃

∑
j∈AMj/(8k), and |⟨w∗

i , x⟩ + b∗i | ⩽ 1 for any i ∈ [n] and (x,y) ∼ D. Now
we fix an ℓ, and show that with high probability there is a neuron in g(2) that can
approximate the ℓ-th neuron in g∗.

With probability ⩾ 1− exp(−Ω(max{2po(D− k),k})), among all j ̸∈ A, we have
that at most 2po(D− k) + k of ϕj are (1 − po)/σ̃, while the others are −po/σ̃. With
probability ⩾ 1 − (d +D) exp(−Ω(k)) over ζ, for any j, |ζj| ⩽ O(σζ

√
log(k)) and

|⟨ζ,Dℓ⟩| ⩽ O(σζ
√

log(k)). Below we consider data points with ϕ and ζ satisfying
these.

By Lemma A.31, with probability 1 − 2δ over w(0)
i ’s, they are all in Gw(δ); with

probability 1 − δ over a(0)
i ’s, they are all in Ga(δ); with probability 1 − δ over b(0)

i ’s,
they are all in Gb(δ). Under these events, by Lemma A.37, Lemma A.40 and A.41,
for any neuron i ∈ [2m], we have

w(2)
i = a

(1)
i

(
D∑
j=1

MjTj + ν

)
, (A.569)

b
(2)
i = b

(1)
i + a

(1)
i Tb. (A.570)

271

where

• if j ∈ A, then |Tj − βγ/σ̃| ⩽ ϵw1 := O(ϵe2/σ̃+ η(1)/σ
(2)
ξ + η(1)|a

(0)
i |ϵe/(σ̃σ

(2)
ξ)),

where β ∈ [Ω(1), 1] and depends only on w(0)
i ,b(0)

i ;

• if j ̸∈ A, then |Tj| ⩽ ϵw2 :=
1
σ̃

exp(−Ω(k)) +O(σ2
ϕσ̃ϵe2);

• |νj| ⩽ ϵν := O

(
η(1)σζ

γσ
(2)
ξ

)
+ exp(−Ω(k)).

• |Tb| ⩽ ϵb := exp(−Ω(k)) +O(ϵe2).

Given the initialization, with probabilityΩ(1) over b(0)
i , we have

|b
(0)
i | ∈

[
1

2k2 , 2
k2

]
, sign(b(0)

i) = sign(b∗ℓ). (A.571)

Finally, since 8k|b∗
ℓ |βγ

|b
(0)
i |σ̃2 ∈ [Ω(k2γ/σ̃2),O(k3γ/σ̃2)] and depends only on w(0)

i ,b(0)
i , we

have that for ϵa = Θ(1/k2), with probabilityΩ(ϵa) > δ over a(0)
i ,∣∣∣∣∣8k|b∗ℓ |βγ|b

(0)
i |σ̃2

a
(0)
i − 1

∣∣∣∣∣ ⩽ ϵa, |a
(0)
i | = O

(
σ̃2

k2γ

)
. (A.572)

Let na = ϵam/4. For the given value of m, by (A.569)-(A.572) we have with
probability ⩾ 1 − 5δ over the initialization, for each ℓ there is a different set of
neurons Iℓ ⊆ [m] with |Iℓ| = na and such that for each iℓ ∈ Iℓ,

|b
(0)
iℓ

| ∈
[

1
2k2 , 2

k2

]
, sign(b(0)

iℓ
) = sign(b∗ℓ), (A.573)∣∣∣∣∣8k|b∗ℓ |βγ|b

(0)
iℓ

|σ̃2
a
(0)
iℓ

− 1

∣∣∣∣∣ ⩽ ϵa, |a
(0)
iℓ

| = O

(
σ̃2

k2γ

)
. (A.574)

Now, construct ã such that ãiℓ =
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
for each ℓ and each iℓ ∈ Iℓ, and ãi = 0

elsewhere. To show that it gives accurate predictions, we first consider bounding
some error terms.

272

For the given values of parameters, we have

ϵe2 = O
(γ
m2

)
, (A.575)

ϵw1 = O

(
kγ

m2σ̃
+
γϵe

km2

)
, (A.576)

ϵw2 = O
(γ

m2σ̃

)
, (A.577)

ϵν = O

(
γk

m3

)
, (A.578)

ϵb = O
(γ
m2

)
. (A.579)

We also have the following useful claims.

Claim A.44.
∑
ℓ∈A |⟨Mℓ, x⟩| ⩽ O

(
k
σ̃

)
.

Proof of Claim A.44. ∑
ℓ∈A

|⟨Mℓ, x⟩| (A.580)

⩽
∑
ℓ∈A

(
|ϕj|+

∣∣∣∣∣∑
j̸=ℓ

M⊤
ℓMjϕj

∣∣∣∣∣+ ∣∣M⊤
ℓ ζ/σ̃

∣∣) (A.581)

⩽ O

(
k

σ̃

)
+O

(
kD

µ√
dσ̃

)
+O

(
k
σζ
√

log(k)
σ̃

)
(A.582)

⩽ O

(
k

σ̃

)
. (A.583)

Claim A.45. ∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ ⩽ O
(

1
m

)
. (A.584)

273

Proof of Claim A.45.

∣∣∣⟨w(2)
iℓ

, x⟩
∣∣∣ = ∣∣∣∣∣⟨

D∑
ℓ=1

a
(1)
iℓ
TℓMℓ + υ, x⟩

∣∣∣∣∣ (A.585)

⩽

∣∣∣∣∣⟨∑
ℓ∈A

a
(1)
iℓ
TℓMℓ, x⟩

∣∣∣∣∣+
∣∣∣∣∣⟨∑
ℓ ̸∈A

a
(1)
iℓ
TℓMℓ, x⟩

∣∣∣∣∣+ |⟨υ, x⟩| . (A.586)

Then ∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.587)

⩽

∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣+
∣∣∣∣∣a

(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣
(A.588)

⩽

∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣+ ∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ ∣∣∣∣∣βγσ̃ ∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ . (A.589)

The first term is∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(1)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.590)

⩽
∣∣∣a(1)
iℓ

∣∣∣(∣∣∣∣∣⟨∑
ℓ∈A

(
Tℓ −

βγ

σ̃

)
Mℓ, x⟩

∣∣∣∣∣+
∣∣∣∣∣⟨∑
ℓ ̸∈A

TℓMℓ, x⟩

∣∣∣∣∣+ |⟨ν, x⟩|
)

. (A.591)

By Claim A.44, ∣∣∣∣∣⟨∑
ℓ∈A

(
Tℓ −

βγ

σ̃

)
Mℓ, x⟩

∣∣∣∣∣ ⩽ ∑
ℓ∈A

∣∣∣∣Tℓ − βγ

σ̃

∣∣∣∣ |⟨Mℓ, x⟩| (A.592)

⩽ ϵw1
∑
ℓ∈A

|⟨Mℓ, x⟩| (A.593)

⩽ O

(
kϵw1

σ̃

)
. (A.594)

274

∣∣∣∣∣⟨∑
ℓ ̸∈A

TℓMℓ, x⟩

∣∣∣∣∣ ⩽
∣∣∣∣∣∑
ℓ ̸∈A

Tℓϕj

∣∣∣∣∣+
∣∣∣∣∣ ∑
ℓ ̸∈A,j̸=ℓ

TℓM
⊤
ℓMjϕj

∣∣∣∣∣+
∣∣∣∣∣∑
ℓ ̸∈A

TℓM
⊤
ℓ ζ/σ̃

∣∣∣∣∣ (A.595)

⩽ O

(
Dϵw2

σ̃

)
+O

(
D2ϵw2

µ√
dσ̃

)
+O

(
Dϵw2

σζ
√

log(k)
σ̃

)
(A.596)

⩽ O

(
Dϵw2

σ̃

)
. (A.597)

|⟨ν, x⟩| ⩽

∣∣∣∣∣∣⟨ν,
∑
ℓ∈[D]

Mℓϕℓ⟩

∣∣∣∣∣∣+ |⟨ν, ζ/σ̃⟩| (A.598)

⩽
∑
ℓ∈[D]

|ϕℓ⟨ν,Mℓ⟩|+ |⟨ν, ζ/σ̃⟩| (A.599)

⩽ O

(
poD+ k

σ̃

)
ϵν
√
d+ dϵν

O(σζ
√

log(k))
σ̃

(A.600)

⩽ O

(
ϵν
√
d

σ̃

)(
poD+

√
dϵν

√
log(k)

)
(A.601)

⩽ O

(
ϵν
√
d

σ̃

)(
poD+ σ̃

√
log(k)

)
(A.602)

⩽ O

(
poDϵν

√
d

σ̃

)
. (A.603)

Then by (A.575)-(A.579),

ϵϕ :=

(
kϵw1

σ̃
+
Dϵw2

σ̃
+
poDϵν

√
d

σ̃

)
= O

(
k2γ

m2σ̃2 +
γϵe

m2σ̃
+

γ

mσ̃2 +
γk

m3/2σ̃

)
.

(A.604)

275

We have
∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ = O(η(1)σw
√

log(Dm/δ)). So the first term is bounded by

∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ ⩽ ∣∣∣a(1)
iℓ

∣∣∣ ϵϕ (A.605)

⩽ O

(
σ̃2

k2γ
+ η(1)σw

√
log(Dm/δ)

)(
k2γ

m2σ̃2 +
γϵe

m2σ̃
+

γ

mσ̃2 +
γk

m3/2σ̃

)
⩽ O

(
1
m

)
.

(A.606)

By Claim A.44, the second term is bounded by

∣∣∣a(1)
iℓ

− a
(0)
iℓ

∣∣∣ ∣∣∣∣∣βγσ̃ ∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ ⩽ O
(
kη(1)σw

√
log(Dm/δ)γ
σ̃2

)
⩽ O

(
γ3

m3

)
.

(A.607)

Combining the bounds on the two terms leads to the claim.

Claim A.46.

|b
(2)
iℓ

− b
(0)
iℓ

| ⩽ O

(
1
k2m

)
. (A.608)

Proof of Claim A.46. By Lemma A.37 and A.41:

|b
(2)
iℓ

− b
(0)
iℓ

| ⩽ |b
(2)
iℓ

− b
(1)
iℓ

|+ |b
(1)
iℓ

− b
(0)
iℓ

| (A.609)

⩽ O
(
η(1)|a

(0)
iℓ

|ϵe + |a
(1)
iℓ

| (exp(−Ω(k)) + ϵe2)
)

(A.610)

⩽ O

(
γ

km2 +
1
k2m

)
⩽ O

(
1
k2m

)
. (A.611)

We are now ready to show g̃ is close to 2g∗.

|g̃(x) − 2g∗(x)| (A.612)

276

=

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

ãiℓσ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

3(k+1)∑
ℓ=1

2a∗
ℓσ (⟨w∗

ℓ , x⟩+ b∗ℓ)

∣∣∣∣∣∣ (A.613)

=

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
σ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|na
σ

(
|b

(0)
iℓ

|

|b∗ℓ |
⟨w∗

ℓ , x⟩+ b(0)
iℓ

)∣∣∣∣∣∣
(A.614)

⩽

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

1
na

(
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ
(
⟨w(2)

iℓ
, x⟩+ b(2)

iℓ

)
−

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩+ b(0)
iℓ

))∣∣∣∣∣∣
(A.615)

+

∣∣∣∣∣∣
3(k+1)∑
ℓ=1

∑
iℓ∈Iℓ

1
na

(
2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩+ b(0)
iℓ

)
−

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
σ

(
|b

(0)
iℓ

|

|b∗ℓ |
⟨w∗

ℓ , x⟩+ b(0)
iℓ

))∣∣∣∣∣∣ .
(A.616)

Here the second equation follows from that σ is positive-homogeneous in [0, 1],
|⟨w∗

ℓ , x⟩+ b∗ℓ | ⩽ 1, |b(0)
iℓ

|/|b∗ℓ | ⩽ 1.
By Claim A.45 and A.46, the first term is bounded by:

3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|

(∣∣∣∣∣⟨w(2)
iℓ

, x⟩−
a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣+ |b
(2)
iℓ

− b
(0)
iℓ

|

)
(A.617)

⩽ 3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|
O

(
1
m

)
(A.618)

⩽ O

(
k4

m

)
. (A.619)

By Claim A.44, the second term is bounded by:

3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|

∣∣∣∣∣a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩−
|b

(0)
iℓ

|

|b∗ℓ |
⟨w∗

ℓ , x⟩

∣∣∣∣∣ (A.620)

⩽ 3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|

∣∣∣∣∣a
(0)
iℓ
βγ

σ̃

∑
j∈A

⟨Mj, x⟩−
|b

(0)
iℓ

|σ̃

8k|b∗ℓ |
∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.621)

277

⩽ 3(k+ 1)max
ℓ

2a∗
ℓ |b

∗
ℓ |

|b
(0)
iℓ

|

σ̃|b
(0)
iℓ

|

8k|b∗ℓ |

∣∣∣∣∣8kaiℓβγ|b∗ℓ |σ̃2|b
(0)
iℓ

|
− 1

∣∣∣∣∣
∣∣∣∣∣∑
j∈A

⟨Mj, x⟩

∣∣∣∣∣ (A.622)

⩽ 3(k+ 1)max
ℓ
O(a∗

ℓϵa) (A.623)

⩽ O
(
k2ϵa

)
. (A.624)

Then

|g̃(x) − 2g∗(x)| = O
(
k4

m
+ k2ϵa

)
⩽ 1. (A.625)

This guarantees yg̃(x) ⩾ 1. Changing the scaling of δ leads to the statement.
Finally, the bounds on ã follow from the above calculation. The bound on

∥a(2)∥2 follows from Lemma A.42, and those on ∥w(2)
i ∥2 and ∥b(2)

i ∥2 follow from
(A.569)(A.570) and the bounds on a(1)

i and b(1)
i in Lemma A.37.

A.8.9 Classifier Learning Stage and Main Theorem

Once we have a good set of features in Lemma A.43, we can follow exactly the same
argument as in Section A.4.6 and A.4.7 for the simplified setting, and arrive at the
main theorem for the general setting:

Theorem A.47 (Restatement of Theorem A.28). Set

η(1) =
γ2pminσ̃

km3 , λ(1)
a = 0, λ(1)

w = 1/(2η(1)),σ(1)
ξ = 1/k3/2, (A.626)

η(2) = 1, λ(2)
a = λ(2)

w = 1/(2η(2)),σ(2)
ξ = 1/k3/2, (A.627)

η(t) = η =
k2

Tm1/3 , λ(t)a = λ(t)w = λ ⩽
k3

σ̃m1/3 ,σ(t)ξ = 0, for 2 < t ⩽ T . (A.628)

For any δ ∈ (0,O(1/k3)), ifµ ⩽ O(
√
d/D), σζ ⩽ O(min{1/σ̃, σ̃/

√
d}), k = Ω

(
log2

(
Dmd
δγpmin

))
,

m ⩾ max{Ω(k4),D,d}, then we have for any D ∈ FΞ, with probability at least 1 − δ,

278

there exists t ∈ [T] such that

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) = O
(
k8

m2/3 +
k3T

m2 +
k2m2/3

T

)
. (A.629)

Consequently, for any ϵ ∈ (0, 1), if T = m4/3, andm ⩾ max{Ω(k12/ϵ3/2),D}, then

Pr[sign(g(t)(x)) ̸= y] ⩽ LD(g(t)) ⩽ ϵ. (A.630)

279

(a) Residual block 1: (Green: 0.6152, Red: 0.6973, Two Centers: -0.7245)

(b) Residual block 2: (Green: 0.5528, Red: 0.6000, Two Centers: -0.7509)

(c) Residual block 3: (Green: 0.4260, Red: 0.5006, Two Centers: -0.5099)

(d) Residual block 4: (Green: 0.5584, Red: 0.5697, Two Centers: -0.9074)

Figure A.16: Visualization of the normalized convolution weights in all Residual
block of ResNet(128) trained on the subset of CIFAR10 data with labels airplane/au-
tomobile. We show the weights after 0/3/20 epochs in network learning. The
weights gradually form two clusters in all Residual blocks. We also report average
cosine similarity between the green/red points in the clusters to their centers and
cosine similarity between two cluster centers as (Green, Red, Two Centers).

280

(a) Residual block 1: (Green: 0.7065, Red: 0.6551, Two Centers: -0.7875)

(b) Residual block 2: (Green: 0.6599, Red: 0.5299, Two Centers: -0.9004)

(c) Residual block 3: (Green: 0.5193, Red: 0.6267, Two Centers: -0.9258)

(d) Residual block 4: (Green: 0.7386, Red: 0.6839, Two Centers: -0.9740)

Figure A.17: Visualization of the normalized convolution weights in all Residual
block of ResNet(256) trained on the subset of CIFAR10 data with labels airplane/au-
tomobile. We show the weights after 0/3/20 epochs in network learning. The
weights gradually form two clusters in all Residual blocks. We also report average
cosine similarity between the green/red points in the clusters to their centers and
cosine similarity between two cluster centers as (Green, Red, Two Centers).

281

(a) (b) (c)

Figure A.18: Test accuracy at different steps for an equal mixtureα = 0.5 of Gaussian
inputs with data: (a) MNIST, (b) CIFAR10, (c) SVHN.

(a) (b)

Figure A.19: Test accuracy at different steps for an equal mixture α = 0.5 of Tiny
ImageNet inputs with data: (a) CIFAR10, (b) SVHN.

(a) α = 0.25 (b) α = 0.50 (c) α = 0.75

Figure A.20: Test accuracy at different steps for varying mixture α of Gaussian
inputs with CIFAR10.

282

Figure A.21: Test accuracy at different steps for an equal mixtureα = 0.5 of Gaussian
inputs with MNIST, wherem = 50.

(a) Teacher’s double descent curve (b) Student’s curve when
Teacher=FC(9)

(c) Student’s curve when
Teacher=FC(50)

(d) Student’s curve when
Teacher=FC(500)

Figure A.22: Double descent curves of the students trained on data with synthetic
labels (Loss v.s. Parameter number).

283

b appendix for chapter 3

Section B.1 discusses the potential societal impact of our work. Section B.2 describes
the limitations of our work. In Section B.3, we present our framework implica-
tions about simplicity bias and lottery ticket hypothesis. The complete proof of
our main results is in Section B.4. We present the case study of linear data in
Section B.5.1, mixtures of Gaussians in Section B.5.2 and Section B.5.3, parity func-
tions in Section B.5.4, Section B.5.5 and Section B.5.6, and multiple-index models in
Section B.5.7. We put auxiliary lemmas in Section B.6.

B.1 Broader Impacts
Our paper is purely theoretical in nature and thus we foresee no immediate negative
ethical impact. We provide a unified theoretical framework that can be applied
to different theoretical problems. This may lead to a better understanding and
inspire the development of improved network learning methods, which may have a
positive impact on the theoretical machine learning community. On the other hand,
it may be beneficial to engineering-inclined machine learning researchers as well.

B.2 Limitations
The framework may or may not recover the width or sample complexity bounds in
existing work.

1. The framework can give matching bounds as the existing work in some cases,
like parities over uniform inputs (Section B.5.5).

2. In some other cases, it gives polynomial error bounds not the same as those
in the existing work (e.g., for parities over structured inputs). This is because
our work is analyzing general cases, and thus may not give better than or
the same bounds as those in special cases, since special cases have more

284

properties that can be exploited to get potentially better bounds. On the other
hand, our bounds can already show the advantage over kernel methods (e.g.,
Proposition 3.23).

We would like to emphasize that our contribution is providing an analysis frame-
work that can (1) formalize the unifying principles of learning features from gradi-
ents in network training, and (2) give polynomial error bounds for prototypical
problems. Our focus is not to recover the guarantees in existing work.

B.3 Further Implications
Our general framework also sheds some light on several interesting phenomena in
neural network learning observed in practice. Feature learning beyond the kernel
regime has been discussed in Section 3.4.1 and 3.4.2. Below we discuss two other
phenomena.

B.3.1 Implicit Regularization/Simplicity Bias

It is now well known that practical neural networks are overparameterized and
traditional uniform convergence bounds cannot adequately explain their generaliza-
tion performance Zhang et al. (2017); Nagarajan and Kolter (2019); Jacot (2023). It
is generally believed that the optimization has some implicit regularization effect that
restricts learning dynamics to a subset of the whole hypothesis class, which is not
of high capacity so can lead to good generalization Neyshabur (2017); Gidel et al.
(2019). Furthermore, learning dynamics tend to first learn simple functions and
then learn more and more sophisticated ones (referred to as simplicity bias) Nakki-
ran et al. (2019); Shah et al. (2020). However, it remains elusive to formalize such
simplicity bias.

Our framework provides a candidate explanation: the learning dynamics first
learn to approximate the best network in a smaller family of gradient feature induced
networksFd,r,BF,S and then learn to approximate the best in a larger family. Consider
the number of neurons r for illustration. Let r1 ≪ r2, and let T1 and T2 be their

285

corresponding runtime bounds for T in the main Theorem 3.12. Clearly, T1 ≪ T2.
Then, at time T1, the theorem guarantees the learning dynamics learn to approximate
the best in the family Fd,r1,BF,S with r1 neurons, but not for the larger family Fd,r2,BF,S.
Later, at time T2, the learning dynamics learn to approximate the best in the larger
family Fd,r2,BF,S. That is, the learning first learns simpler functions and then more
sophisticated ones where the simplicity bias is measured by the size of the family of
gradient feature-induced networks. The implicit regularization is then restricting
to networks approximating smaller families of gradient feature-induced networks.

B.3.2 Lottery Ticket Hypothesis (LTH)

Another interesting phenomenon is the LTH Frankle and Carbin (2018): randomly-
initialized networks contain subnetworks that when trained in isolation reach test
accuracy comparable to the original network in a similar number of iterations. Later
studies (e.g., Frankle et al. (2019)) show that LTH is more stable when subnetworks
are found in the network after a few gradient steps.

Our framework again provides some explanation for two-layer networks: the
lottery ticket subnetwork contains exactly those neurons whose gradient feature
approximates the weights of the “ground-truth” network f∗; they may not exist at
initialization but can be found after the first gradient step. More precisely, Theo-
rem 3.14 shows that after the first gradient step, there is a sparse second-layer weight
ã with ∥ã∥0 = O

(
r(mp)

1
2

)
, such that using this weight on the hidden neurons

gives a network with a small loss. LetU denote the support of ã. Then equivalently,
there is a small-loss subnetwork gUΞ with only neurons in U and with second-layer
weight ãU on these neurons. Following the same proof of Theorem 3.12, we can
show:

Proposition B.1. In the same setting of Theorem 3.12 but only considering the subnetwork
supported on U after the first gradient step, with the same requirements on m and T ,
with proper hyper-parameter values, we have the same guarantee: with probability ⩾

1 − δ, there is t ∈ [T] with Pr[sign(gU
Ξ(t))(x) ̸= y] ⩽ LD

(
gU
Ξ(t)

)
⩽ OPTd,r,BF,Sp,γ,BG

+

286

rBa1Bx1

√
2γ+O

(
√
Bx2

BGn
1
3

)
+ ϵ.

This essentially formally proves LTH for two-layer networks, showing (a) the
existence of the subnetwork and (b) that gradient descent on the subnetwork can
learn to similar loss in similar runtime as on the whole network. In particular, (b)
is novel, not analyzed in existing work.

B.4 Gradient Feature Learning Framework
We first prove a Simplified Gradient Feature Learning Framework in Section B.4.1,
which only considers one-step gradient feature learning. Then, we prove our Gradi-
ent Feature Learning Framework, e.g., no freezing of the first layer. In Section B.4.2,
we consider population loss to simplify the proof. Finally, we prove our Gradient
Feature Learning Framework under empirical loss considering sample complexity
in Section B.4.3.

B.4.1 Simplified Gradient Feature Learning Framework

Algorithm 4 Network Training via One Step Feature Learning
Initialize g(a(0),W(0),b) ∈ Fd,m; Sample Z ∼ Dn

Get (a(1), W(1),b) by one gradient step update and fix W(1),b
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(gΞ(t−1))

end for

Theorem B.2 (One Step Feature Learning: Main Result. Restatement of of The-
orem 3.4). Assume L̃Z

(
f(a,W(1),b)

)
is L-smooth to a. Let η(t) = 1

L
, λ(t) = 0, for all

t ∈ {2, 3, . . . , T }. Considering training by Algorithm 4, w.h.p., there exists t ∈ [T] such
that

LD(g(a(t),W(1),b)) ⩽OPTW(1),b,Ba2

287

+O

(
L(∥a(1)∥2

2 + B
2
a2)

T
+

√
B2
a2(∥W(1)∥2

FB
2
x + ∥b∥2

2)

n

)
.

Proof of Theorem B.2. Recall that

FW,b,Ba2 :=
{
g(a,W,b) ∈ Fd,m

∣∣ ∥a∥2 ⩽ Ba2
}

, OPTW,b,Ba2 := min
g∈FW,b,Ba2

LD(f).

(B.1)

We denote f∗ = arg ming∈FW,b,Ba2
LD(f) and f̃∗ = arg ming∈FW,b,Ba2

L̃Z(f). We use
a∗ and ã∗ to denote their second layer weights respectively. Then, we have

LD(g(a(t),W(1),b)) =LD(g(a(t),W(1),b)) − L̃Z(g(a(t),W(1),b)) (B.2)

+ L̃Z(g(a(t),W(1),b)) − L̃Z(g(ã∗,W(1),b)) (B.3)

+ L̃Z(g(ã∗,W(1),b)) − L̃Z(g(a∗,W(1),b)) (B.4)

+ L̃Z(g(a∗,W(1),b)) − LD(g(a∗,W(1),b)) (B.5)

+ LD(g(a∗,W(1),b)) (B.6)

⩽
∣∣∣LD(g(a(t),W(1),b)) − L̃Z(g(a(t),W(1),b))

∣∣∣ (B.7)

+
∣∣∣L̃Z(g(a(t),W(1),b)) − L̃Z(g(ã∗,W(1),b))

∣∣∣ (B.8)

+ 0 (B.9)

+
∣∣∣L̃Z(g(a∗,W(1),b)) − LD(g(a∗,W(1),b))

∣∣∣ (B.10)

+ OPTW(1),b,Ba2 . (B.11)

Fixing W(1), b and optimizing a only is a convex optimization problem. Note that
η ⩽ 1

L
, where L̃Z is L-smooth to a. Thus with gradient descent, we have

1
T

T∑
t=1

L̃Z

(
g(a(t),W(1),b)

)
− L̃Z

(
g(a∗,W(1),b)

)
⩽
∥a(1) − a∗∥2

2
2Tη . (B.12)

Then our theorem gets proved by Theorem B.78 and generalization bounds based

288

on Rademacher complexity.

B.4.2 Gradient Feature Learning Framework under Expected Risk

We consider the following training process under population loss to simplify the
proof. We prove our Gradient Feature Learning Framework under empirical loss
considering sample complexity in Section B.4.3.

Algorithm 5 Network Training via Gradient Descent
Initialize (a(0), W(0),b) as in Equation (3.9)
for t = 1 to T do
a(t) = a(t−1) − η(t)∇aLλ

(t)

D (gΞ(t−1))

W(t) = W(t−1) − η(t)∇WLλ
(t)

D (gΞ(t−1))
end for

Given an input distribution, we can get a Gradient Feature set Sp,γ,BG and
g∗(x) =

∑r
j=1 a

∗
jσ(⟨w∗

j , x⟩ − b∗j), where f∗ ∈ Fd,r,BF,Sp,γ,BG
is a Gradient Feature

Induced networks defined in Theorem 3.11. Considering training by Algorithm 5,
we have the following results.

Theorem B.3 (Gradient Feature Learning Framework under Expected Risk). As-
sume Assumption 3.1. For any ϵ, δ ∈ (0, 1), ifm ⩽ ed and

m =Ω

1
p

(
rBa1Bx1

ϵ

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 , (B.13)

T =Ω

(
1
ϵ

(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logm
√
BbBG

+
1

Bx1(mp)
1
4

))
, (B.14)

then with proper hyper-parameter values, we have with probability ⩾ 1 − δ, there exists
t ∈ [T] in Algorithm 5 with

Pr[sign(gΞ(t)(x)) ̸= y] ⩽ LD (gΞ(t)) ⩽ OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√
2γ+ ϵ.

(B.15)

289

See the full statement and proof in Theorem B.11. Below, we show some Lemma
used in the analysis under population loss.

Feature Learning

We first show that a large subset of neurons has gradients at the first step as good
features.

Definition B.4 (Nice Gradients Set. Equivalent to Equation (3.14)). We define

G(D,+1),Nice :=
{
i ∈ [m] : ⟨w(1)

i ,D⟩ > (1 − γ)
∥∥∥w(1)

i

∥∥∥
2

,
∥∥∥w(1)

i

∥∥∥
2
⩾
∣∣∣η(1)ℓ ′(0)a(0)

i

∣∣∣BG}
G(D,−1),Nice :=

{
i ∈ [2m] \ [m] : ⟨w(1)

i ,D⟩ > (1 − γ)
∥∥∥w(1)

i

∥∥∥
2

,
∥∥∥w(1)

i

∥∥∥
2
⩾
∣∣∣η(1)ℓ ′(0)a(0)

i

∣∣∣BG}
where γ,BG is the same in the Theorem 3.7.

Lemma B.5 (Feature Emergence. Full Statement of Theorem 3.13). Let λ(1) = 1
η(1) .

For any r size subset {(D1, s1), . . . , (Dr, sr)} ⊆ Sp,γ,BG , with probability at least 1 −

2re−cmp where c > 0 is a universal constant, we have that for all j ∈ [r], |G(Dj,sj),Nice| ⩾
mp

4 .

Proof of Theorem B.5. By symmetric initialization and Theorem B.70, we have for all
i ∈ [2m]

w(1)
i =− η(1)ℓ ′(0)a(0)

i E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

x
]

(B.16)

=− η(1)ℓ ′(0)a(0)
i G(w

(0)
i ,bi). (B.17)

For all j ∈ [r], as (Dj, sj) ∈ Sp,γ,BG , by Theorem B.72,
(1) if sj = +1, for all i ∈ [m], we have

Pr
[
i ∈ G(Dj,sj),Nice

]
(B.18)

=Pr

⟨w(1)
i ,Dj⟩∥∥∥w(1)
i

∥∥∥
2

> (1 − γ),
∥∥∥w(1)

i

∥∥∥
2
⩾
∣∣∣η(1)ℓ ′(0)a(0)

i

∣∣∣BG
 (B.19)

290

=Pr

⟨w(1)
i ,Dj⟩∥∥∥w(1)
i

∥∥∥
2

> (1 − γ),
∥∥∥w(1)

i

∥∥∥
2
⩾
∣∣∣η(1)ℓ ′(0)a(0)

i

∣∣∣BG, bi
|bi|

= sj

 (B.20)

⩾Pr
[
G(w(0)

i ,bi) ∈ CDj,γ, ∥G(w(0)
i ,bi)∥2 ⩾ BG, bi

|bi|
= sj, a(0)

i ⟨G(w
(0)
i ,bi),Dj⟩ > 0

]
(B.21)

⩾
p

2 , (B.22)

(2) if sj = −1, for all i ∈ [2m] \ [m], similarly we have

Pr
[
i ∈ G(Dj,sj),Nice

]
⩾
p

2 . (B.23)

By concentration inequality, (Chernoff’s inequality under small deviations), we
have

Pr
[
|G(Dj,sj),Nice| <

mp

4

]
⩽ 2e−cmp. (B.24)

We complete the proof by union bound.

Good Network Exists

Then, the gradients allow for obtaining a set of neurons approximating the “ground-
truth” network with comparable loss.

Lemma B.6 (Existence of Good Networks. Full Statement of Theorem 3.14). Let
λ(1) = 1

η(1) . For any Bϵ ∈ (0,Bb), let σa = Θ
(

b̃
−ℓ ′(0)η(1)BGBϵ

)
and δ = 2re−

√
mp.

Then, with probability at least 1 − δ over the initialization, there exists ãi’s such that
g(ã,W(1),b)(x) =

∑4m
i=1 ãiσ

(
⟨w(1)

i , x⟩− bi
)

satisfies

LD(g(ã,W(1),b)) ⩽ rBa1

(
B2
x1Bb√

mpBGBϵ
+ Bx1

√
2γ+ Bϵ

)
+ OPTd,r,BF,Sp,γ,BG

, (B.25)

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

291

Proof of Theorem B.6. Recallg∗(x) =
∑r
j=1 a

∗
jσ(⟨w∗

j , x⟩−b∗j), where f∗ ∈ Fd,r,BF,Sp,γ,BG

is defined in Theorem 3.11 and let s∗j =
b∗
j

|b∗
j |

. By Theorem B.5, with probability at
least 1 − δ1, δ1 = 2re−cmp, for all j ∈ [r], we have |G(w∗

j ,s∗j),Nice| ⩾
mp

4 . Then for all
i ∈ G(w∗

j ,s∗j),Nice ⊆ [2m], we have −ℓ ′(0)η(1)G(w(0)
i ,bi)

b∗
j

b̃
only depend on w(0)

i and
bi, which is independent of a(0)

i . Given Theorem 3.7, we have

−ℓ ′(0)η(1)∥G(w(0)
i ,bi)∥2

b∗j

b̃
∈
[
ℓ ′(0)η(1)Bx1

Bb

b̃
,−ℓ ′(0)η(1)Bx1

Bb

b̃

]
. (B.26)

We split [r] into Γ = {j ∈ [r] : |b∗j | < Bϵ}, Γ− = {j ∈ [r] : b∗j ⩽ −Bϵ} and Γ+ = {j ∈
[r] : b∗j ⩾ Bϵ}. Let ϵa = Bx1Bb√

mpBGBϵ
. Then we know that for all j ∈ Γ+ ∪ Γ−, for all

i ∈ G(w∗
j ,s∗j),Nice, we have

Pr
a
(0)
i ∼N(0,σ2

a)

[∣∣∣∣−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
− 1
∣∣∣∣ ⩽ ϵa] (B.27)

= Pr
a
(0)
i ∼N(0,σ2

a)

[
1 − ϵa ⩽ −a

(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
⩽ 1 + ϵa

]
(B.28)

= Pr
g∼N(0,1)

[
1 − ϵa ⩽ gΘ

(
∥G(w(0)

i ,bi)∥2|b
∗
j |

BGBϵ

)
⩽ 1 + ϵa

]
(B.29)

= Pr
g∼N(0,1)

[
(1 − ϵa)Θ

(
BGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)
⩽ g ⩽ (1 + ϵa)Θ

(
BGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)]
(B.30)

=Θ

(
ϵaBGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)
(B.31)

⩾Ω

(
ϵaBGBϵ

Bx1Bb

)
(B.32)

=Ω

(
1
√
mp

)
. (B.33)

292

Thus, with probabilityΩ
(

1√
mp

)
over a(0)

i , we have

∣∣∣∣−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
− 1
∣∣∣∣ ⩽ ϵa,

∣∣∣a(0)
i

∣∣∣ = O(b̃

−ℓ ′(0)η(1)BGBϵ

)
.

(B.34)

Similarly, for j ∈ Γ , for all i ∈ G(w∗
j ,s∗j),Nice, with probability Ω

(
1√
mp

)
over a(0)

i , we
have∣∣∣∣−a(0)

i ℓ
′(0)η(1)∥G(w(0)

i ,bi)∥2
Bϵ

b̃
− 1
∣∣∣∣ ⩽ ϵa,

∣∣∣a(0)
i

∣∣∣ = O(b̃

−ℓ ′(0)η(1)BGBϵ

)
.

(B.35)

For all j ∈ [r], let Λj ⊆ G(w∗
j ,s∗j),Nice be the set of i’s such that condition Equa-

tion (B.34) or Equation (B.35) are satisfied. By Chernoff bound and union bound,
with probability at least 1− δ2, δ2 = re

−
√
mp, for all j ∈ [r] we have |Λj| ⩾ Ω(

√
mp).

We have for ∀j ∈ Γ+ ∪ Γ−,∀i ∈ Λj,∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣ (B.36)

⩽

∥∥∥∥∥−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃

w(1)
i

∥w(1)
i ∥2

−
w(1)
i

∥w(1)
i ∥2

+
w(1)
i

∥w(1)
i ∥2

− w∗
j

∥∥∥∥∥ ∥x∥2

(B.37)

⩽(ϵa +
√

2γ)∥x∥2. (B.38)

Similarly, for ∀j ∈ Γ ,∀i ∈ Λj,∣∣∣∣Bϵb̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣ ⩽ (ϵa +

√
2γ)∥x∥2. (B.39)

If i ∈ Λj, j ∈ Γ+ ∪ Γ−, set ãi = a∗
j

|b∗
j |

|Λj|b̃
, if i ∈ Λj, j ∈ Γ , set ãi = a∗

j
Bϵ

|Λj|b̃
, otherwise set

ãi = 0, we have ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

293

Finally, we have

LD(g(ã,W(1),b)) (B.40)

=LD(g(ã,W(1),b)) − LD(g
∗) + LD(g

∗) (B.41)

⩽E(x,y)
[∣∣g(ã,W(1),b)(x) − g∗(x)

∣∣]+ LD(g
∗) (B.42)

⩽E(x,y)

[∣∣∣∣∣
m∑
i=1

ãiσ
(
⟨w(1)

i , x⟩− b̃
)
+

2m∑
i=m+1

ãiσ
(
⟨w(1)

i , x⟩+ b̃
)
−

r∑
j=1

a∗
jσ(⟨w∗

j , x⟩− b∗j)

∣∣∣∣∣
]

(B.43)

+ LD(g
∗) (B.44)

⩽E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ σ
(
⟨w(1)

i , x⟩− b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
 (B.45)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ σ
(
⟨w(1)

i , x⟩+ b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
 (B.46)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣Bϵb̃ σ
(
⟨w(1)

i , x⟩− b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
+ LD(g

∗)

(B.47)

⩽E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
 (B.48)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
 (B.49)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣Bϵb̃ ⟨w(1)
i , x⟩+ Bϵ − ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
+ LD(g

∗) (B.50)

⩽r∥a∗∥∞(ϵa +√2γ)E(x,y)∥x∥2 + |Γ |∥a∗∥∞Bϵ + LD(g
∗) (B.51)

⩽rBx1Ba1(ϵa +
√

2γ) + |Γ |Ba1Bϵ + OPTd,r,BF,Sp,γ,BG
. (B.52)

294

We finish the proof by union bound and δ ⩾ δ1 + δ2.

Learning an Accurate Classifier

We will use the following theorem from existing work to prove that gradient descent
learns a good classifier (Theorem B.11). Theorem B.3 is simply a direct corollary of
Theorem B.11.

Theorem B.7 (Theorem 13 in Daniely and Malach (2020)). Fix some η, and let
f1, . . . , fT be some sequence of convex functions. Fix some θ1, and assume we update
θt+1 = θt − η∇ft(θt). Then for every θ∗ the following holds:

1
T

T∑
t=1

ft(θt) ⩽
1
T

T∑
t=1

ft(θ
∗) +

1
2ηT ∥θ

∗∥2
2 + ∥θ1∥2

1
T

T∑
t=1

∥∇ft(θt)∥2 + η
1
T

T∑
t=1

∥∇ft(θt)∥2
2.

(B.53)

To apply the theorem we first present a few lemmas bounding the change in the
network during steps.

Lemma B.8 (Bound of Ξ(0),Ξ(1)). Assume the same conditions as in Theorem B.6, and
d ⩾ logm, with probability at least 1 − δ − 1

m2 over the initialization, ∥a(0)∥∞ =

O

(
b̃
√

logm
−ℓ ′(0)η(1)BGBϵ

)
, and for all i ∈ [4m], we have ∥w(0)

i ∥2 = O
(
σw
√
d
)

. Finally,

∥a(1)∥∞ = O
(
−η(1)ℓ ′(0)(Bx1σw

√
d+ b̃)

)
, and for all i ∈ [4m], ∥w(1)

i ∥2 = O

(
b̃
√

logmBx1
BGBϵ

)
.

Proof of Theorem B.8. By Theorem B.73, we have ∥a(0)∥∞ = O

(
b̃
√

logm
−ℓ ′(0)η(1)BGBϵ

)
with

probability at least 1 − 1
2m2 by property of maximum i.i.d Gaussians. For any

i ∈ [4m], by Theorem B.74 and d ⩾ logm, we have

Pr
(

1
σ2

w

∥∥∥w(0)
i

∥∥∥2

2
⩾ d+ 2

√
4d log(m) + 8 log(m)

)
⩽ O

(
1
m4

)
. (B.54)

Thus, by union bound, with probability at least 1 − 1
2m2 , for all i ∈ [4m], we have

∥w(0)
i ∥2 = O

(
σw
√
d
)

.

295

For all i ∈ [4m], we have

|a
(1)
i | =− η(1)ℓ ′(0)

∣∣∣E(x,y)

[
y
[
σ
(
⟨w(0)

i , x⟩− bi
)]]∣∣∣ (B.55)

⩽− η(1)ℓ ′(0)(∥w(0)
i ∥2E(x,y)[∥x∥2] + b̃) (B.56)

⩽O
(
−η(1)ℓ ′(0)(Bx1σw

√
d+ b̃)

)
. (B.57)

∥w(1)
i ∥2 =− η(1)ℓ ′(0)

∥∥∥a(0)
i E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

x
]∥∥∥

2
(B.58)

⩽O

(
b̃
√

logmBx1

BGBϵ

)
. (B.59)

Lemma B.9 (Bound of Ξ(t)). Assume the same conditions as in Theorem B.8, and
let η = η(t) for all t ∈ {2, 3, . . . , T }, 0 < TηBx1 ⩽ o(1), and 0 = λ = λ(t) for all
t ∈ {2, 3, . . . , T }, for all i ∈ [4m], we have

|a
(t)
i | ⩽O

(
|a

(1)
i |+ ∥w(1)

i ∥2 +
b̃

Bx1
+ ηb̃

)
(B.60)

∥w(t)
i − w(1)

i ∥2 ⩽O
(
tηBx1|a

(1)
i |+ tη2B2

x1∥w
(1)
i ∥2 + tη

2Bx1b̃
)

. (B.61)

Proof of Theorem B.9. For all i ∈ [4m], by Theorem B.8,

|a
(t)
i | =

∣∣∣(1 − ηλ)a
(t−1)
i − ηE(x,y)

[
ℓ ′(ygΞ(t−1)(x))y

[
σ
(
⟨w(t−1)

i , x⟩− bi
)]]∣∣∣ (B.62)

⩽
∣∣∣(1 − ηλ)a

(t−1)
i

∣∣∣+ η ∣∣∣E(x,y)

[[
σ
(
⟨w(t−1)

i , x⟩− bi
)]]∣∣∣ (B.63)

⩽
∣∣∣a(t−1)
i

∣∣∣+ η(Bx1∥w(t−1)
i ∥2 + b̃) (B.64)

⩽
∣∣∣a(t−1)
i

∣∣∣+ ηBx1∥w(t−1)
i − w(1)

i ∥2 + ηBx1∥w(1)
i ∥2 + ηb̃ (B.65)

=
∣∣∣a(t−1)
i

∣∣∣+ ηBx1∥w(t−1)
i − w(1)

i ∥2 + ηZi, (B.66)

where we denote Zi = Bx1∥w(1)
i ∥2 + b̃. Then we give a bound of the first layer’s

296

weights change,

∥w(t)
i − w(1)

i ∥2 (B.67)

=
∥∥∥(1 − ηλ)w(t−1)

i − ηa
(t−1)
i E(x,y)

[
ℓ ′(ygΞ(t−1)(x))yσ

′
[
⟨w(t−1)

i , x⟩− bi
]

x
]
− w(1)

i

∥∥∥
2

(B.68)

⩽∥w(t−1)
i − w(1)

i ∥2 + ηBx1|a
(t−1)
i |. (B.69)

Combine two bounds, we can get

|a
(t)
i | ⩽|a

(t−1)
i |+ ηZi + (ηBx1)

2
t−2∑
l=1

|a
(l)
i | (B.70)

⇔
t∑
l=1

|a
(l)
i | ⩽2

(
t−1∑
l=1

|a
(l)
i |

)
− (1 − (ηBx1)

2)

(
t−2∑
l=1

|a
(l)
i |

)
+ ηZi. (B.71)

Leth(1) = |a
(1)
i |, h(2) = 2|a(1)

i |+ηZi andh(t+2) = 2h(t+1)−(1−(ηBx1)
2)h(t)+ηZi

for n ∈ N+, by Theorem B.77, we have

h(t) = −
Zi

ηB2
x1

+ c1(1 − ηBx1)
(t−1) + c2(1 + ηBx1)

(t−1) (B.72)

c1 =
1
2

(
|a

(1)
i |+

Zi

ηB2
x1

−
|a

(1)
i |+ ηZi
ηBx1

)
(B.73)

c2 =
1
2

(
|a

(1)
i |+

Zi

ηB2
x1

+
|a

(1)
i |+ ηZi
ηBx1

)
. (B.74)

Thus, by |c1| ⩽ c2, and 0 < TηBx1 ⩽ o(1), we have

|a
(t)
i | ⩽h(t) − h(t− 1) (B.75)

=− ηBx1c1(1 − ηBx1)
(t−2) + ηBx1c2(1 + ηBx1)

(t−2) (B.76)

⩽2ηBx1c2(1 + ηBx1)
t (B.77)

⩽O(2ηBx1c2). (B.78)

297

Similarly, by binomial approximation, we also have

∥w(t)
i − w(1)

i ∥2 ⩽ηBx1h(t− 1) (B.79)

=ηBx1

(
−
Zi

ηB2
x1

+ c1(1 − ηBx1)
(t−2) + c2(1 + ηBx1)

(t−2)
)

(B.80)

⩽ηBx1O

(
−
Zi

ηB2
x1

+ c1(1 − (t− 2)ηBx1) + c2(1 + (t− 2)ηBx1)

)
(B.81)

⩽ηBx1O

(
−
Zi

ηB2
x1

+ c1 + c2 + (c2 − c1)tηBx1

)
(B.82)

⩽ηBx1O

(
|a

(1)
i |+

|a
(1)
i |+ ηZi
ηBx1

tηBx1

)
(B.83)

⩽O
(
(η|a

(1)
i |+ η2Zi)tBx1

)
. (B.84)

We finish the proof by plugging Zi, c2 into the bound.

Lemma B.10 (Bound of Loss Gap and Gradient). Assume the same conditions as in
Theorem B.9, for all t ∈ [T], we have

|LD(g(ã,W(t),b)) − LD(g(ã,W(1),b))| ⩽Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(t)

i − w(1)
i ∥2 (B.85)

and for all t ∈ [T], for all i ∈ [4m], we have∣∣∣∣∣∂LD(gΞ(t))

∂a
(t)
i

∣∣∣∣∣ ⩽Bx1(∥w(t)
i − w(1)

i ∥2 + ∥w(1)
i ∥2) + b̃. (B.86)

Proof of Theorem B.10. It follows from that

|LD(g(ã,W(t),b)) − LD(g(ã,W(1),b))| (B.87)

⩽ E(x,y)|g(ã,W(t),b)(x) − g(ã,W(1),b)(x)| (B.88)

⩽ E(x,y)

[
∥ã∥2

√
∥ã∥0 max

i∈[4m]

∣∣∣σ [⟨w(t)
i , x⟩− bi

]
− σ

[
⟨w(1)

i , x⟩− bi
]∣∣∣] (B.89)

298

⩽ Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(t)

i − w(1)
i ∥2. (B.90)

Also, we have∣∣∣∣∣∂LD(gΞ(t))

∂a
(t)
i

∣∣∣∣∣ = ∣∣∣E(x,y)

[
ℓ ′(ygΞ(t)(x))y

[
σ
(
⟨w(t)

i , x⟩− bi
)]]∣∣∣ (B.91)

⩽Bx1∥w(t)
i ∥2 + b̃ (B.92)

⩽Bx1(∥w(t)
i − w(1)

i ∥2 + ∥w(1)
i ∥2) + b̃. (B.93)

We are now ready to prove the main theorem.

Theorem B.11 (Online Convex Optimization. Full Statement of Theorem B.3).
Consider training by Algorithm 5, and any δ ∈ (0, 1). Assume d ⩾ logm. Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T }, (B.94)

η(1) = Θ

(
min{O(η),O(ηb̃)}

−ℓ ′(0)(Bx1σw
√
d+ b̃)

)
, λ(1) =

1
η(1) , σa = Θ

(
b̃(mp)

1
4

−ℓ ′(0)η(1)Bx1
√
BGBb

)
.

(B.95)

Let 0 < TηBx1 ⩽ o(1),m = Ω
(

1√
δ
+ 1
p

(
log
(
r
δ

))2
)

. With probability at least 1−δ over
the initialization, there exists t ∈ [T] such that

LD (gΞ(t)) ⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√
2γ
)

(B.96)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

(B.97)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
. (B.98)

299

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
, m = Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 ,

(B.99)

η =Θ

 ϵ(
√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

(B.100)

we have there exists t ∈ [T] with

Pr[sign(gΞ(t))(x) ̸= y] ⩽ LD (gΞ(t)) ⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√
2γ+ ϵ. (B.101)

Proof of Theorem B.11. By m = Ω
(

1√
δ
+ 1
p

(
log
(
r
δ

))2
)

we have 2re−
√
mp + 1

m2 ⩽ δ.

For any Bϵ ∈ (0,Bb), when σa = Θ
(

b̃
−ℓ ′(0)η(1)BGBϵ

)
, by Theorem B.7, Theorem B.6,

Theorem B.10, with probability at least 1 − δ over the initialization, we have

1
T

T∑
t=1

LD (gΞ(t)) (B.102)

⩽
1
T

T∑
t=1

|(LD(g(ã,W(t),b)) − LD(g(ã,W(1),b))|+ LD(g(ã,W(1),b))) (B.103)

+
∥ã∥2

2
2ηT + (2∥a(1)∥2

√
m+ 4ηm) max

i∈[4m]

∣∣∣∣∣∂LD(gΞ(T))

∂a
(T)
i

∣∣∣∣∣ (B.104)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

(
B2
x1Bb√

mpBGBϵ
+ Bx1

√
2γ+ Bϵ

)
(B.105)

+ Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(T)

i − w(1)
i ∥2 (B.106)

300

+
∥ã∥2

2
2ηT + 4mBx1(∥a(1)∥∞ + η)

(
max
i∈[4m]

∥w(T)
i − w(1)

i ∥2 + max
i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1

)
.

(B.107)

By Theorem B.6, Theorem B.8, Theorem B.9, when η(1) = Θ
(

min{O(η),O(ηb̃)}

−ℓ ′(0)(Bx1σw
√
d+b̃)

)
, we

have

∥ã∥0 =O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
(B.108)

∥a(1)∥∞ =O
(
−η(1)ℓ ′(0)(Bx1σw

√
d+ b̃)

)
(B.109)

=min{O(η),O(ηb̃)} (B.110)

max
i∈[4m]

∥w(1)
i ∥2 =O

(
b̃
√

logmBx1

BGBϵ

)
(B.111)

max
i∈[4m]

∥w(T)
i − w(1)

i ∥2 =O

(
TηBx1∥a(1)∥∞ + Tη2B2

x1 max
i∈[4m]

∥w(1)
i ∥2 + Tη

2Bx1b̃

)
(B.112)

=O

(
Tη2B2

x1

(
max
i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1

))
. (B.113)

Set Bϵ = Bx1

(mp)
1
4

√
Bb
BG

, we have σa = Θ

(
b̃(mp)

1
4

−ℓ ′(0)η(1)Bx1
√
BGBb

)
which satisfy the re-

quirements. Then,

1
T

T∑
t=1

LD (gΞ(t)) (B.114)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√
2γ
)

(B.115)

+

(√
rBa2BbTη

2B2
x1
Bx1

b̃
+mηBx1

)
O

(
b̃
√

logmBx1

BGBϵ
+

b̃

Bx1

)
+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
(B.116)

301

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√
2γ
)

(B.117)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
.

(B.118)

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
, m = Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 ,

(B.119)

η =Θ

 ϵ(
√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

(B.120)

we have

1
T

T∑
t=1

LD (gΞ(t)) ⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

(
2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√
2γ
)

+
ϵ

2 (B.121)

+O

(
Bx1B

2
a2B

2
b

b̃2(mp)
1
4

)
(B.122)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√
2γ+ ϵ. (B.123)

We finish the proof as the 0-1 classification error is bounded by the loss function,
e.g., I[sign(g(x)) ̸= y] ⩽ ℓ(yg(x))

ℓ(0) , where ℓ(0) = 1.

Remark B.12. In practice, the value of σw cannot be arbitrary, because its choice will have
an effect on the Gradient Feature set Sp,γ,BG . On the other hand, d ⩾ logm is a natural
assumption, otherwise, the two-layer neural networks may fall in the NTK regime.

302

Remark B.13 (Parameter Choice). We use λ = 1/η in the first step so that the neural
network will totally forget its initialization, leading to the feature emergence here. This
is a common setting for analysis convenience in previous work, e.g., Daniely and Malach
(2020); Shi et al. (2022c); Damian et al. (2022). We can extend this to other choices
(e.g., small initialization and large step size for the first few steps), as long as after the
gradient update, the gradient dominates the neuron weights. We use λ = 0 afterward as the
regularization effect is weak in our analysis. We can extend our analysis to λ being a small
value.

Remark B.14 (Early Stopping). Our analysis divides network learning into two stages:
the feature learning stage, and then classifier learning over the good features. The feature
learning stage is simplified to one gradient step for the convenience of analysis, while in
practice feature learning can happen in multiple steps. The current framework focuses on
the gradient features in the early gradient steps, while feature learning can also happen in
later steps, in particular for more complicated data. It is an interesting direction to extend
the analysis to a longer training horizon.

B.4.3 Gradient Feature Learning Framework under Empirical
Risk with Sample Complexity

In this section, we consider training with empirical risk. Intuitively, the proof is
straightforward from the proof for population loss. We can simply replace the
population loss with the empirical loss, which will introduce an error term in the
gradient analysis. We use concentration inequality to control the error term and
show that the error term depends inverse-polynomially on the sample size n.

Definition B.15 (Empirical Simplified Gradient Vector). Recall Z = {(x(l),y(l))}l∈[n],
for any w ∈ Rd, b ∈ R, an Empirical Simplified Gradient Vector is defined as

G̃(w,b) := 1
n

∑
l∈[n]

[y(l)x(l)I[w⊤x(l) > b]]. (B.124)

303

Definition B.16 (Empirical Gradient Feature). Recall Z = {(x(l),y(l))}l∈[n], let w ∈
Rd, b ∈ R be random variables drawn from some distribution W,B. An Empirical Gradient
Feature set with parameters p,γ,BG is defined as:

S̃p,γ,BG(W,B) :=

{
(D, s)

∣∣∣∣ Pr
w,b

[
G̃(w,b) ∈ CD,γ and ∥G̃(w,b)∥2 ⩾ BG and s = b

|b|

]
⩾ p

}
.

(B.125)

When clear from context, write it as S̃p,γ,BG .

Considering training by Algorithm 1, we have the following results.

Theorem B.17 (Gradient Feature Learning Framework under Empirical Risk with
Sample Complexity. Restatement of Theorem 3.12). Assume Assumption 3.1. For
any ϵ, δ ∈ (0, 1), ifm ⩽ ed and

m =Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 , (B.126)

T =Ω

(
1
ϵ

(√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logm
√
BbBG

+
1

Bx1(mp)
1
4

))
, (B.127)

n =Ω

(mBxB2
a2
√
Bb(mp)

1
2 logm

ϵrBa1
√
BG

)3

+

(
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

)

√
Bx2

|ℓ ′(0)|

)3
 ,

(B.128)

then with initialization (3.9) and proper hyper-parameter values, we have with probability
⩾ 1 − δ over the initialization and training samples, there exists t ∈ [T] in Algorithm 1
with

Pr[sign(gΞ(t)(x)) ̸= y] ⩽LD (gΞ(t)) (B.129)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
+ ϵ.

(B.130)

304

See the full statement and proof in Theorem B.23. Below, we show some Lemma
used in the analysis under empirical loss.

Lemma B.18 (Empirical Gradient Concentration Bound). When n >
(
Bx√
Bx2

)3
, with

probability at least 1 −O
(

exp
(
−n

1
3

))
over training samples, for all i ∈ [4m], we have

∥∥∥∥∥∂L̃Z(gΞ)

∂wi

−
∂LD(gΞ)

∂wi

∥∥∥∥∥
2

⩽ O

(
|ai|
√
Bx2

n
1
3

)
(B.131)∣∣∣∣∣∂L̃Z(gΞ)

∂ai
−
∂LD(gΞ)

∂ai

∣∣∣∣∣ ⩽ O
(
∥wi∥2

√
Bx2

n
1
3

)
(B.132)

∣∣∣L̃Z (gΞ) − LD (gΞ)
∣∣∣ ⩽ O(∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx + b̃) + 1

n
1
3

)
.

(B.133)

Proof of Theorem B.18. First, we define,

z(l) =ℓ ′(y(l)gΞ(x(l)))y(l)
[
σ ′ (⟨wi, x(l)⟩− bi

)
x(l)
]

(B.134)

− E(x,y) [ℓ
′(ygΞ(x))y [σ ′ (⟨wi, x⟩− bi)] x] . (B.135)

As |ℓ ′(z)| ⩽ 1, |y| ⩽ 1, |σ ′(z)| ⩽ 1, we have z(l) is zero-mean random vector with∥∥z(l)
∥∥

2 ⩽ 2Bx as well as E
[∥∥z(l)

∥∥2
2

]
⩽ Bx2. Then by Vector Bernstein Inequality,

Lemma 18 in Kohler and Lucchi (2017), for 0 < z < Bx2
Bx

we have

Pr
(∥∥∥∥∥∂L̃Z(gΞ)

∂wi

−
∂LD(gΞ)

∂wi

∥∥∥∥∥
2

⩾ |ai|z

)
= Pr

∥∥∥∥∥∥ 1
n

∑
l∈[n]

z(l)

∥∥∥∥∥∥
2

⩾ z

 (B.136)

⩽ exp
(
−n · z

2

8Bx2
+

1
4

)
. (B.137)

305

Thus, when n >
(
Bx√
Bx2

)3
, with probability at least 1 −O

(
exp

(
−n

1
3

))
, we have

∥∥∥∥∥∂L̃Z(gΞ)

∂wi

−
∂LD(gΞ)

∂wi

∥∥∥∥∥
2

⩽ O

(
|ai|
√
Bx2

n
1
3

)
. (B.138)

On the other hand, by Bernstein Inequality, for z > 0 we have

Pr
(∣∣∣∣∣∂L̃Z(gΞ)

∂ai
−
∂LD(gΞ)

∂ai

∣∣∣∣∣ > z∥wi∥2

)
(B.139)

=Pr
(∣∣∣∣∣ 1
n

∑
l∈[n]

(
ℓ ′(y(l)gΞ(x(l)))y(l)

[
σ
(
⟨wi, x(l)⟩− bi

)]
(B.140)

− E(x,y) [ℓ
′(ygΞ(x))y [σ (⟨wi, x⟩− bi)]]

)∣∣∣∣∣ > z∥wi∥2

)
(B.141)

⩽2 exp
(
−

1
2nz

2

Bx2 +
1
3Bxz

)
. (B.142)

Thus, when n >
(
Bx√
Bx2

)3
, with probability at least 1 −O

(
exp

(
−n

1
3

))
, we have

∣∣∣∣∣∂L̃Z(gΞ)

∂ai
−
∂LD(gΞ)

∂ai

∣∣∣∣∣ ⩽ O
(
∥wi∥2

√
Bx2

n
1
3

)
. (B.143)

Finally, we have∣∣∣L̃Z (gΞ) − LD (gΞ)
∣∣∣ (B.144)

=

∣∣∣∣∣ 1
n

n∑
l=1

(
ℓ
(
y(l)a⊤ [σ(W⊤x(l) − b)

])
− E(x,y)∼D

[
ℓ
(
ya⊤ [σ(W⊤x − b)

])])∣∣∣∣∣ .
(B.145)

By Assumption 3.1, we have ℓ
(
y(l)a⊤ [σ(W⊤x(l) − b)

])
−E(x,y)∼D

[
ℓ
(
ya⊤ [σ(W⊤x − b)

])]
is a zero mean random variable, with bound 2∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx+ b̃)+2.

306

By Hoeffding’s inequality, for all z > 0, we have

Pr
(∣∣∣L̃Z (gΞ) − LD (gΞ)

∣∣∣ ⩾ z) ⩽ 2 exp
(
−

z2n

(∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx + b̃) + 1)2

)
.

(B.146)

Thus, with probability at least 1 −O
(

exp
(
−n

1
3

))
, we have

∣∣∣L̃Z (gΞ) − LD (gΞ)
∣∣∣ ⩽ O(∥a∥0∥a∥∞(maxi∈[4m] ∥wi∥2Bx + b̃) + 1

n
1
3

)
. (B.147)

The gradients allow for obtaining a set of neurons approximating the “ground-
truth” network with comparable loss.

Lemma B.19 (Existence of Good Networks under Empirical Risk). Suppose n >

Ω

((
Bx√
Bx2

+ log 1
p
+

√
Bx2

BG|ℓ ′(0)|

)3
)

. Let λ(1) = 1
η(1) . For any Bϵ ∈ (0,Bb), let σa =

Θ
(

b̃
−|ℓ ′(0)|η(1)BGBϵ

)
and δ = 2re−

√
mp

2 . Then, with probability at least 1 − δ over the
initialization and training samples, there exists ãi’s such that

g(ã,W(1),b)(x) =
4m∑
i=1

ãiσ
(
⟨w(1)

i , x⟩− bi
)

satisfies

LD(g(ã,W(1),b)) (B.148)

⩽rBa1

 2B2
x1Bb√

mpBGBϵ
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
+ Bϵ

+ OPTd,r,BF,Sp,γ,BG
,

(B.149)

307

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Theorem B.19. Denote ρ = O
(

exp
(
−n

1
3

))
and β = O

(√
Bx2

n
1
3

)
. Note that

by symmetric initialization, we have ℓ ′(ygΞ(0)(x)) = |ℓ ′(0)| for any x ∈ X, so that,
by Theorem B.18, we have

∥∥∥G̃(w(0)
i ,bi) −G(w(0)

i ,bi)
∥∥∥

2
⩽ β

|ℓ ′(0)| with probability at

least 1 − ρ. Thus, by union bound, we can see that Sp,γ,BG ⊆ S̃p−ρ,γ+ β
BG|ℓ ′(0)| ,BG−

β
|ℓ ′(0)|

.
Consequently, we have OPTd,r,BF,S̃

p−ρ,γ+ β
BG|ℓ ′(0)| ,BG−

β
|ℓ ′(0)|

⩽ OPTd,r,BF,Sp,γ,BG
. Exactly

follow the proof in Theorem B.6 by replacing Sp,γ,BG to S̃p−ρ,γ+ β
BG|ℓ ′(0)| ,BG−

β
|ℓ ′(0)|

. Then,

we finish the proof by ρ ⩽ p
2 , β

|ℓ ′(0)| ⩽ (1 − 1/
√

2)BG.

We will use Theorem B.7 to prove that gradient descent learns a good classifier
(Theorem B.23). Theorem B.17 is simply a direct corollary of Theorem B.23. To
apply the theorem we first present a few lemmas bounding the change in the
network during steps.

Lemma B.20 (Bound ofΞ(0),Ξ(1) under Empirical Risk). Assume the same conditions as
in Theorem B.19, and d ⩾ logm, with probability at least 1−δ− 1

m2 −O
(
m exp

(
−n

1
3

))
over the initialization and training samples, ∥a(0)∥∞ = O

(
b̃
√

logm
|ℓ ′(0)|η(1)BGBϵ

)
, and for all

i ∈ [4m], we have ∥w(0)
i ∥2 = O

(
σw
√
d
)

. Finally,

∥a(1)∥∞ = O

(
η(1)|ℓ ′(0)|(Bx1σw

√
d+ b̃) + η(1)σw

√
dBx2

n
1
3

)
,

and for all i ∈ [4m], ∥w(1)
i ∥2 = O

(
b̃
√

logmBx1
BGBϵ

+
b̃
√

logm
√
Bx2

|ℓ ′(0)|BGBϵn
1
3

)
.

Proof of Theorem B.20. The proof exactly follows the proof of Theorem B.8 with
Theorem B.18.

Lemma B.21 (Bound of Ξ(t) under Empirical Risk). Assume the same conditions
as in Theorem B.20, and let η = η(t) for all t ∈ {2, 3, . . . , T }, 0 < TηBx1 ⩽ o(1), and

308

0 = λ = λ(t) for all t ∈ {2, 3, . . . , T }. With probability at least 1 −O
(
Tm exp

(
−n

1
3

))
over training samples, for all i ∈ [4m], for all t ∈ {2, 3, . . . , T }, we have

|a
(t)
i | ⩽O

|a
(1)
i |+ ∥w(1)

i ∥2 +
b̃(

Bx1 +
√
Bx2

n
1
3

) + ηb̃

 (B.150)

∥w(t)
i − w(1)

i ∥2 ⩽O

(
tη

(
Bx1 +

√
Bx2

n
1
3

)
|a

(1)
i |+ tη2

(
Bx1 +

√
Bx2

n
1
3

)2

∥w(1)
i ∥2

(B.151)

+ tη2
(
Bx1 +

√
Bx2

n
1
3

)
b̃

)
. (B.152)

Proof of Theorem B.21. The proof exactly follows the proof of Theorem B.9 with
Theorem B.18. Note that, we have

|a
(t)
i | ⩽

∣∣∣a(t−1)
i

∣∣∣+ η(Bx1∥w(t−1)
i ∥2 + b̃) + η

∥w(t−1)
i ∥2

√
Bx2

n
1
3

(B.153)

⩽
∣∣∣a(t−1)
i

∣∣∣+ η(Bx1 +

√
Bx2

n
1
3

)
∥w(t−1)

i − w(1)
i ∥2 + ηZi, (B.154)

where we denote Zi =
(
Bx1 +

√
Bx2

n
1
3

)
∥w(1)

i ∥2 + b̃. Similarly, we have

∥w(t)
i − w(1)

i ∥2 ⩽∥w(t−1)
i − w(1)

i ∥2 + η

(
Bx1 +

√
Bx2

n
1
3

)
|a

(t−1)
i |. (B.155)

We finish the proof by following the same arguments in the proof of Theorem B.9
and union bound.

Lemma B.22 (Bound of Loss Gap and Gradient under Empirical Risk). Assume the
same conditions as in Theorem B.21. With probability at least 1 −O

(
T exp

(
−n

1
3

))
, for

all t ∈ [T], we have∣∣∣L̃Z(t)

(
g(ã,W(t),b)

)
− LD(g(ã,W(1),b))

∣∣∣ (B.156)

309

⩽O

(
∥ã∥0∥ã∥∞(maxi∈[4m] ∥w(t)

i ∥2Bx + b̃)

n
1
3

)
+ Bx1∥ã∥2

√
∥ã∥0 max

i∈[4m]
∥w(t)

i − w(1)
i ∥2.

(B.157)

With probability at least 1 −O
(
Tm exp

(
−n

1
3

))
, for all t ∈ [T], i ∈ [4m] we have

∣∣∣∣∣∂L̃Z(t)(gΞ(t))

∂a
(t)
i

∣∣∣∣∣ ⩽ Bx1(∥w(t)
i − w(1)

i ∥2 + ∥w(1)
i ∥2) + b̃+O

(
∥w(t)

i ∥2
√
Bx2

n
1
3

)
.

(B.158)

Proof of Theorem B.22. By Theorem B.10 and Theorem B.18, with probability at least
1 −O

(
T exp

(
−n

1
3

))
, for all t ∈ [T], we have

∣∣∣L̃Z(t)

(
g(ã,W(t),b)

)
− LD(g(ã,W(1),b))

∣∣∣ (B.159)

⩽
∣∣∣L̃Z(t)

(
g(ã,W(t),b)

)
− LD(g(ã,W(t),b))

∣∣∣+ ∣∣LD(g(ã,W(t),b)) − LD(g(ã,W(1),b))
∣∣

(B.160)

⩽O

(
∥ã∥0∥ã∥∞(maxi∈[4m] ∥w(t)

i ∥2Bx + b̃)

n
1
3

)
+ Bx1∥ã∥2

√
∥ã∥0 max

i∈[4m]
∥w(t)

i − w(1)
i ∥2.

(B.161)

By Theorem B.10 and Theorem B.18, with probability at least 1−O
(
Tm exp

(
−n

1
3

))
,

for all t ∈ [T], i ∈ [4m] we have∣∣∣∣∣∂L̃Z(t)(gΞ(t))

∂a
(t)
i

∣∣∣∣∣ ⩽ Bx1(∥w(t)
i − w(1)

i ∥2 + ∥w(1)
i ∥2) + b̃+O

(
∥w(t)

i ∥2
√
Bx2

n
1
3

)
.

(B.162)

We are now ready to prove the main theorem.

310

Theorem B.23 (Online Convex Optimization under Empirical Risk. Full Statement
of Theorem B.17). Consider training by Algorithm 1, and any δ ∈ (0, 1). Assume
d ⩾ logm. Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T }, (B.163)

η(1) = Θ

(
min{O(η),O(ηb̃)}

−ℓ ′(0)(Bx1σw
√
d+ b̃)

)
, λ(1) =

1
η(1) , σa = Θ

(
b̃(mp)

1
4

−ℓ ′(0)η(1)Bx1
√
BGBb

)
.

(B.164)

Let m = Ω
(

1√
δ
+ 1
p

(
log
(
r
δ

))2
)

, n > Ω

((
Bx√
Bx2

+ log Tm
pδ

+ (1 + 1
BG

)
√
Bx2

|ℓ ′(0)|

)3
)

and

0 < TηBx1 ⩽ o(1). With probability at least 1 − δ over the initialization and training
samples, there exists t ∈ [T] such that

LD (gΞ(t)) (B.165)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

2
√

2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
(B.166)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
(B.167)

+
1
n

1
3
O

((
rBa1Bb

b̃
+m

(
b̃
√

logm(mp)
1
4

√
BbBG

+
b̃

Bx1

))
(B.168)

·

((
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)
Bx + b̃

)
+ 1
)

(B.169)

+
1
n

1
3
O

(
mη

(
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)√
Bx2

)
. (B.170)

311

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
, m = Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 ,

(B.171)

η =Θ

 ϵ(
√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

(B.172)

n =Ω

(mBxB2
a2
√
Bb(mp)

1
2 logm

ϵrBa1
√
BG

)3

+

(
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

)

√
Bx2

|ℓ ′(0)|

)3
 ,

(B.173)

we have there exists t ∈ [T] with

Pr[sign(gΞ(t))(x) ̸= y] ⩽LD (gΞ(t)) (B.174)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
+ ϵ.

(B.175)

Proof of Theorem B.23. We follow the proof in Theorem B.11. Bym = Ω
(

1√
δ
+ 1
p

(
log
(
r
δ

))2
)

and n > Ω
((

Bx√
Bx2

+ log Tm
pδ

+ (1 + 1
BG

)
√
Bx2

|ℓ ′(0)|

)3
)

, we have

2re−
√

mp
2 +

1
m2 +O

(
Tm exp

(
−n

1
3

))
⩽ δ.

For any Bϵ ∈ (0,Bb), when σa = Θ
(

b̃
−ℓ ′(0)η(1)BGBϵ

)
, by Theorem B.7, Theorem B.18,

Theorem B.19, Theorem B.22, with probability at least 1 − δ over the initialization

312

and training samples, we have

1
T

T∑
t=1

LD (gΞ(t)) (B.176)

⩽
1
T

T∑
t=1

|LD (gΞ(t)) − L̃Z(t) (gΞ(t)) |+
1
T

T∑
t=1

L̃Z(t) (gΞ(t)) (B.177)

⩽
1
T

T∑
t=1

|LD (gΞ(t)) − L̃Z(t) (gΞ(t)) |+
1
T

T∑
t=1

∣∣∣L̃Z(t)

(
g(ã,W(t),b)

)
− LD(g(ã,W(1),b))

∣∣∣
(B.178)

+ LD(g(ã,W(1),b)) +
∥ã∥2

2
2ηT + (2∥a(1)∥2

√
m+ 4ηm) max

t∈[T],i∈[4m]

∣∣∣∣∣∂L̃Z(t)(gΞ(t))

∂a
(t)
i

∣∣∣∣∣
(B.179)

⩽Bx1∥ã∥2
√
∥ã∥0 max

i∈[4m]
∥w(T)

i − w(1)
i ∥2 (B.180)

+O

(
(∥ã∥0∥ã∥∞ +m∥a(T)∥∞)(maxi∈[4m] ∥w(T)

i ∥2Bx + b̃) + 1
n

1
3

)
(B.181)

+ OPTd,r,BF,Sp,γ,BG
+ rBa1

 2B2
x1Bb√

mpBGBϵ
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
+ Bϵ

(B.182)

+
∥ã∥2

2
2ηT + 4mBx1(∥a(1)∥∞ + η) (B.183)

·

(
max
i∈[4m]

∥w(T)
i − w(1)

i ∥2 + max
i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1
+O

(
maxi∈[4m] ∥w(T)

i ∥2
√
Bx2

Bx1n
1
3

))
.

(B.184)

Set Bϵ = Bx1

(mp)
1
4

√
2Bb
BG

, we have σa = Θ

(
b̃(mp)

1
4

−ℓ ′(0)η(1)Bx1
√
BGBb

)
which satisfy the

313

requirements. By Theorem B.19, Theorem B.20, Theorem B.21,

n > Ω

((
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

)

√
Bx2

|ℓ ′(0)|

)3)
,

when η(1) = Θ
(

min{O(η),O(ηb̃)}

−ℓ ′(0)(Bx1σw
√
d+b̃)

)
, we have

∥ã∥0 =O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
(B.185)

∥a(1)∥∞ =O

(
η(1)|ℓ ′(0)|(Bx1σw

√
d+ b̃) + η(1)σw

√
dBx2

n
1
3

)
(B.186)

=min{O(η),O(ηb̃)} (B.187)

∥a(T)∥∞ ⩽O

∥a(1)∥∞ + max
i∈[4m]

∥w(1)
i ∥2 +

b̃(
Bx1 +

√
Bx2

n
1
3

) + ηb̃

 (B.188)

⩽O

(
max
i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1

)
(B.189)

max
i∈[4m]

∥w(1)
i ∥2 =O

(
b̃
√

logmBx1

BGBϵ
+
b̃
√

logm
√
Bx2

|ℓ ′(0)|BGBϵn
1
3

)
(B.190)

=O

(
b̃
√

logmBx1

BGBϵ

)
= O

(
b̃
√

logm(mp)
1
4

√
BbBG

)
(B.191)

max
i∈[4m]

∥w(T)
i − w(1)

i ∥2 =O

(
Tη

(
Bx1 +

√
Bx2

n
1
3

)
|a

(1)
i |+ Tη2

(
Bx1 +

√
Bx2

n
1
3

)2

∥w(1)
i ∥2

(B.192)

+ Tη2
(
Bx1 +

√
Bx2

n
1
3

)
b̃

)
(B.193)

=O

(
Tη2B2

x1

(
max
i∈[4m]

∥w(1)
i ∥2 +

b̃

Bx1

))
. (B.194)

314

Then, following the proof in Theorem B.11, we have

1
T

T∑
t=1

LD (gΞ(t)) (B.195)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

2
√

2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
(B.196)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
(B.197)

+O

(
(∥ã∥0∥ã∥∞ +m∥a(T)∥∞)(maxi∈[4m] ∥w(T)

i ∥2Bx + b̃) + 1
n

1
3

)
(B.198)

+O

(
mηmaxi∈[4m] ∥w(T)

i ∥2
√
Bx2

n
1
3

)
(B.199)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

2
√

2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
(B.200)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
(B.201)

+
1
n

1
3
O

((
rBa1Bb

b̃
+m

(
b̃
√

logm(mp)
1
4

√
BbBG

+
b̃

Bx1

))
(B.202)

·

((
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)
Bx + b̃

)
+ 1
)

(B.203)

+
1
n

1
3
O

(
mη

(
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)√
Bx2

)
. (B.204)

315

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
, m = Ω

 1
pϵ4

(
rBa1Bx1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 ,

(B.205)

η =Θ

 ϵ(
√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

(B.206)

n =Ω

(mBxB2
a2
√
Bb(mp)

1
2 logm

ϵrBa1
√
BG

)3

+

(
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

)

√
Bx2

|ℓ ′(0)|

)3
 ,

(B.207)

and note that BG ⩽ Bx1 ⩽ Bx and
√
Bx2 ⩽ Bx naturally, we have

1
T

T∑
t=1

LD (gΞ(t)) (B.208)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1

2
√

2Bx1

(mp)
1
4

√
Bb

BG
+ Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
(B.209)

+
ϵ

2 +O

(
Bx1B

2
a2B

2
b

b̃2(mp)
1
4

)
+O

(
mBxB

2
a2
√
Bb(mp)

1
2 logm

n
1
3 rBa1

√
BG

)
(B.210)

⩽OPTd,r,BF,Sp,γ,BG
+ rBa1Bx1

√√√√2γ+O

(√
Bx2

BG|ℓ ′(0)|n
1
3

)
+ ϵ. (B.211)

We finish the proof as the 0-1 classification error is bounded by the loss function,
e.g., I[sign(g(x)) ̸= y] ⩽ ℓ(yg(x))

ℓ(0) , where ℓ(0) = 1.

316

B.5 Applications in Special Cases
We present the case study of linear data in Section B.5.1, mixtures of Gaussians in
Section B.5.2 and Section B.5.3, parity functions in Section B.5.4, Section B.5.5 and
Section B.5.6, and multiple-index models in Section B.5.7.

In special case applications, we consider binary classification with hinge loss,
e.g., ℓ(z) = max{1 − z, 0}. Let X = Rd be the input space, and Y = {±1} be the label
space.

Remark B.24 (Hinge Loss and Logistic Loss). Both hinge loss and logistic loss can be
used in special cases and general cases. For convenience, we use hinge loss in special cases,
where we can directly get the ground-truth NN close form of the optimal solution which has
zero loss. For logistic loss, there is no zero-loss solution. We can still show that the OPT
value has an exponentially small upper bound at the cost of more computation.

B.5.1 Linear Data

Data Distributions. Suppose two labels are equiprobable, i.e., E[y = −1] = E[y =

+1] = 1
2 . The input data are linearly separable and there is a ground truth direction

w∗, where ∥w∗∥2 = 1, such that y⟨w∗, x⟩ > 0. We also assume E[yPw∗⊥x] = 0,
where Pw∗⊥ is the projection operator on the complementary space of the ground
truth, i.e., the components of input data being orthogonal with the ground truth
are independent of the label y. We define the input data signal level as ρ :=

E[y⟨w∗, x⟩] > 0 and the margin as β := min(x,y) y⟨w∗, x⟩ > 0.
We call this data distribution Dlinear.

Lemma B.25 (Linear Data: Gradient Feature Set). Let b̃ = dτBx1σw, where τ is
any number large enough to satisfy dτ/2− 1

4 > Ω
(√

Bx2
ρ

)
. For Dlinear setting, we have

(w∗,−1) ∈ Sp,γ,BG where

p =
1
2, γ = Θ

(√
Bx2

ρdτ/2− 1
4

)
, BG = ρ−Θ

(√
Bx2

dτ/2− 1
4

)
. (B.212)

317

Proof of Theorem B.25. By data distribution, we have

E(x,y)[yx] = ρw∗. (B.213)

Define SSure : {i ∈ [m] : ∥w(0)
i ∥2 ⩽ 2

√
dσw}. For all i ∈ [m], we have

Pr[i ∈ SSure] = Pr[∥w(0)
i ∥2 ⩽ 2

√
dσw] ⩾

1
2. (B.214)

For all i ∈ SSure, by Markov’s inequality and considering neuron i+m, we have

Pr
x

[
⟨w(0)

i+m, x⟩− bi+m < 0
]
=Pr

x

[
⟨w(0)

i , x⟩+ bi < 0
]

(B.215)

⩽Pr
x

[
∥w(0)

i ∥2∥x∥2 ⩾ bi
]

(B.216)

⩽Pr
x

[
∥x∥2 ⩾

dτ−
1
2Bx1

2

]
(B.217)

⩽Θ

(
1

dτ−
1
2

)
. (B.218)

For all i ∈ SSure, by Hölder’s inequality, we have∥∥∥E(x,y)

[
y
(

1 − σ ′
[
⟨w(0)

i+m, x⟩− bi+m
])

x
]∥∥∥

2
(B.219)

=
∥∥∥E(x,y)

[
y
(

1 − σ ′
[
⟨w(0)

i , x⟩+ bi
])

x
]∥∥∥

2
(B.220)

⩽

√
E[∥x∥2

2]E
[(

1 − σ ′
[
⟨w(0)

i , x⟩+ bi
])2
]

(B.221)

⩽Θ

(√
Bx2

dτ/2− 1
4

)
. (B.222)

We have

1 −

∣∣∣⟨G(w(0)
i+m,bi+m), w∗⟩

∣∣∣
∥G(w(0)

i+m,bi+m)∥2
=1 −

∣∣∣⟨G(w(0)
i ,−bi), w∗⟩

∣∣∣
∥G(w(0)

i ,−bi)∥2
(B.223)

318

⩽1 −
ρ−Θ

(√
Bx2

dτ/2− 1
4

)
ρ+Θ

(√
Bx2

dτ/2− 1
4

) (B.224)

=Θ

(√
Bx2

ρdτ/2− 1
4

)
= γ. (B.225)

We finish the proof by bi+m
|bi+m|

= −1.

Lemma B.26 (Linear Data: Existence of Good Networks). Assume the same conditions
as in Theorem B.25. Define

g∗(x) = 1
β
σ(⟨w∗, x⟩) − 1

β
σ(⟨−w∗, x⟩). (B.226)

For Dlinear setting, we have g∗ ∈ Fd,r,BF,Sp,γ,BG
, where r = 2,BF = (Ba1,Ba2,Bb) =(

1
β

,
√

2
β

, 1
B2
x1

)
, p = 1

2 , γ = Θ

(
√
Bx2

ρdτ/2− 1
4

)
,BG = ρ−Θ

(√
Bx2

dτ/2− 1
4

)
. We also have OPTd,r,BF,Sp,γ,BG

=

0.

Proof of Theorem B.26. By Theorem B.25 and Theorem B.72, we haveg∗ ∈ Fd,r,BF,Sp,γ,BG
.

We also have

OPTd,r,BF,Sp,γ,BG
⩽LDlinear

(g∗) (B.227)

=E(x,y)∼Dlinear
L(x,y)(g

∗) (B.228)

=0. (B.229)

Theorem B.27 (Linear Data: Main Result). For Dlinear setting, for any δ ∈ (0, 1) and
for any ϵ ∈ (0, 1) when

m = poly
(

1
δ

, 1
ϵ

, 1
β

, 1
ρ

)
⩽ ed, T = poly (m,Bx1) , n = poly

(
m,Bx, 1

δ
, 1
ϵ

, 1
β

, 1
ρ

)
,

(B.230)

319

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization,
with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽ϵ. (B.231)

Proof of Theorem B.27. Let b̃ = dτBx1σw, where τ is a number large enough to sat-

isfy dτ/2− 1
4 > Ω

(√
Bx2
ρ

)
and O

(
Bx1B

1
4
x2

β
√
ρdτ/4− 1

8

)
⩽ ϵ

2 . By Theorem B.26, we have

g∗ ∈ Fd,r,BF,Sp,γ,BG
, where r = 2,BF = (Ba1,Ba2,Bb) =

(
1
β

,
√

2
β

, 1
B2
x1

)
, p = 1

2 ,

γ = Θ

(
√
Bx2

ρdτ/2− 1
4

)
, BG = ρ−Θ

(√
Bx2

dτ/2− 1
4

)
. We also have OPTd,r,BF,Sp,γ,BG

= 0.

Adjust σw such that b̃ = dτBx1σw = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above parameters

into Theorem 3.12, we have with probability at least 1 − δ over the initialization,
with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽O
(

Bx1B
1
4
x2

β
√
ρdτ/4− 1

8

)
+O

(
Bx1Bx2

1
4

β
√
ρn

1
6

)
+ ϵ/2 ⩽ ϵ. (B.232)

B.5.2 Mixture of Gaussians

We recap the problem setup in Section 3.4.1 for readers’ convenience.

Problem Setup

Data Distributions. We follow the notations from Refinetti et al. (2021). The data
are from a mixture of r high-dimensional Gaussians, and each Gaussian is assigned
to one of two possible labels in Y = {±1}. Let S(y) ⊆ [r] denote the set of indices of
the Gaussians associated with the label y. The data distribution is then:

q(x,y) = q(y)q(x|y), q(x|y) =
∑
j∈S(y)

pjNj(x), (B.233)

320

where Nj(x) is a multivariate normal distribution with mean µj and covariance Σj,
and pj are chosen such that q(x,y) is correctly normalized.

We call this data distribution Dmixture.
We will make some assumptions about the Gaussians, for which we first intro-

duce some notations. For all j ∈ [r], let y(j) ∈ {+1,−1} be the label for Nj(x).

Dj :=
µj

∥µj∥2
, µ̃j := µj/

√
d, Bµ1 := min

j∈[r]
∥µ̃j∥2, Bµ2 := max

j∈[r]
∥µ̃j∥2, pB := min

j∈[r]
pj.

Assumption B.28 (Mixture of Gaussians. Recap of Assumption 3.15). Let 8 ⩽ τ ⩽ d

be a parameter that will control our final error guarantee. Assume

• Equiprobable labels: q(−1) = q(+1) = 1/2.

• For all j ∈ [r], Σj = σjId×d. Let σB := maxj∈[r] σj and σB+ := max{σB,Bµ2}.

• r ⩽ 2d, pB ⩾ 1
2d , Ω

(
1
d
+

√
τσB+2 logd

d

)
⩽ Bµ1 ⩽ Bµ2 ⩽ d.

• The Gaussians are well-separated: for all i ̸= j ∈ [r], we have −1 ⩽ ⟨Di,Dj⟩ ⩽ θ,

where 0 ⩽ θ ⩽ min
{

1
2r , σB+

Bµ2

√
τ logd
d

}
.

Below, we define a sufficient condition that randomly initialized weights will
fall in nice gradients set after the first gradient step update.

Definition B.29 (Mixture of Gaussians: Subset of Nice Gradients Set). Recall w(0)
i is

the weight for the i-th neuron at initialization. For all j ∈ [r], let SDj,Sure ⊆ [m] be those
neurons that satisfy

• ⟨w(0)
i ,µj⟩ ⩾ CSure,1bi,

• ⟨w(0)
i ,µj ′⟩ ⩽ CSure,2bi, for all j ′ ̸= j, j ′ ∈ [r].

•
∥∥∥w(0)

i

∥∥∥
2
⩽ Θ(

√
dσw).

321

Mixture of Gaussians: Feature Learning

We show the important Theorem B.30 first and defer other Lemmas after it.

Lemma B.30 (Mixture of Gaussians: Gradient Feature Set. Part statement of The-
orem 3.17). Let CSure,1 = 3

2 , CSure,2 = 1
2 , b̃ = Cb

√
τd log dσwσB+, where Cb is a

large enough universal constant. For Dmixture setting, we have (Dj,+1) ∈ Sp,γ,BG for all
j ∈ [r], where

p = Θ

(
Bµ1√

τ log dσB+ · d(9C2
bτσB+

2/(2B2
µ1))

)
, γ =

1
d0.9τ−1.5 , (B.234)

BG = pBBµ1
√
d−O

(σB+
d0.9τ

)
. (B.235)

Proof of Theorem B.30. For all j ∈ [r], by Theorem B.33, for all i ∈ SDj,Sure,

1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣
∥G(w(0)

i ,bi)∥2
(B.236)

⩽1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣√∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣2 + maxD⊤
j D

⊥
j =0,∥D⊥

j ∥2=1

∣∣∣⟨G(w(0)
i ,bi),D⊥

j ⟩
∣∣∣2 (B.237)

⩽1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣+ maxD⊤
j D

⊥
j =0,∥D⊥

j ∥2=1

∣∣∣⟨G(w(0)
i ,bi),D⊥

j ⟩
∣∣∣ (B.238)

⩽1 −
1

1 +
Bµ2O

(
1

d
τ− 1

2

)
+σB+O(1

d0.9τ)

pjBµ1
√
d(1−O(1

dτ))−Bµ2O

(
1

d
τ− 1

2

)
−σB+O(1

d0.9τ)

(B.239)

⩽
σB+O

(1
d0.9τ

)
pjBµ1

√
d− σB+O

(1
d0.9τ

) (B.240)

<
1

d0.9τ−1.5 = γ, (B.241)

322

where the last inequality follows Bµ1 ⩾ Ω

(
σB+

√
τ logd
d

)
.

Thus, we have G(w(0)
i ,bi) ∈ CDj,γ and

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣ ⩽ ∥G(w(0)
i ,bi)∥2 ⩽

Bx1, bi
|bi|

= +1. Thus, by Theorem B.31, we have

Pr
w,b

[
G(w,b) ∈ CDj,γ and ∥G(w,b)∥2 ⩾ BG and b

|b|
= +1

]
(B.242)

⩾Pr
[
i ∈ SDj,Sure

]
(B.243)

⩾p. (B.244)

Thus, (Dj,+1) ∈ Sp,γ,BG . We finish the proof.

Below are Lemmas used in the proof of Theorem B.30. In Theorem B.31, we
calculate p used in Sp,γ,BG .

Lemma B.31 (Mixture of Gaussians: Geometry at Initialization. Lemma B.2 in
Allen-Zhu and Li (2022)). Assume the same conditions as in Theorem B.30, recall
for all i ∈ [m], w(0)

i ∼ N(0,σ2
wId×d), over the random initialization, we have for all

i ∈ [m], j ∈ [r],

Pr
[
i ∈ SDj,Sure

]
⩾ Θ

(
Bµ1√

τ log dσB+ · d(9C2
bτσB+

2/(2B2
µ1))

)
. (B.245)

Proof of Theorem B.31. Recall for all l ∈ [r], µ̃l = µl/
√
d.

WLOG, let j = r. For all l ∈ [r− 1]. We define Z1 = {l ∈ [r− 1] : ⟨Dl,Dr⟩ ⩾ −θ}

andZ2 = {l ∈ [r−1] : −1 < ⟨Dl,Dr⟩ < −θ}. WLOG, letZ1 = [r1],Z2 = {r1+1, . . . , r2},
where 0 ⩽ r1 ⩽ r2 ⩽ r− 1. We define the following events

ζl =
{
⟨w(0)

i ,µl⟩ ⩽ CSure,2bi

}
, ζ̂l =

{∣∣∣⟨w(0)
i ,µl⟩

∣∣∣ ⩽ CSure,2bi

}
. (B.246)

We define spaceA = span(µ1, . . . ,µr1) and µ̂r = PA⊥µr, where PA⊥ is the projection
operator on the complementary space of A. For l ∈ Z2, we also define µ̇l =

323

µl −
⟨µl,µr⟩µr
∥µr∥2

2
, and the event

ζ̇l =
{
⟨w(0)

i , µ̇l⟩ ⩽ CSure,2bi

}
, ˆ̇ζl =

{∣∣∣⟨w(0)
i , µ̇l⟩

∣∣∣ ⩽ CSure,2bi

}
. (B.247)

For l ∈ Z2, we have µl = µ̇l − ρµr, where ρ ⩾ 0. So ⟨w,µl⟩ = ⟨w, µ̇l⟩− ρ⟨w,µr⟩ ⩽
⟨w, µ̇l⟩when ⟨w,µr⟩ ⩾ 0. As a result, we have

ζ̇l ∩
{
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi

}
⊆ ζl ∩

{
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi

}
. (B.248)

By Assumption B.28, we have

1
2 ⩽ 1 − rθ ⩽ 1 − r1θ ⩽

∥µ̂r∥2

∥µr∥2
⩽ 1. (B.249)

We also have,

Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi, ζ1, . . . , ζr−1

]
(B.250)

=Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi, ζ1, . . . , ζr2

]
(B.251)

⩾Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi, ζ1, . . . , ζr1 , ζ̇r1+1, . . . , ζ̇r2

]
(B.252)

⩾Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi, ζ̂1, . . . , ζ̂r1 ,
ˆ̇ζr1+1, . . . , ˆ̇ζr2

]
(B.253)

=Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1 ,
ˆ̇ζr1+1, . . . , ˆ̇ζr2

]
︸ ︷︷ ︸

pr

Pr
[
ζ̂1, . . . , ζ̂r1 ,

ˆ̇ζr1+1, . . . , ˆ̇ζr2

]
︸ ︷︷ ︸

Πl∈[r2]pl

.

(B.254)

For the first condition in Theorem B.29, we have,

pr =Pr
[
⟨w(0)

i ,µr⟩ ⩾ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1 ,
ˆ̇ζr1+1, . . . , ˆ̇ζr2

]
(B.255)

=Pr
[
⟨w(0)

i , µ̂r + µr − µ̂r⟩ ⩾ CSure,1bi

∣∣∣ζ̂1, . . . , ζ̂r1

]
(B.256)

⩾Pr
[
⟨w(0)

i , µ̂r + µr − µ̂r⟩ ⩾ CSure,1bi, ⟨w(0)
i ,µr − µ̂r⟩ ⩾ 0

∣∣∣ζ̂1, . . . , ζ̂r1

]
(B.257)

=Pr
[
⟨w(0)

i , µ̂r + µr − µ̂r⟩ ⩾ CSure,1bi

∣∣∣ ⟨w(0)
i ,µr − µ̂r⟩ ⩾ 0, ζ̂1, . . . , ζ̂r1

]
(B.258)

324

· Pr
[
⟨w(0)

i ,µr − µ̂r⟩ ⩾ 0
∣∣∣ζ̂1, . . . , ζ̂r1

]
(B.259)

=
1
2 Pr

[
⟨w(0)

i , µ̂r + µr − µ̂r⟩ ⩾ CSure,1bi

∣∣∣⟨w(0)
i ,µr − µ̂r⟩ ⩾ 0, ζ̂1, . . . , ζ̂r1

]
(B.260)

⩾
1
2 Pr

[
⟨w(0)

i , µ̂r⟩ ⩾ CSure,1bi

∣∣∣⟨w(0)
i ,µr − µ̂r⟩ ⩾ 0, ζ̂1, . . . , ζ̂r1

]
(B.261)

=
1
2 Pr

[
⟨w(0)

i , µ̂r⟩ ⩾ CSure,1bi

]
(B.262)

⩾Θ

(
∥µ̃r∥2√

τ log dσB+ · d(9C2
bτσB+

2/(2∥µ̃r∥2
2))

)
, (B.263)

where the last equality following that µ̂r is orthogonal with µ1, . . . ,µr1 and the prop-
erty of the standard Gaussian vector, and the last inequality follows Theorem B.75.

For the second condition in Theorem B.29, by Theorem B.75, we have,

p1 =Pr
[
ζ̂1

]
= 1 −Θ

(
∥µ̃1∥2√

τ log dσB+ · d(C
2
bτσB+

2/(8∥µ̃1∥2
2))

)
(B.264)

p2 =Pr
[
ζ̂2

∣∣∣ζ̂1

]
⩾ Pr

[
ζ̂2

]
⩾ 1 −Θ

(
∥µ̃2∥2√

τ log dσB+ · d(C
2
bτσB+

2/(8∥µ̃2∥2
2))

)
(B.265)

... (B.266)

pr−1 =Pr
[ˆ̇ζr2

∣∣∣ζ̂1, . . . , ζ̂r1 ,
ˆ̇ζr1+1, . . . , ˆ̇ζr2

]
⩾ Pr

[ˆ̇ζr2

]
⩾ Pr

[
ζ̂r2

]
(B.267)

⩾ 1 −Θ

(
∥µ̃r−1∥2√

τ log dσB+ · d(C
2
bτσB+

2/(8∥µ̃r2∥
2
2))

)
. (B.268)

On the other hand, if X is a χ2(k) random variable. Then we have

Pr(X ⩾ k+ 2
√
kx+ 2x) ⩽ e−x. (B.269)

325

Therefore, by assumption Bµ1 ⩾ Ω

(
σB+

√
τ logd
d

)
, we have

Pr
(

1
σ2

w

∥∥∥w(0)
i

∥∥∥2

2
⩾ d+ 2

√(
9C2
bτσB+

2/(2B2
µ1) + 2

)
dlog d (B.270)

+ 2
(
9C2
bτσB+

2/(2B2
µ1) + 2

)
log d

)
(B.271)

⩽O

(
1

d2 · d(9C2
bτσB+

2/(2B2
µ1))

)
. (B.272)

Recall Bµ1 = minj∈[r] ∥µ̃j∥2,Bµ2 = maxj∈[r] ∥µ̃j∥2. Thus, by union bound, we have

Pr
[
i ∈ SDj,Sure

]
(B.273)

⩾Πl∈[r]pl −O

(
1

d2 · d(9C2
bτσB+

2/(2B2
µ1))

)
(B.274)

⩾Θ

(
Bµ1√

τ log dσB+ · d(9C2
bτσB+

2/(2B2
µ1))
·

(
1 −

rBµ2√
τ log dσB+ · d(C

2
bτσB+

2/(8B2
µ2))

))
(B.275)

−O

(
1

d2 · d(9C2
bτσB+

2/(2B2
µ1))

)
(B.276)

⩾Θ

(
Bµ1√

τ log dσB+ · d(9C2
bτσB+

2/(2B2
µ1))

)
. (B.277)

In Theorem B.32, we compute the activation pattern for the neurons in SDj,Sure.

Lemma B.32 (Mixture of Gaussians: Activation Pattern). Assume the same conditions
as in Theorem B.30, for all j ∈ [r], i ∈ SDj,Sure, we have

(1) When x ∼ Nj(µj,σjId×d), the activation probability satisfies,

Pr
x∼Nj(µj,σjId×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩾ 1 −O

(
1
dτ

)
. (B.278)

326

(2) For all j ′ ̸= j, j ′ ∈ [r], when x ∼ Nj ′(µj ′ ,Σj ′), the activation probability satisfies,

Pr
x∼Nj ′(µj ′ ,σj ′Id×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩽ O

(
1
dτ

)
. (B.279)

Proof of Theorem B.32. In the proof, we need b̃ = Cb
√
τd log dσwσB+, where Cb is

a large enough universal constant. For the first statement, when x ∼ Nj(µj,σjId×d),
by CSure,1 ⩾ 3

2 , we have

Pr
x∼Nj(µj,σjId×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩾ Pr

x∼N(0,σjId×d)

[
⟨w(0)

i , x⟩ ⩾ (1 − CSure,1)bi

]
(B.280)

⩾ Pr
x∼N(0,σjId×d)

[
⟨w(0)

i , x⟩ ⩾ −
bi

2

]
(B.281)

=1 − Pr
x∼N(0,σjId×d)

[
⟨w(0)

i , x⟩ ⩽ −
bi

2

]
(B.282)

⩾1 − exp
(
−

bi
2

Θ(dσ2
wσ

2
j)

)
(B.283)

⩾1 −O

(
1
dτ

)
, (B.284)

where the third inequality follows the Chernoff bound and symmetricity of the
Gaussian vector.

For the second statement, we prove similarly by 0 < CSure,2 ⩽ 1
2 .

Then, Theorem B.33 gives gradients of neurons in SDj,Sure. It shows that these
gradients are highly aligned with Dj.

Lemma B.33 (Mixture of Gaussians: Feature Emergence). Assume the same conditions
as in Theorem B.30, for all j ∈ [r], i ∈ SDj,Sure, we have

⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,y(j)Dj⟩ (B.285)

⩾pjBµ1
√
d

(
1 −O

(
1
dτ

))
− Bµ2O

(
1

dτ−
1
2

)
− σB+O

(
1
d0.9τ

)
. (B.286)

327

For any unit vector D⊥
j which is orthogonal with Dj, we have

∣∣∣⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,D⊥
j ⟩
∣∣∣ ⩽Bµ2O

(
1

dτ−
1
2

)
+ σB+O

(
1
d0.9τ

)
. (B.287)

Proof of Theorem B.33. For all j ∈ [r], i ∈ SDj,Sure, we have

E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

(B.288)

=
∑
l∈[r]

plEx∼Nl(x)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

(B.289)

=
∑
l∈[r]

ply(l)Ex∼N(0,σlId×d)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

]
. (B.290)

Thus, by Theorem B.76 and Theorem B.32,

⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,y(j)Dj⟩ (B.291)

=pjEx∼N(0,σjId×d)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)
(x + µj)

⊤Dj

]
(B.292)

+
∑

l∈[r],l ̸=j

ply(l)y(j)Ex∼N(0,σlId×d)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

⊤Dj

]
(B.293)

⩾pjµ
⊤
j Dj

(
1 −O

(
1
dτ

))
−

∑
l∈[r],l ̸=j

pl|µ
⊤
l Dj|O

(
1
dτ

)
(B.294)

− pj

∣∣∣Ex∼N(0,σjI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤Dj

]∣∣∣ (B.295)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.296)

⩾pjBµ1
√
d

(
1 −O

(
1
dτ

))
− Bµ2O

(
1

dτ−
1
2

)
(B.297)

− pj

∣∣∣Ex∼N(0,σjI)

[(
1 − σ ′

(
⟨w(0)

i , x + µj⟩− bi
)
− 1
)

x⊤Dj

]∣∣∣ (B.298)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.299)

=pjBµ1
√
d

(
1 −O

(
1
dτ

))
− Bµ2O

(
1

dτ−
1
2

)
(B.300)

328

− pj

∣∣∣Ex∼N(0,σjI)

[(
1 − σ ′

(
⟨w(0)

i , x + µj⟩− bi
))

x⊤Dj

]∣∣∣ (B.301)

−
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.302)

⩾pjBµ1
√
d

(
1 −O

(
1
dτ

))
− Bµ2O

(
1

dτ−
1
2

)
− σB+O

(
1
d0.9τ

)
. (B.303)

For any unit vector D⊥
j which is orthogonal with Dj, similarly, we have∣∣∣⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,D⊥
j ⟩
∣∣∣ (B.304)

⩽pj
∣∣∣Ex∼N(0,σjI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.305)

+
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

⊤D⊥
j

]∣∣∣ (B.306)

⩽Bµ2O

(
1

dτ−
1
2

)
+ pj

∣∣∣Ex∼N(0,σjI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.307)

+
∑

l∈[r],l ̸=j

pl

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.308)

⩽Bµ2O

(
1

dτ−
1
2

)
+ σB+O

(
1
d0.9τ

)
. (B.309)

Mixture of Gaussians: Final Guarantee

Lemma B.34 (Mixture of Gaussians: Existence of Good Networks. Part statement
of Theorem 3.17). Assume the same conditions as in Theorem B.30. Define

g∗(x) =
r∑
j=1

y(j)√
τ log dσB+

[
σ
(
⟨Dj, x⟩− 2

√
τ log dσB+

)]
. (B.310)

For Dmixture setting, we have g∗ ∈ Fd,r,BF,Sp,γ,BG
, where

BF = (Ba1,Ba2,Bb) =
(

1√
τ log dσB+

,
√
r√

τ log dσB+
, 2
√
τ log dσB+

)
,

329

p = Θ

(
Bµ1√

τ logdσB+·d(9C2
b
τσB+

2/(2B2
µ1))

)
, γ = 1

d0.9τ−1.5 , BG = pBBµ1
√
d − O

(
σB+
d0.9τ

)
and

Bx1 = (Bµ2 + σB+)
√
d,Bx2 = (Bµ2 + σB+)

2d. We also have OPTd,r,BF,Sp,γ,BG
⩽ 3

dτ
+

4
d0.9τ−1

√
τ logd

.

Proof of Theorem B.34. We can check Bx1 = (Bµ2 + σB+)
√
d,Bx2 = (Bµ2 + σB+)

2d by
direct calculation. By Theorem B.30, we have g∗ ∈ Fd,r,BF,Sp,γ,BG

.

For any j ∈ [r], by Bµ1 ⩾ Ω

(
σB+

√
τ logd
d

)
⩾ 4σB+

√
τlogd
d

, we have

Pr
x∼Nj(µj,σjId×d)

[
⟨Dj, x⟩− 2

√
τ log dσB+ ⩾

√
τ log dσB+

]
(B.311)

= Pr
x∼Nj(0,σjId×d)

[
⟨Dj, x⟩+ ∥µj∥2 − 2

√
τ log dσB+ ⩾

√
τ log dσB+

]
(B.312)

⩾ Pr
x∼Nj(0,σjId×d)

[
⟨Dj, x⟩+

√
dBµ1 − 2

√
τ log dσB+ ⩾

√
τ log dσB+

]
(B.313)

⩾ Pr
x∼Nj(0,σjId×d)

[
⟨Dj, x⟩ ⩾ −

√
τ log dσB+

]
(B.314)

⩾1 −
1
dτ

, (B.315)

where the last inequality follows Chernoff bound.
For any l ̸= j, l ∈ [r], by θ ⩽ σB+

Bµ2

√
τ logd
d

, we have

Pr
x∼Nj(µj,σjId×d)

[
⟨Dl, x⟩− 2

√
τ log dσB+ ⩾ 0

]
(B.316)

⩽ Pr
x∼Nj(0,σjId×d)

[
⟨Dl, x⟩+ θBµ2

√
d− 2

√
τ log dσB+ ⩾ 0

]
(B.317)

⩽ Pr
x∼Nj(0,σjId×d)

[
⟨Dl, x⟩ ⩾

√
τ log dσB+

]
(B.318)

⩽
1
dτ

. (B.319)

Thus, we have

Pr
(x,y)∼Dmixture

[yg∗(x) > 1] (B.320)

330

⩾
∑
j∈[r]

pj

(
Pr

x∼Nj(µj,σjId×d)

[
⟨Dj, x⟩− 2

√
τ log dσB+ ⩾

√
τ log dσB+

])
(B.321)

−
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Pr
x∼Nj(µj,σjId×d)

[
⟨Dl, x⟩− 2

√
τ log dσB+ < 0

] (B.322)

⩾1 −
2
dτ

. (B.323)

We also have

E(x,y)∼Dmixture
[I[yg∗(x) ⩽ 1]|yg∗(x)|] (B.324)

⩽
∑
j∈[r]

pj

(
Pr

x∼Nj(µj,σjId×d)

[
⟨Dj, x⟩− 2

√
τ log dσB+ <

√
τ log dσB+

] y2
(j)

√
τ log dσB+√

τ log dσB+

)
(B.325)

+
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(µj,σjId×d)

[
σ ′
[
⟨Dl, x⟩− 2

√
τ log dσB+ > 0

] ⟨Dl, x⟩− 2
√
τ log dσB+√

τ log dσB+

]
(B.326)

⩽
1
dτ

+
∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(0,σjId×d)

[
σ ′
[
⟨Dl, x⟩ >

√
τ log dσB+

] ⟨Dl, x⟩−
√
τ log dσB+√

τ log dσB+

]
(B.327)

⩽
1
dτ

+
1√
τ log d

∑
j∈[r]

pj

 ∑
l ̸=j,l∈[r]

Ex∼Nj(0,Id×d)

[
σ ′
[
⟨Dl, x⟩ >

√
τ log d

]
⟨Dl, x⟩

]
(B.328)

⩽
1
dτ

+
4

d0.9τ−1
√
τ log d

, (B.329)

where the second last inequality follows Theorem B.76 and r ⩽ 2d. Thus, we have

OPTd,r,BF,Sp,γ,BG
(B.330)

⩽E(x,y)∼Dmixture
[ℓ(yg∗(x))] (B.331)

331

=E(x,y)∼Dmixture
[I[yg∗(x) ⩽ 1](1 − yg∗(x))] (B.332)

⩽E(x,y)∼Dmixture
[I[yg∗(x) ⩽ 1]|yg∗(x)|] + E(x,y)∼Dmixture

[I[yg∗(x) ⩽ 1]] (B.333)

⩽
3
dτ

+
4

d0.9τ−1
√
τ log d

. (B.334)

Theorem B.35 (Mixture of Gaussians: Main Result. Restatement of Theorem 3.18).
For Dmixture setting with Assumption B.28, for any δ ∈ (0, 1) and for any ϵ ∈ (0, 1)
when

m = poly
(

1
δ

, 1
ϵ

,dΘ(τσB+2/B2
µ1), r, 1

pB

)
⩽ ed, T = poly (m) , n = poly (m)

(B.335)

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization,
with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽
√

2r
d0.4τ−0.8 + ϵ. (B.336)

Proof of Theorem B.35. Let b̃ = Cb
√
τd log dσwσB+, where Cb is a large enough

universal constant.
By Theorem B.34, we have g∗ ∈ Fd,r,BF,Sp,γ,BG

, where BF = (Ba1,Ba2,Bb) =(
1√

τ logdσB+
,

√
r√

τ logdσB+
, 2
√
τ log dσB+

)
, p = Θ

(
Bµ1√

τ logdσB+·d(9C2
b
τσB+

2/(2B2
µ1))

)
, γ =

1
d0.9τ−1.5 , BG = pBBµ1

√
d−O

(
σB+
d0.9τ

)
and Bx1 = (Bµ2 + σB+)

√
d,Bx2 = (Bµ2 + σB+)

2d.
We also have OPTd,r,BF,Sp,γ,BG

⩽ 3
dτ

+ 4
d0.9τ−1

√
τ logd

.

Adjust σw such that b̃ = Cb
√
τd log dσwσB+ = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above

parameters into Theorem 3.12, we have with probability at least 1 − δ over the
initialization, with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] (B.337)

332

⩽
3
dτ

+
4

d0.9τ−1
√
τ log d

+

√
2rBµ2

d(0.9τ−1.5)/2
√
τ log dσB+

+O

(
rBa1Bx1Bx2

1
4

√
BGn

1
6

)
+ ϵ/2

(B.338)

⩽

√
2r

d0.4τ−0.8 + ϵ. (B.339)

B.5.3 Mixture of Gaussians - XOR

We consider a special Mixture of Gaussians distribution studied in Refinetti et al.
(2021). Consider the same data distribution in Section B.5.2 and Theorem B.29 with
the following assumptions.

Assumption B.36 (Mixture of Gaussians in Refinetti et al. (2021)). Assume four
Gaussians cluster with XOR-like pattern, for any τ > 0,

• r = 4 and p1 = p2 = p3 = p4 =
1
4 .

• µ1 = −µ2, µ3 = −µ4 and ∥µ1∥2 = ∥µ2∥2 = ∥µ3∥2 = ∥µ4∥2 =
√
d and ⟨µ1,µ3⟩ =

0.

• For all j ∈ [4], Σj = σBId×d and 1 ⩽ σB ⩽
√

d
τ log logd .

• y(1) = y(2) = 1 and y(3) = y(4) = −1.

We denote this data distribution as Dmixture−xor setting.

Mixture of Gaussians - XOR: Feature Learning

Lemma B.37 (Mixture of Gaussians in Refinetti et al. (2021): Gradient Feature Set).
Let CSure,1 = 6

5 , CSure,2 =
√

2√
τ log logd

, b̃ =
√
τd log log dσwσB and d is large enough.

For Dmixture−xor setting, we have (Dj,+1) ∈ Sp,γ,BG for all j ∈ [4], where

p = Θ

 1√
τ log log dσB · (log d)

18τσ2
B

25

 , γ =
σB√
d

, (B.340)

333

BG =

√
d

4

(
1 −O

(
1

(log d) τ50

))
− σBO

(
1

(log d)0.018τ

)
. (B.341)

Proof of Theorem B.37. For all j ∈ [r], by Theorem B.40, for all i ∈ SDj,Sure,

1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣
∥G(w(0)

i ,bi)∥2
(B.342)

⩽1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣√∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣2 + maxD⊤
j D

⊥
j =0,∥D⊥

j ∥2=1

∣∣∣⟨G(w(0)
i ,bi),D⊥

j ⟩
∣∣∣2 (B.343)

⩽1 −

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣+ maxD⊤
j D

⊥
j =0,∥D⊥

j ∥2=1

∣∣∣⟨G(w(0)
i ,bi),D⊥

j ⟩
∣∣∣ (B.344)

⩽1 −
1

1 +
σBO

(
1

(logd)0.018τ

)
1
4
√
d

(
1−O

(
1

(logd)
τ
50

))
−σBO

(
1

(logd)0.018τ

)
(B.345)

⩽
σBO

(
1

(logd)0.018τ

)
1
4

√
d
(

1 −O
(

1
(logd)

τ
50

))
− σBO

(
1

(logd)0.018τ

) (B.346)

<
σB√
d
= γ. (B.347)

Thus, we have G(w(0)
i ,bi) ∈ CDj,γ and

∣∣∣⟨G(w(0)
i ,bi),Dj⟩

∣∣∣ ⩽ ∥G(w(0)
i ,bi)∥2 ⩽

Bx1, bi
|bi|

= +1. Thus, by Theorem B.38, we have

Pr
w,b

[
G(w,b) ∈ CDj,γ and ∥G(w,b)∥2 ⩾ BG and b

|b|
= +1

]
(B.348)

⩾Pr
[
i ∈ SDj,Sure

]
(B.349)

⩾p. (B.350)

Thus, (Dj,+1) ∈ Sp,γ,BG . We finish the proof.

334

Lemma B.38 (Mixture of Gaussians in Refinetti et al. (2021): Geometry at Ini-
tialization). Assume the same conditions as in Theorem B.37. Recall for all i ∈ [m],
w(0)
i ∼ N(0,σ2

wId×d), over the random initialization, we have for all i ∈ [m], j ∈ [4],

Pr
[
i ∈ SDj,Sure

]
⩾Θ

 1√
τ log log dσB · (log d)

18τσ2
B

25

 . (B.351)

Proof of Theorem B.38. WLOG, let j = 1. By Assumption B.36, for the first condition
in Theorem B.29, we have,

Pr
[
⟨w(0)

i ,µ1⟩ ⩾ CSure,1bi

]
⩾Θ

 1√
τ log log dσB · (log d)

18τσ2
B

25

 , (B.352)

where the the last inequality follows Theorem B.75.
For the second condition in Theorem B.29, by Theorem B.75, we have,

Pr
[∣∣∣⟨w(0)

i ,µ2⟩
∣∣∣ ⩽ CSure,2bi

]
⩾1 −

1
2
√
π

1
σB · eσ

2
B

, (B.353)

On the other hand, if X is a χ2(k) random variable. Then we have

Pr(X ⩾ k+ 2
√
kx+ 2x) ⩽ e−x. (B.354)

Therefore, we have

Pr
(

1
σ2

w

∥∥∥w(0)
i

∥∥∥2

2
⩾ d+ 2

√(
18τσ2

B

25 + 2
)
dlog log d+ 2

(
18τσ2

B

25 + 2
)

log log d
)

(B.355)

⩽O

 1

(log d)2 · (log d)
18τσ2

B
25

 . (B.356)

335

Thus, by union bound, we have

Pr
[
i ∈ SDj,Sure

]
⩾Θ

 1√
τ log log dσB · (log d)

18τσ2
B

25

 . (B.357)

Lemma B.39 (Mixture of Gaussians in Refinetti et al. (2021): Activation Pattern).
Assume the same conditions as in Theorem B.37, for all j ∈ [4], i ∈ SDj,Sure, we have

(1) When x ∼ Nj(µj,σBId×d), the activation probability satisfies,

Pr
x∼Nj(µj,σBId×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩾ 1 −

1
(log d) τ50

. (B.358)

(2) For all j ′ ̸= j, j ′ ∈ [4], when x ∼ Nj ′(µj ′ ,σBId×d), the activation probability
satisfies,

Pr
x∼Nj ′(µj ′ ,σBId×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩽ O

(
1

(log d) τ2

)
. (B.359)

Proof of Theorem B.39. In the proof, we need b̃ =
√
τd log log dσwσB. For the first

statement, when x ∼ Nj(µj,σBId×d), by CSure,1 ⩾ 6
5 , we have

Pr
x∼Nj(µj,σBId×d)

[
⟨w(0)

i , x⟩− bi ⩾ 0
]
⩾ Pr

x∼N(0,σBId×d)

[
⟨w(0)

i , x⟩ ⩾ (1 − CSure,1)bi

]
(B.360)

⩾ Pr
x∼N(0,σBId×d)

[
⟨w(0)

i , x⟩ ⩾ −
bi

5

]
(B.361)

=1 − Pr
x∼N(0,σBId×d)

[
⟨w(0)

i , x⟩ ⩽ −
bi

5

]
(B.362)

⩾1 − exp
(
−

bi
2

50dσ2
wσ

2
B

)
(B.363)

⩾1 −
1

(log d) τ50
, (B.364)

336

where the third inequality follows the Chernoff bound and symmetricity of the
Gaussian vector.

For the second statement, we prove similarly by 0 < CSure,2 ⩽
√

2√
τ log logd

.

Then, Theorem B.40 gives gradients of neurons in SDj,Sure. It shows that these
gradients are highly aligned with Dj.

Lemma B.40 (Mixture of Gaussians in Refinetti et al. (2021): Feature Emergence).
Assume the same conditions as in Theorem B.37, for all j ∈ [4], i ∈ SDj,Sure, we have

⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,y(j)Dj⟩ (B.365)

⩾
1
4
√
d

(
1 −O

(
1

(log d) τ50

))
− σBO

(
1

(log d)0.018τ

)
. (B.366)

For any unit vector D⊥
j which is orthogonal with Dj, we have

∣∣∣⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,D⊥
j ⟩
∣∣∣ ⩽σBO(1

(log d)0.018τ

)
. (B.367)

Proof of Theorem B.40. For all j ∈ [4], i ∈ SDj,Sure, we have

E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

(B.368)

=
∑
l∈[4]

1
4Ex∼Nl(x)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

(B.369)

=
∑
l∈[4]

1
4y(l)Ex∼N(0,σlId×d)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

]
. (B.370)

Thus, by Theorem B.76 and Theorem B.39,

⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,y(j)Dj⟩ (B.371)

=
1
4Ex∼N(0,σBId×d)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)
(x + µj)

⊤Dj

]
(B.372)

+
∑

l∈[4],l ̸=j

1
4y(l)y(j)Ex∼N(0,σlId×d)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

⊤Dj

]
(B.373)

337

⩾
1
4µ

⊤
j Dj

(
1 −O

(
1

(log d) τ50

))
−

∑
l∈[4],l ̸=j

1
4 |µ

⊤
l Dj|O

(
1
d
τ
2

)
(B.374)

−
1
4

∣∣∣Ex∼N(0,σBI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤Dj

]∣∣∣ (B.375)

−
∑

l∈[4],l ̸=j

1
4

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.376)

⩾
1
4
√
d

(
1 −O

(
1

(log d) τ50

))
(B.377)

−
1
4

∣∣∣Ex∼N(0,σBI)

[(
1 − σ ′

(
⟨w(0)

i , x + µj⟩− bi
)
− 1
)

x⊤Dj

]∣∣∣ (B.378)

−
∑

l∈[4],l ̸=j

1
4

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.379)

=
1
4
√
d

(
1 −O

(
1

(log d) τ50

))
− (B.380)

1
4

∣∣∣Ex∼N(0,σBI)

[(
1 − σ ′

(
⟨w(0)

i , x + µj⟩− bi
))

x⊤Dj

]∣∣∣ (B.381)

−
∑

l∈[4],l ̸=j

1
4

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤Dj

]∣∣∣ (B.382)

⩾
1
4
√
d

(
1 −O

(
1

(log d) τ50

))
− σBO

(
1

(log d)0.018τ

)
. (B.383)

For any unit vector D⊥
j which is orthogonal with Dj, similarly, we have∣∣∣⟨E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)

x
]

,D⊥
j ⟩
∣∣∣ (B.384)

⩽
1
4

∣∣∣Ex∼N(0,σBI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.385)

+
∑

l∈[4],l ̸=j

1
4

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)
(x + µl)

⊤D⊥
j

]∣∣∣ (B.386)

⩽
1
4

∣∣∣Ex∼N(0,σBI)

[
σ ′
(
⟨w(0)

i , x + µj⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.387)

+
∑

l∈[4],l ̸=j

1
4

∣∣∣Ex∼N(0,σlI)

[
σ ′
(
⟨w(0)

i , x + µl⟩− bi
)

x⊤D⊥
j

]∣∣∣ (B.388)

338

⩽σBO

(
1

(log d)0.018τ

)
. (B.389)

Mixture of Gaussians - XOR: Final Guarantee

Lemma B.41 (Mixture of Gaussians in Refinetti et al. (2021): Existence of Good
Networks). Assume the same conditions as in Theorem B.37 and let τ = 1 and when
0 < τ̃ ⩽ O

(
d

σ2
B logd

)
. Define

g∗(x) =
4∑
j=1

y(j)√
τ̃ log dσB

[
σ
(
⟨Dj, x⟩− 2

√
τ̃ log dσB

)]
. (B.390)

For Dmixture−xor setting, we have g∗ ∈ Fd,r,BF,Sp,γ,BG
, where BF = (Ba1,Ba2,Bb) =(

1√
τ̃ logdσB

, 2√
τ̃ logdσB

, 2
√
τ̃ log dσB

)
, p = Ω

(
1

σB·(logd)σ
2
B

)
, γ = σB√

d
, BG = 1

5

√
d and

Bx1 = (1+σB)
√
d,Bx2 = (1+σB)2d. We also have OPTd,r,BF,Sp,γ,BG

⩽ 3
dτ̃
+ 4
d0.9τ̃−1

√
τ̃ logd

.

Proof of Theorem B.41. We finish the proof by following the proof of Theorem B.34

Theorem B.42 (Mixture of Gaussians in Refinetti et al. (2021): Main Result). For
Dmixture−xor setting with Assumption B.36, when d is large enough, for any δ ∈ (0, 1)
and for any ϵ ∈ (0, 1) when

m =Ω

(
σB(log d)σ2

B

((
log
(

1
δ

))2

+
1
ϵ4

)
+

1√
δ

)
⩽ ed, (B.391)

T =poly(σB, 1/ϵ, 1/δ, log d), (B.392)

n =Ω̃

(mσB)

3
2 (log d)

σ2
B
2

ϵ
+ σB

√
d

3
 , (B.393)

339

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization
and training samples, with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽O
(
σ

3
2
B

(
1
d

1
4
+

1
n

1
6

))
+ ϵ. (B.394)

Proof of Theorem B.42. Let b̃ =
√
d log log dσwσB.

By Theorem B.41, let τ = 1 and when τ̃ = O
(

d
σ2
B logd

)
, we have g∗ ∈ Fd,r,BF,Sp,γ,BG

,
where

BF = (Ba1,Ba2,Bb) =
(

1√
τ̃ log dσB

, 2√
τ̃ log dσB

, 2
√
τ̃ log dσB

)
,

p = Ω

(
1

σB·(logd)σ
2
B

)
, γ = σB√

d
, BG = 1

5

√
d and Bx1 = (1 + σB)

√
d,Bx2 = (1 + σB)

2d.

We also have OPTd,r,BF,Sp,γ,BG
⩽ 3
dτ̃

+ 4
d0.9τ̃−1

√
τ̃ logd

.

Adjust σw such that b̃ =
√
d log log dσwσB = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above

parameters into Theorem 3.12, we have with probability at least 1 − δ over the
initialization, with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽O
(
σ

3
2
B

(
1
d

1
4
+

1
n

1
6

))
+ ϵ. (B.395)

B.5.4 Parity Functions

We recap the problem setup in Section 3.4.2 for readers’ convenience.

Problem Setup

Data Distributions. SupposeM ∈ Rd×D is an unknown dictionary withD columns
that can be regarded as patterns. For simplicity, assume d = D andM is orthonor-
mal. Let ϕ ∈ Rd be a hidden representation vector. Let A ⊆ [D] be a subset of size

340

rk corresponding to the class relevant patterns and r is an odd number. Then the
input is generated byMϕ, and some function on ϕA generates the label. WLOG,
let A = {1, . . . , rk}, A⊥ = {rk + 1, . . . ,d}. Also, we split A such that for all j ∈ [r],
Aj = {(j− 1)k+ 1, . . . , jk}. Then the input x and the class label y are given by:

x =Mϕ, y = g∗(ϕA) = sign
(

r∑
j=1

XOR(ϕAj)

)
, (B.396)

where g∗ is the ground-truth labeling function mapping from Rrk to Y = {±1}, ϕA

is the sub-vector of ϕ with indices in A, and XOR(ϕAj) =
∏
l∈Aj ϕl is the parity

function.
We still need to specify the distribution of ϕ, which determines the structure of

the input distribution:

X := (1 − 2rpA)XU +
∑
j∈[r]

pA(Xj,+ + Xj,−). (B.397)

For all corresponding ϕA⊥ in X, we have ∀l ∈ A⊥, independently:

ϕl =

+1, w.p. po
−1, w.p. po
0, w.p. 1 − 2po

where po controls the signal noise ratio: if po is large, then there are many nonzero
entries in A⊥ which are noise interfering with the learning of the ground-truth
labeling function on A.

For corresponding ϕA, any j ∈ [r], we have

• In Xj,+, ϕAj = [+1,+1, . . . ,+1]⊤ and ϕA\Aj only have zero elements.

• In Xj,−, ϕAj = [−1,−1, . . . ,−1]⊤ and ϕA\Aj only have zero elements.

• In XU, we have ϕA draw from {+1,−1}rk uniformly.

341

We call this data distribution Dparity.

Assumption B.43 (Parity Functions. Recap of Assumption 3.19). Let 8 ⩽ τ ⩽ d be a
parameter that will control our final error guarantee. Assume k is an odd number and:

k ⩾ Ω(τ log d), d ⩾ rk+Ω(τr log d), po = O

(
rk

d− rk

)
, pA ⩾

1
d

. (B.398)

Remark B.44. The assumptions require k,d, and pA to be sufficiently large so as to provide
enough large signals for learning. When po = Θ(rk

d−rk
) means that the signal noise ratio

is constant: the expected norm of ϕA and that of ϕA⊥ are comparable.

To apply our framework, again we only need to compute the parameters in the
Gradient Feature set and the corresponding optimal approximation loss. To this
end, we first define the gradient features: For all j ∈ [r], let

Dj =

∑
l∈AjMl

∥
∑
l∈AjMl∥2

. (B.399)

Remark B.45. Our data distribution is symmetric, which means for any ϕ ∈ Rd:

• −y = g∗(−ϕA) and −x =M(−ϕ),

• P(ϕ) = P(−ϕ),

• E(x,y)[yx] = 0.

Below, we define a sufficient condition that randomly initialized weights will
fall in nice gradients set after the first gradient step update.

Definition B.46 (Parity Functions: Subset of Nice Gradients Set). Recall w(0)
i is the

weight for the i-th neuron at initialization. For all j ∈ [r], let SDj,Sure ⊆ [m] be those
neurons that satisfy

• ⟨w(0)
i ,Dj⟩ ⩾ CSure,1√

k
bi,

•
∣∣∣⟨w(0)

i ,Dj ′⟩
∣∣∣ ⩽ CSure,2√

k
bi, for all j ′ ̸= j, j ′ ∈ [r],

342

•
∥∥∥PAw(0)

i

∥∥∥
2
⩽ Θ(

√
rkσw),

•
∥∥∥PA⊥w(0)

i

∥∥∥
2
⩽ Θ(

√
d− rkσw),

where PA,PA⊥ are the projection operator on the spaceMA andMA⊥ .

Parity Functions: Feature Learning

We show the important Theorem B.47 first and defer other Lemmas after it.

Lemma B.47 (Parity Functions: Gradient Feature Set. Part statement of Theo-
rem 3.21). Let CSure,1 = 3

2 , CSure,2 = 1
2 , b̃ = Cb

√
τrk log dσw, where Cb is a large

enough universal constant. For Dparity setting, we have (Dj,+1), (Dj,−1) ∈ Sp,γ,BG for
all j ∈ [r], where

p = Θ

(
1√

τr log d · d(9C2
bτr/8)

)
, γ =

1
dτ−2 , BG =

√
kpA −O

(√
k

dτ

)
. (B.400)

Proof of Theorem B.47. Note that for all l ∈ [d], we haveM⊤
l x = ϕl. For all j ∈ [r], by

Theorem B.50, for all i ∈ SDj,Sure, when γ = 1
dτ−2 ,∣∣∣⟨G(w(0)

i ,bi),Dj⟩
∣∣∣− (1 − γ)∥G(w(0)

i ,bi)∥2 (B.401)

=

∣∣∣∣∣⟨G(w(0)
i ,bi),

∑
l∈AjMl
√
k

⟩

∣∣∣∣∣− (1 − γ)∥G(w(0)
i ,bi)∥2 (B.402)

⩾
√
kpA −O

(√
k

dτ

)
−

(
1 −

1
dτ−2

)√√√√kp2
A +

∑
l∈[d]

O

(
1
dτ

)2

(B.403)

⩾
√
kpA −O

(√
k

dτ

)
−

(
1 −

1
dτ−2

)(√
kpA +O

(
1

dτ−
1
2

))
(B.404)

⩾

√
kpA

dτ−2 −O

(√
k

dτ

)
−O

(
1

dτ−
1
2

)
(B.405)

>0. (B.406)

343

Thus, we haveG(w(0)
i ,bi) ∈ CDj,γ and

√
kpA−O

(√
k
dτ

)
⩽ ∥G(w(0)

i ,bi)∥2 ⩽
√
kpA+

O
(

1
dτ−

1
2

)
, bi
|bi|

= +1. Thus, by Theorem B.48, we have

Pr
w,b

[
G(w,b) ∈ CDj,γ and ∥G(w,b)∥2 ⩾ BG and b

|b|
= +1

]
(B.407)

⩾Pr
[
i ∈ SDj,Sure

]
(B.408)

⩾p. (B.409)

Thus, (Dj,+1) ∈ Sp,γ,BG . Since E(x,y)[yx] = 0, by Theorem B.71 and considering
i ∈ [2m] \ [m], we have (Dj,−1) ∈ Sp,γ,BG . We finish the proof.

Below are Lemmas used in the proof of Theorem B.47. In Theorem B.48, we
calculate p used in Sp,γ,BG .

Lemma B.48 (Parity Functions: Geometry at Initialization. Lemma B.2 in Allen-Zhu
and Li (2022)). Assume the same conditions as in Theorem B.47, recall for all i ∈ [m],
w(0)
i ∼ N(0,σ2

wId×d), over the random initialization, we have for all i ∈ [m], j ∈ [r],

Pr
[
i ∈ SDj,Sure

]
⩾ Θ

(
1√

τr log d · d(9C2
bτr/8)

)
. (B.410)

Proof of Theorem B.48. For every i ∈ [m], j, j ′ ∈ [r], j ̸= j ′, by Theorem B.75,

p1 = Pr
[
⟨w(0)

i ,Dj⟩ ⩾
CSure,1√

k
bi

]
= Θ

(
1√

τr log d · d(9C2
bτr/8)

)
(B.411)

p2 = Pr
[∣∣∣⟨w(0)

i ,Dj ′⟩
∣∣∣ ⩾ CSure,2√

k
bi

]
= Θ

(
1√

τr log d · d(C2
bτr/8)

)
. (B.412)

On the other hand, if X is a χ2(k) random variable, by Theorem B.74, we have

Pr(X ⩾ k+ 2
√
kx+ 2x) ⩽ e−x. (B.413)

344

Therefore, by assumption rk ⩾ Ω(τr log d),d− rk ⩾ Ω(τr log d) , we have

Pr
(

1
σ2

w

∥∥∥PAw(0)
i

∥∥∥2

2
⩾ rk+ 2

√
(9C2

bτr/8 + 2)rklog d+ 2
(
9C2
bτr/8 + 2

)
log d

)
(B.414)

⩽O

(
1

d2 · d(9C2
bτr/8)

)
, (B.415)

Pr
(

1
σ2

w

∥∥∥PAw(0)
i

∥∥∥2

2
⩾ (d− rk) + 2

√
(9C2

bτr/8 + 2)(d− rk)log d+ 2
(
9C2
bτr/8 + 2

)
log d

)
(B.416)

⩽O

(
1

d2 · d(9C2
bτr/8)

)
. (B.417)

Thus, by union bound, and D1, . . . ,Dr being orthogonal with each other, we have

Pr
[
i ∈ SDj,Sure

]
⩾p1(1 − p2)

r−1 −O

(
1

d2 · d(9C2
bτr/8)

)
(B.418)

=Θ

(
1√

τr log d · d(9C2
bτr/8)

·

(
1 −

r√
τr log d · d(C2

bτr/8)

))
(B.419)

−O

(
1

d2 · d(9C2
bτr/8)

)
(B.420)

=Θ

(
1√

τr log d · d(9C2
bτr/8)

)
. (B.421)

In Theorem B.49, we compute the activation pattern for the neurons in SDj,Sure.

Lemma B.49 (Parity Functions: Activation Pattern). Assume the same conditions as
in Theorem B.47, for all j ∈ [r], i ∈ SDj,Sure, we have

345

(1) When x ∼ X, we have

Pr
x∼X

[∣∣∣∣∣∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩

∣∣∣∣∣ ⩾ t
]
⩽ exp

(
−

t2

Θ (rkσ2
w)

)
. (B.422)

(2) When x ∼ XU, we have

Pr
x∼XU

[∣∣∣∣∣∑
l∈A

⟨w(0)
i ,Mlϕl⟩

∣∣∣∣∣ ⩾ t
]
⩽ exp

(
−

t2

Θ(rkσ2
w)

)
. (B.423)

(3) When x ∼ XU, the activation probability satisfies,

Pr
x∼XU

∑
l∈[d]

⟨w(0)
i ,Mlϕl⟩− bi ⩾ 0

 ⩽ O

(
1
dτ

)
. (B.424)

(4) When x ∼ Xj,+, the activation probability satisfies,

Pr
x∼Xj,+

∑
l∈[d]

⟨w(0)
i ,Mlϕl⟩− bi ⩾ 0

 ⩾ 1 −O

(
1
dτ

)
. (B.425)

(5) For all j ′ ̸= j, j ′ ∈ [r], s ∈ {+,−}, when x ∼ Xj ′,s, or x ∼ Xj,−, the activation
probability satisfies,

Pr

∑
l∈[d]

⟨w(0)
i ,Mlϕl⟩− bi ⩾ 0

 ⩽ O

(
1
dτ

)
. (B.426)

Proof of Theorem B.49. For the first statement, when x ∼ X, note that ⟨w(0)
i ,Ml⟩ϕl is a

mean-zero sub-Gaussian random variable with sub-Gaussion normΘ
(∣∣∣⟨w(0)

i ,Ml⟩
∣∣∣√po).

Pr
x∼X

[∣∣∣∣∣∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩

∣∣∣∣∣ ⩾ t
]
= Pr

x∼X

[∣∣∣∣∣∑
l∈A⊥

⟨w(0)
i ,Ml⟩ϕl

∣∣∣∣∣ ⩾ t
]

(B.427)

346

⩽ exp

−
t2∑

l∈A⊥ Θ
(
⟨w(0)

i ,Ml⟩2po
)
 (B.428)

⩽ exp
(
−

t2

Θ ((d− rk)σ2
wpo)

)
(B.429)

⩽ exp
(
−

t2

Θ(rkσ2
w)

)
, (B.430)

where the inequality follows general Hoeffding’s inequality.
For the second statement, when x ∼ XU, by Hoeffding’s inequality,

Pr
x∼XU

[∣∣∣∣∣∑
l∈A

⟨w(0)
i ,Mlϕl⟩

∣∣∣∣∣ ⩾ t
]
= Pr

x∼XU

[∣∣∣∣∣∑
l∈A

⟨w(0)
i ,Ml⟩ϕl

∣∣∣∣∣ ⩾ t
]

(B.431)

⩽2 exp
(
−

t2

2
∑
l∈A⟨w

(0)
i ,Ml⟩2

)
(B.432)

⩽ exp
(
−

t2

Θ(rkσ2
w)

)
. (B.433)

In the proof of the third to the last statement, we need b̃ = Cb
√
τrk log dσw,

where Cb is a large enough universal constant.
For the third statement, when x ∼ XU, by union bound and previous statements,

Pr
x∼XU

∑
l∈[d]

⟨w(0)
i ,Mlϕl⟩− bi ⩾ 0

 (B.434)

⩽ Pr
x∼XU

[∑
l∈A

⟨w(0)
i ,Mlϕl⟩ ⩾

bi

2

]
+ Pr

x∼XU

[∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩ ⩾

bi

2

]
(B.435)

⩽O

(
1
dτ

)
. (B.436)

347

For the forth statement, when x ∼ Xj,+, by CSure,1 ⩾ 3
2 and previous statements,

Pr
x∼Xj,+

∑
l∈[d]

⟨w(0)
i ,Mlϕl⟩− bi ⩾ 0

 (B.437)

= Pr
x∼Xj,+

∑
l∈Aj

⟨w(0)
i ,Mlϕl⟩+

∑
l∈A\Aj

⟨w(0)
i ,Mlϕl⟩+

∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩ ⩾ bi

(B.438)

⩾ Pr
x∼Xj,+

[∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩ ⩾ (1 − CSure,1)bi

]
(B.439)

⩾ Pr
x∼Xj,+

[∑
l∈A⊥

⟨w(0)
i ,Mlϕl⟩ ⩾ −

bi

2

]
(B.440)

⩾1 −O

(
1
dτ

)
. (B.441)

For the last statement, we prove similarly by 0 < CSure,2 ⩽ 1
2 .

Then, Theorem B.50 gives gradients of neurons in SDj,Sure. It shows that these
gradients are highly aligned with Dj.

Lemma B.50 (Parity Functions: Feature Emergence). Assume the same conditions as
in Theorem B.47, for all j ∈ [r], i ∈ SDj,Sure, we have the following holds:

(1) For all l ∈ Aj, we have

pA −O

(
1
dτ

)
⩽ E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
⩽ pA +O

(
1
dτ

)
. (B.442)

(2) For all l ∈ Aj ′ , any j ′ ̸= j, j ′ ∈ [r], we have

∣∣∣E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣ ⩽ O(1
dτ

)
. (B.443)

348

(3) For all l ∈ A⊥, we have∣∣∣E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣ ⩽ O(1
dτ

)
. (B.444)

Proof of Theorem B.50. For all l ∈ [d], we have

E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
(B.445)

=pA
∑
l∈[r]

(
Ex∼Xl,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

]
− Ex∼Xl,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

])
(B.446)

+ (1 − 2rpA)Ex∼XU

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
. (B.447)

For the first statement, for all l ∈ Aj, by Theorem B.49 (3) and (4), we have

E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
(B.448)

=pA

(
Ex∼Xj,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)]

+ Ex∼Xj,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)])

(B.449)

+ (1 − 2rpA)Ex∼XU

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
(B.450)

⩾pA

(
1 −O

(
1
dτ

))
−O

(
1
dτ

)
(B.451)

⩾pA −O

(
1
dτ

)
, (B.452)

and we also have

E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
(B.453)

=pA

(
Ex∼Xj,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)]

+ Ex∼Xj,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)])

(B.454)

+ (1 − 2rpA)Ex∼XU

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]
(B.455)

⩽pA +O

(
1
dτ

)
. (B.456)

349

Similarly, for the second statement, for all l ∈ Aj ′ , any j ′ ̸= j, j ′ ∈ [r], by
Theorem B.49 (3) and (5), we have∣∣∣E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣ (B.457)

⩽
∣∣∣pA (Ex∼Xj ′ ,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)]

+ Ex∼Xj ′ ,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)])∣∣∣+O(1

dτ

)
(B.458)

⩽O

(
1
dτ

)
. (B.459)

For the third statement, for all l ∈ A⊥, by Theorem B.49 (3), (4), (5), we have∣∣∣E(x,y)

[
yσ ′

(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣ (B.460)

⩽pA
∑
l∈[r]

∣∣∣Ex∼Xl,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

]
− Ex∼Xl,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣
(B.461)

+O

(
1
dτ

)
(B.462)

⩽pA
∣∣∣Ex∼Xj,+

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

]
− Ex∼Xj,−

[
σ ′
(
⟨w(0)

i , x⟩− bi
)
ϕl

]∣∣∣+O(1
dτ

)
(B.463)

⩽pA
∣∣∣Ex∼Xj,+

[(
1 − σ ′

(
⟨w(0)

i , x⟩− bi
))
ϕl

]
− Ex∼Xj,−

[(
1 − σ ′

(
⟨w(0)

i , x⟩− bi
))
ϕl

]∣∣∣
(B.464)

+ pA
∣∣Ex∼Xj,+ [ϕl] − Ex∼Xj,− [ϕl]

∣∣+O(1
dτ

)
(B.465)

=pA

∣∣∣Ex∼Xj,+

[(
1 − σ ′

(
⟨w(0)

i , x⟩− bi
))
ϕl

]
− Ex∼Xj,−

[(
1 − σ ′

(
⟨w(0)

i , x⟩− bi
))
ϕl

]∣∣∣
(B.466)

+O

(
1
dτ

)
(B.467)

⩽O

(
1
dτ

)
, (B.468)

350

where the second inequality follows 2rpA ⩽ 1 and the third inequality follows the
triangle inequality.

Parity Functions: Final Guarantee

Lemma B.51 (Parity Functions: Existence of Good Networks. Part statement of
Theorem 3.21). Assume the same conditions as in Theorem B.47. Define

g∗(x) =
r∑
j=1

k∑
i=0

(−1)i+1
√
k (B.469)

·
[
σ

(
⟨Dj, x⟩− 2i− k− 1√

k

)
− 2σ

(
⟨Dj, x⟩− 2i− k√

k

)
+ σ

(
⟨Dj, x⟩− 2i− k+ 1√

k

)]
.

(B.470)

For Dparity setting, we have g∗ ∈ Fd,3r(k+1),BF,Sp,γ,BG
, where BF = (Ba1,Ba2,Bb) =(

2
√
k, 2
√
rk(k+ 1), k+1√

k

)
, p = Θ

(
1√

τr logd·d(9C2
b
τr/8)

)
, γ = 1

dτ−2 , BG =
√
kpA −

O
(√

k
dτ

)
and Bx1 =

√
d,Bx2 = d. We also have OPTd,3r(k+1),BF,Sp,γ,BG

= 0.

Proof of Theorem B.51. We can check Bx1 =
√
d,Bx2 = d by direct calculation. By

Theorem B.47, we have g∗ ∈ Fd,3r(k+1),BF,Sp,γ,BG
. We note that

σ

(
⟨Dj, x⟩− 2i− k− 1√

k

)
− 2σ

(
⟨Dj, x⟩− 2i− k√

k

)
+ σ

(
⟨Dj, x⟩− 2i− k+ 1√

k

)
(B.471)

is a bump function for ⟨Dj, x⟩ at 2i−k√
k

. We can check that yg∗(x) ⩾ 1. Thus, we have

OPTd,3r(k+1),BF,Sp,γ,BG
⩽LDparity

(g∗) (B.472)

=E(x,y)∼Dparity
L(x,y)(g

∗) (B.473)

=0. (B.474)

351

Theorem B.52 (Parity Functions: Main Result. Full statement of Theorem 3.22).
For Dparity setting with Assumption B.43, for any δ ∈ (0, 1) and for any ϵ ∈ (0, 1) when

m = poly
(

1
δ

, 1
ϵ

,dΘ(τr),k, 1
pA

)
⩽ ed, T = poly (m) , n = poly (m) (B.475)

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization,
with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽
3r
√
k

d(τ−3)/2 + ϵ. (B.476)

Proof of Theorem B.52. Let b̃ = Cb
√
τrk log dσw, where Cb is a large enough uni-

versal constant. By Theorem B.51, we have g∗ ∈ Fd,3r(k+1),BF,Sp,γ,BG
, where BF =

(Ba1,Ba2,Bb) =
(

2
√
k, 2
√
rk(k+ 1), k+1√

k

)
, p = Θ

(
1√

τr logd·d(9C2
b
τr/8)

)
, γ = 1

dτ−2 ,

BG =
√
kpA−O

(√
k
dτ

)
andBx1 =

√
d,Bx2 = d. We also have OPTd,3r(k+1),BF,Sp,γ,BG

=

0.
Adjust σw such that b̃ = Cb

√
τrk log dσw = Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
. Injecting above

parameters into Theorem 3.12, we have with probability at least 1 − δ over the
initialization, with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽
2
√

2r
√
k

d(τ−3)/2 +O

(
rBa1Bx1Bx2

1
4

√
BGn

1
6

)
+ ϵ/2 ⩽

3r
√
k

d(τ−3)/2 + ϵ.

(B.477)

B.5.5 Uniform Parity Functions

We consider the sparse parity problem over the uniform data distribution studied
in Barak et al. (2022). We use the properties of the problem to prove the key lemma
(i.e., the existence of good networks) in our framework and then derive the final

352

guarantee from our theorem of the simple setting (Theorem 3.4).
Consider the same data distribution in Section B.5.4 and Theorem B.46 with the

following assumptions.

Assumption B.53 (Uniform Parity Functions). We follow the data distribution in
Section B.5.4. Let r = 1,pA = 0,po = 1

2 , M = Id×d and d ⩾ 2k2, and k is an even
number.

We denote this data distribution as Dparity−uniform setting.
To apply our framework, again we only need to compute the parameters in the

Gradient Feature set and the corresponding optimal approximation loss. To this
end, we first define the gradient features: let

D =

∑
l∈AMl

∥
∑
l∈AMl∥2

. (B.478)

We follow the initialization and training dynamic in Barak et al. (2022).
Initialization and Loss. We use hinge loss and we have unbiased initialization, for
all i ∈ [m],

a
(0)
i ∼ Unif({±1}), w(0)

i ∼ Unif({±1}d),bi = Unif({−1 + 1/k, . . . , 1 − 1/k}). (B.479)

Training Process. We use the following one-step training algorithm for this specific
data distribution.

Algorithm 6 Network Training via Gradient Descent Barak et al. (2022). Special
case of Algorithm 4

Initialize (a(0), W(0),b) as in Equation (3.9) and Equation (B.479); Sample Z ∼

Dnparity−uniform

W(1) = W(0) − η(1)(∇WL̃Z(fΞ(0)) + λ(1)W(0))

a(1) = a(0) − η(1)(∇aL̃Z(fΞ(0)) + λ(1)a(0))
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(gΞ(t−1))

end for

353

Use the notation in Section 5.3 of O’Donnell (2014), for every S ∈ [n], s.t. |S| = k,
we define

ξk := M̂aj(S) = (−1)k−1
2

(d−1
2
d−1

2

)(
d−1
k−1

) · 2−(d−1)
(
d− 1
d−1

2

)
. (B.480)

Lemma B.54 (Uniform Parity Functions: Existence of Good Networks. Rephrase of
Lemma 5 in Barak et al. (2022)). For every ϵ, δ ∈ (0, 1/2), denoting τ = |ξk−1|

16k
√

2d log(32k3d/ϵ)

, let η(1) = 1
k|ξk−1|

, λ(1) = 1
η(1) , m ⩾ k · 2k log(k/δ), n ⩾ 2

τ2 log(4dm/δ) and d ⩾

Ω
(
k4 log(kd/ϵ)

)
, w.p. at least 1 − 2δ over the initialization and the training samples,

there exists ã ∈ Rm with ∥ã∥∞ ⩽ 8k and ∥ã∥2 ⩽ 8k
√
k such that f(ã,W(1),b) satisfies

LDparity−uniform

(
f(ã,W(1),b)

)
⩽ ϵ. (B.481)

Additionally, it holds that ∥σ(W(1)⊤x − b)∥∞ ⩽ d+ 1.

Remark B.55. In Barak et al. (2022), they update the bias term in the first gradient step.
However, if we check the proof carefully, we can see that the fixed bias still goes through all
their analysis.

Uniform Parity Functions: Final Guarantee

Considering training by Algorithm 6, we have the following results.

Theorem B.56 (Uniform Parity Functions: Main Result). Fix ϵ ∈ (0, 1/2) and let
m ⩾ Ω

(
k · 2k log(k/ϵ)

)
, n ⩾ Ω

(
k7/6d

(
d
k−1

)
log(kd/ϵ) log(dm/ϵ) + k3md2

ϵ2

)
, d ⩾

Ω
(
k4 log(kd/ϵ)

)
. Let η(1) = 1

k|ξk−1|
, λ(1) = 1

η(1) , and η = η(t) = Θ
(1
d2m

)
, for all

t ∈ {2, 3, . . . , T }. If T ⩾ Ω
(
k3md2

ϵ

)
, then training by Algorithm 6 with hinge loss, w.h.p.

over the initialization and the training samples, there exists t ∈ [T] such that

Pr[sign(gΞ(t))(x) ̸= y] ⩽ LDparity−uniform
g(a(t),W(1),b) ⩽ ϵ. (B.482)

354

Proof of Theorem B.56. By Theorem B.54, w.h.p., we have for properly chosen hyper-
parameters,

OPTW(1),b,Ba2 ⩽ LDparity−uniform

(
f(ã,W(1),b)

)
⩽
ϵ

3 . (B.483)

We compute the L-smooth constant of L̃Z

(
f(a,W(1),b)

)
to a.∥∥∥∇aL̃Z

(
g(a1,W(1),b)

)
−∇aL̃Z

(
g(a2,W(1),b)

)∥∥∥
2

(B.484)

=

∥∥∥∥∥ 1
n

∑
x∈Z

[(
ℓ ′
(
yg(a1,W(1),b)(x)

)
− ℓ ′

(
yg(a2,W(1),b)(x)

))
σ(W(1)⊤x − b)

]∥∥∥∥∥
2

(B.485)

⩽

∥∥∥∥∥ 1
n

∑
x∈Z

[∣∣g(a1,W(1),b)(x) − g(a2,W(1),b)(x)
∣∣σ(W(1)⊤x − b)

]∥∥∥∥∥
2

(B.486)

⩽
1
n

∑
x∈Z

[
∥a1 − a2∥2

∥∥σ(W(1)⊤x − b)
∥∥2

2

]
. (B.487)

By the Theorem B.54, we have ∥σ(W(1)⊤x − b)∥∞ ⩽ d+ 1. Thus, we have,

L = O

(
1
n

∑
x∈Z

∥∥σ(W(1)⊤x − b)
∥∥2

2

)
(B.488)

⩽ O(d2m). (B.489)

This means that we can let η = Θ
(1
d2m

)
and we will get our convergence result. Note

that we have a(1) = 0 and ∥ã∥2 = O
(
k
√
k
)

. So, if we choose T ⩾ Ω
(
k3

ϵη

)
, there

exists t ∈ [T] such that L̃Z

(
g(a(t),W(1),b)

)
− L̃Z

(
g(ã,W(1),b)

)
⩽ O

(
L∥a(1)−ã∥2

2
T

)
⩽ ϵ/3.

We also have
√

∥ã∥2
2(∥W(1)∥2

FB
2
x+∥b∥2

2)

n
⩽ ϵ

3 . Then our theorem gets proved by
Theorem 3.4.

355

B.5.6 Uniform Parity Functions: Alternative Analysis

It is also possible to unify Barak et al. (2022) into our general Gradient Feature
Learning Framework by mildly modifying the framework.

In order to do that, we first need to use a different metric in the definition of
gradient features.

Modified General Feature Learning Framework for Uniform Parity Functions

Definition B.57 (Gradient Feature with Infinity Norm). For a unit vector D ∈ Rd

with ∥D∥2 = 1, and a γ∞ ∈ (0, 1), a direction neighborhood (cone) C∞
D,γ∞ is defined as:

C∞
D,γ∞ :=

{
w
∣∣∣ ∥∥∥ w

∥w∥ −D
∥∥∥∞ < γ∞

}
. Let w ∈ Rd, b ∈ R be random variables drawn

from some distribution W,B. A Gradient Feature set with parameters p,γ∞,BG,BG1 is
defined as:

S∞p,γ∞,BG,BG1
(W,B) :=

{
(D, s)

∣∣∣∣ Pr
w,b

[
G(w,b) ∈ C∞

D,γ∞ , BG1 ⩾ ∥G(w,b)∥2 ⩾ BG , s = b

|b|

]
⩾ p

}
.

(B.490)

When clear from context, write it as S∞p,γ∞,BG,BG1
.

Definition B.58 (Optimal Approximation via Gradient Features with Infinity Norm).
The Optimal Approximation network and loss using gradient feature induced networks
Fd,r,BF,S∞p,γ∞ ,BG ,BG1

are defined as:

g∗ := arg min
g∈Fd,r,BF ,S∞

p,γ∞ ,BG ,BG1

LD(f), (B.491)

OPTd,r,BF,S∞p,γ∞ ,BG ,BG1
:= min

g∈Fd,r,BF ,S∞
p,γ∞ ,BG ,BG1

LD(f). (B.492)

We consider the data distribution in Section B.5.4 with Assumption B.53, i.e.,
Dparity−uniform in Section B.5.5. Note that with this dataset, we have ∥x∥∞ ⩽

356

Bx∞ = 1. We use the following unbiased initialization:

for i ∈ {1, . . . ,m} : a
(0)
i ∼ N(0,σ2

a), w(0)
i ∼ {±1}d,bi = b̃ ⩽ 1,

for i ∈ {m+ 1, . . . , 2m} : a
(0)
i = −a

(0)
i−m, w(0)

i = −w(0)
i−m,bi = −bi−m,

for i ∈ {2m+ 1, . . . , 4m} : a
(0)
i = −a

(0)
i−2m, w(0)

i = w(0)
i−2m,bi = bi−2m (B.493)

Let ∇i denote the gradient of the i-th neuron ∇wiLD(gΞ(0)). Denote the subset of
neurons with nice gradients approximating feature (D, s) as:

G∞
(D,s),Nice :=

{
i ∈ [2m] : s =

bi

|bi|
,
∥∥∥∥ ∇i∥∇i∥ −D

∥∥∥∥∞ ⩽ γ∞,
∣∣∣a(0)
i

∣∣∣BG1 ⩾ ∥∇i∥2 ⩾
∣∣∣a(0)
i

∣∣∣BG}.

(B.494)

Lemma B.59 (Existence of Good Networks. Modified Version of Theorem 3.14
Under Uniform Parity Setting). Let λ(1) = 1

η(1) . For any Bϵ ∈ (0,Bb), let σa =

Θ
(

b̃
−ℓ ′(0)η(1)BGBϵ

)
and δ = 2re−

√
mp + 1

d2 . Then, with probability at least 1 − δ over

the initialization, there exists ãi’s such that g(ã,W(1),b)(x) =
∑4m
i=1 ãiσ

(
⟨w(1)

i , x⟩− bi
)

satisfies

LD(g(ã,W(1),b)) ⩽ rBa1

(
Bx1BG1Bb√
mpBGBϵ

+
√

2 log(d)dγ∞ + Bϵ

)
+ OPTd,r,BF,S∞p,γ∞ ,BG ,BG1

,

(B.495)

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Theorem B.59. Recallg∗(x) =
∑r
j=1 a

∗
jσ(⟨w∗

j , x⟩−b∗j), where f∗ ∈ Fd,r,BF,S∞p,γ∞ ,BG ,BG1

is defined in Theorem B.58 and let s∗j =
b∗
j

|b∗
j |

. By Theorem B.5, with probability at
least 1 − δ1, δ1 = 2re−cmp, for all j ∈ [r], we have |G∞

(w∗
j ,s∗j),Nice| ⩾

mp
4 . Then for all

i ∈ G∞
(w∗
j ,s∗j),Nice ⊆ [2m], we have −ℓ ′(0)η(1)G(w(0)

i ,bi)
b∗
j

b̃
only depend on w(0)

i and

357

bi, which is independent of a(0)
i . Given Theorem B.57, we have

−ℓ ′(0)η(1)∥G(w(0)
i ,bi)∥2

b∗j

b̃
∈
[
ℓ ′(0)η(1)Bx1

Bb

b̃
,−ℓ ′(0)η(1)Bx1

Bb

b̃

]
. (B.496)

We split [r] into Γ = {j ∈ [r] : |b∗j | < Bϵ}, Γ− = {j ∈ [r] : b∗j ⩽ −Bϵ} and Γ+ = {j ∈
[r] : b∗j ⩾ Bϵ}. Let ϵa = BG1Bb√

mpBGBϵ
. Then we know that for all j ∈ Γ+ ∪ Γ−, for all

i ∈ G∞
(w∗
j ,s∗j),Nice, we have

Pr
a
(0)
i ∼N(0,σ2

a)

[∣∣∣∣−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
− 1
∣∣∣∣ ⩽ ϵa] (B.497)

= Pr
a
(0)
i ∼N(0,σ2

a)

[
1 − ϵa ⩽ −a

(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
⩽ 1 + ϵa

]
(B.498)

= Pr
g∼N(0,1)

[
1 − ϵa ⩽ gΘ

(
∥G(w(0)

i ,bi)∥2|b
∗
j |

BGBϵ

)
⩽ 1 + ϵa

]
(B.499)

= Pr
g∼N(0,1)

[
(1 − ϵa)Θ

(
BGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)
⩽ g ⩽ (1 + ϵa)Θ

(
BGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)]
(B.500)

=Θ

(
ϵaBGBϵ

∥G(w(0)
i ,bi)∥2|b

∗
j |

)
(B.501)

⩾Ω

(
ϵaBGBϵ

BG1Bb

)
(B.502)

=Ω

(
1
√
mp

)
. (B.503)

Thus, with probabilityΩ
(

1√
mp

)
over a(0)

i , we have

∣∣∣∣−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃
− 1
∣∣∣∣ ⩽ ϵa,

∣∣∣a(0)
i

∣∣∣ = O(b̃

−ℓ ′(0)η(1)BGBϵ

)
.

(B.504)

Similarly, for j ∈ Γ , for all i ∈ G∞
(w∗
j ,s∗j),Nice, with probability Ω

(
1√
mp

)
over a(0)

i , we

358

have∣∣∣∣−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

Bϵ

b̃
− 1
∣∣∣∣ ⩽ ϵa,

∣∣∣a(0)
i

∣∣∣ = O(b̃

−ℓ ′(0)η(1)BGBϵ

)
.

(B.505)

For all j ∈ [r], let Λj ⊆ G∞
(w∗
j ,s∗j),Nice be the set of i’s such that condition Equa-

tion (B.504) or Equation (B.505) are satisfied. By Chernoff bound and union bound,
with probability at least 1− δ2, δ2 = re

−
√
mp, for all j ∈ [r] we have |Λj| ⩾ Ω(

√
mp).

We have for ∀j ∈ Γ+ ∪ Γ−,∀i ∈ Λj,∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣ (B.506)

⩽

∣∣∣∣∣⟨−a(0)
i ℓ

′(0)η(1)∥G(w(0)
i ,bi)∥2

|b∗j |

b̃

w(1)
i

∥w(1)
i ∥2

−
w(1)
i

∥w(1)
i ∥2

, x⟩+ ⟨ w(1)
i

∥w(1)
i ∥2

− w∗
j , x⟩

∣∣∣∣∣
(B.507)

⩽ϵa∥x∥2 +
√

2 log(d)dγ∞. (B.508)

With probability 1 − 1
d2 by Hoeffding’s inequality. Similarly, for ∀j ∈ Γ , ∀i ∈ Λj,∣∣∣∣Bϵb̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣ ⩽ ϵa∥x∥2 +

√
2 log(d)dγ∞. (B.509)

If i ∈ Λj, j ∈ Γ+ ∪ Γ−, set ãi = a∗
j

|b∗
j |

|Λj|b̃
, if i ∈ Λj, j ∈ Γ , set ãi = a∗

j
Bϵ

|Λj|b̃
, otherwise set

ãi = 0, we have ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Finally, we have

LD(g(ã,W(1),b)) (B.510)

=LD(g(ã,W(1),b)) − LD(g
∗) + LD(g

∗) (B.511)

⩽E(x,y)
[∣∣g(ã,W(1),b)(x) − g∗(x)

∣∣]+ LD(g
∗) (B.512)

359

⩽E(x,y)

[∣∣∣∣∣
m∑
i=1

ãiσ
(
⟨w(1)

i , x⟩− b̃
)
+

2m∑
i=m+1

ãiσ
(
⟨w(1)

i , x⟩+ b̃
)
−

r∑
j=1

a∗
jσ(⟨w∗

j , x⟩− b∗j)

∣∣∣∣∣
]

(B.513)

+ LD(g
∗) (B.514)

⩽E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ σ
(
⟨w(1)

i , x⟩− b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
 (B.515)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ σ
(
⟨w(1)

i , x⟩+ b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
 (B.516)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣Bϵb̃ σ
(
⟨w(1)

i , x⟩− b̃
)
− σ(⟨w∗

j , x⟩− b∗j)
∣∣∣∣
∣∣∣∣∣∣
+ LD(g

∗)

(B.517)

⩽E(x,y)

∣∣∣∣∣∣
∑
j∈Γ+

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
 (B.518)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ−

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣ |b∗j |b̃ ⟨w(1)
i , x⟩− ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
 (B.519)

+ E(x,y)

∣∣∣∣∣∣
∑
j∈Γ

∑
i∈Λj

a∗
j

1
|Λj|

∣∣∣∣Bϵb̃ ⟨w(1)
i , x⟩+ Bϵ − ⟨w∗

j , x⟩
∣∣∣∣
∣∣∣∣∣∣
+ LD(g

∗) (B.520)

⩽r∥a∗∥∞(ϵaE(x,y)∥x∥2 +
√

2 log(d)dγ∞) + |Γ |∥a∗∥∞Bϵ + LD(g
∗) (B.521)

⩽rBa1(ϵaBx1 +
√

2 log(d)dγ∞) + |Γ |Ba1Bϵ + OPTd,r,BF,S∞p,γ,BG ,BG1
. (B.522)

We finish the proof by union bound and δ ⩾ δ1 + δ2 +
1
d2 .

Lemma B.60 (Empirical Gradient Concentration Bound for Single coordinate). For
i ∈ [m], when n ⩾ (log(d))6, with probability at least 1−O

(
exp

(
−n

1
3

))
over training

360

samples, we have∣∣∣∣∣∂L̃Z(gΞ)

∂wi,j
−
∂LD(gΞ)

∂wi,j

∣∣∣∣∣ ⩽ O
(
|ai|Bx∞
n

1
3

)
, ∀j ∈ [d]. (B.523)

Proof of Theorem B.60. First, we define,

z
(l)
i,j =ℓ ′(y(l)gΞ(x(l)))y(l)

[
σ ′ (⟨wi, x(l)⟩− bi

)
x(l)
j

]
(B.524)

− E(x,y) [ℓ
′(ygΞ(x))y [σ ′ (⟨wi, x⟩− bi)] xj] . (B.525)

As |ℓ ′(z)| ⩽ 1, |y| ⩽ 1, |σ ′(z)| ⩽ 1, we have z(l)i,j is zero-mean random variable with∣∣∣z(l)i,j ∣∣∣ ⩽ 2Bx∞ as well as E
[∣∣∣z(l)i,j ∣∣∣22

]
⩽ 4B2

x∞. Then by Bernstein Inequality, for

0 < z < 2Bx∞, we have

Pr
(∣∣∣∣∣∂L̃Z(gΞ)

∂wi,j
−
∂LD(gΞ)

∂wi,j

∣∣∣∣∣ ⩾ |ai|z

)
= Pr

∣∣∣∣∣∣ 1
n

∑
l∈[n]

z
(l)
i,j

∣∣∣∣∣∣ ⩾ z
 (B.526)

⩽ exp
(
−n · z2

8Bx∞
)

. (B.527)

Thus, for some i ∈ [m], whenn ⩾ (log(d))6, with probability at least 1−O
(

expΘ
(
−n

1
3

))
,

from a union bound over j ∈ [d], we have∣∣∣∣∣∂L̃Z(gΞ)

∂wi,j
−
∂LD(gΞ)

∂wi,j

∣∣∣∣∣ ⩽ O
(
|ai|Bx∞
n

1
3

)
(B.528)

for ∀j ∈ [d].

Lemma B.61 (Existence of Good Networks under Empirical Risk. Modified version
of Theorem B.19 Under Uniform Parity Setting). Suppose

n > Ω

((
Bx√
Bx2

+ log 1
p
+

Bx∞
BG|ℓ ′(0)|

+
Bx∞

BG1|ℓ ′(0)|

)3

+ (log(d))6

)
.

361

Let λ(1) = 1
η(1) . For any Bϵ ∈ (0,Bb), let σa = Θ

(
b̃

−|ℓ ′(0)|η(1)BGBϵ

)
and δ = 2re−

√
mp

2 +
1
d2 . Then, with probability at least 1 − δ over the initialization and training samples, there
exists ãi’s such that g(ã,W(1),b)(x) =

∑4m
i=1 ãiσ

(
⟨w(1)

i , x⟩− bi
)

satisfies

LD(g(ã,W(1),b)) (B.529)

⩽rBa1

(
2Bx1BG1Bb√
mpBGBϵ

+
√

2 log(d)d
(
γ∞ +O

(
Bx∞

BG|ℓ ′(0)|n
1
3

))
+ Bϵ

)
(B.530)

+ OPTd,r,BF,S∞p,γ,BG ,BG1
, (B.531)

and ∥ã∥0 = O
(
r(mp)

1
2

)
, ∥ã∥2 = O

(
Ba2Bb

b̃(mp)
1
4

)
, ∥ã∥∞ = O

(
Ba1Bb

b̃(mp)
1
2

)
.

Proof of Theorem B.61. Denote ρ = O
(

expΘ
(
−n

1
3

))
and β = O

(
Bx∞
n

1
3

)
. Note that

by symmetric initialization, we have ℓ ′(ygΞ(0)(x)) = |ℓ ′(0)| for any x ∈ X, so that,
by Theorem B.60, we have

∣∣∣G̃(w(0)
i ,bi)j −G(w(0)

i ,bi)j
∣∣∣ ⩽ β

|ℓ ′(0)| with probability at
least 1 − ρ. Thus, by union bound, we can see that

S∞p,γ∞,BG,BG1
⊆ S̃∞

p−ρ,γ∞+ β
BG|ℓ ′(0)| ,BG−

β
|ℓ ′(0)| ,BG1+

β
|ℓ ′(0)|

.

Consequently, we have OPTd,r,BF,S̃∞
p−ρ,γ∞+

β
BG|ℓ ′(0)| ,BG−

β
|ℓ ′(0)| ,BG1+

β
|ℓ ′(0)|

⩽ OPTd,r,BF,S∞p,γ∞ ,BG ,BG1
.

Exactly follow the proof in Theorem B.6 by replacing S∞p,γ∞,BG,BG1
to

S̃∞
p−ρ,γ∞+ β

BG|ℓ ′(0)| ,BG−
β

|ℓ ′(0)| ,BG1+
β

|ℓ ′(0)|
.

Then, we finish the proof by ρ ⩽ p
2 , β

|ℓ ′(0)| ⩽ (1−1/
√

2)BG, β
|ℓ ′(0)| ⩽ (

√
2−1)BG1.

Theorem B.62 (Online Convex Optimization under Empirical Risk. Modified
version of Theorem B.23 Under Uniform Parity Setting). Consider training by Algo-
rithm 1, and any δ ∈ (0, 1). Assume d ⩾ logm, δ ⩽ O(1

d2). Set

σw > 0, b̃ > 0, η(t) = η, λ(t) = 0 for all t ∈ {2, 3, . . . , T }, (B.532)

362

η(1) = Θ

(
min{O(η),O(ηb̃)}

−ℓ ′(0)(Bx1σw
√
d+ b̃)

)
, λ(1) =

1
η(1) , σa = Θ

(
b̃(mp)

1
4

−ℓ ′(0)η(1)Bx1
√
BGBb

)
.

(B.533)

Let 0 < TηBx1 ⩽ o(1),m = Ω
(

1√
δ
+ 1
p

(
log
(
r
δ

))2
)

and

n > Ω

((
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

+
1
BG1

)
Bx∞
|ℓ ′(0)|

)3
)

.

With probability at least 1 − δ over the initialization and training samples, there exists
t ∈ [T] such that

LD (gΞ(t)) (B.534)

⩽OPTd,r,BF,Sp,γ,BG
(B.535)

+ rBa1

(
2
√

2
√
Bx1BG1

(mp)
1
4

√
Bb

BG
+
√

2 log(d)d
(
γ∞ +O

(
Bx∞

BG|ℓ ′(0)|n
1
3

)))
(B.536)

+ η
(√
rBa2BbTηB

2
x1 +mb̃

)
O

(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)

+O

(
B2
a2B

2
b

ηTb̃2(mp)
1
2

)
(B.537)

+
1
n

1
3
O

((
rBa1Bb

b̃
+m

(
b̃
√

logm(mp)
1
4

√
BbBG

+
b̃

Bx1

))
(B.538)

·

((
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)
Bx + b̃

)
+ 1
)

(B.539)

+
1
n

1
3
O

(
mη

(
b̃
√

logm(mp)
1
4

√
BbBG

+ Tη2Bx1b̃

)√
Bx2

)
. (B.540)

363

Furthermore, for any ϵ ∈ (0, 1), set

b̃ =Θ

(
B

1
4
GBa2B

3
4
b√

rBa1

)
, m = Ω

 1
pϵ4

(
rBa1

√
Bx1BG1

√
Bb

BG

)4

+
1√
δ
+

1
p

(
log
(r
δ

))2
 ,

(B.541)

η =Θ

 ϵ(
√
rBa2BbBx1

(mp)
1
4

+mb̃

)(√
logmBx1(mp)

1
4

√
BbBG

+ 1
)
 , T = Θ

(
1

ηBx1(mp)
1
4

)
,

(B.542)

n =Ω

(mBxB2
a2
√
Bb(mp)

1
2 logm

ϵrBa1
√
BG

)3

+

(
Bx√
Bx2

+ log Tm
pδ

+ (1 +
1
BG

+
1
BG1

)
Bx∞
|ℓ ′(0)|

)3
 ,

(B.543)

we have there exists t ∈ [T] with

Pr[sign(gΞ(t))(x) ̸= y] ⩽ LD (gΞ(t)) (B.544)

⩽OPTd,r,BF,S∞p,γ∞ ,BG ,BG1
+ rBa1

√
2 log(d)d

(
γ∞ +O

(
Bx∞

BG|ℓ ′(0)|n
1
3

))
+ ϵ. (B.545)

Proof of Theorem B.62. Proof of the theorem and parameter choices remain the same
as Theorem B.23 except for setting Bϵ =

√
Bx1BG1

(mp)
1
4

√
Bb
BG

and apply Theorem B.61.

Feature Learning of Uniform Parity Functions

Denote

gi,j = E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

xj
]

(B.546)

364

ξk = (−1)k−1
2

(
n−1

2
k−1

2

)
(
n− 1
k− 1

) · 2−(n−1)

(
n− 1
n−1

2

)
(B.547)

Lemma B.63 (Uniform Parity Functions: Gradient Feature Learning. Corollary of
Lemma 3 in Barak et al. (2022)). Assume that n ⩾ 2(k+ 1)2. Then, the following holds:

If j ∈ A, then

gi,j = ξk−1
∏

l∈A\{j}

(w(0)
i,l). (B.548)

If i /∈ A, then

gi,j = ξk−1
∏

l∈A∪{j}

(w(0)
i,l). (B.549)

Lemma B.64 (Uniform Parity Functions: Existence of Good Networks (Alterna-
tive)). Assume the same condition as in Theorem B.63. Define

D =

∑
l∈AMl

∥
∑
l∈AMl∥2

(B.550)

and

g∗(x) =
k∑
i=0

(−1)i
√
k (B.551)

·
[
σ

(
⟨D, x⟩− 2i− k− 1√

k

)
− 2σ

(
⟨D, x⟩− 2i− k√

k

)
+ σ

(
⟨D, x⟩− 2i− k+ 1√

k

)]
.

(B.552)

ForDparity−uniform setting, we haveg∗ ∈ Fd,3(k+1),BF,S∞p,γ∞ ,BG ,BG1
whereBF = (Ba1,Ba2,Bb) =(

2
√
k, 2
√

(k(k+ 1)), k+1√
k

)
, p = Θ

(1
2k−1

)
, γ∞ = O

(√
k

d−k

)
, BG = Θ(BG1) = Θ(d−k)

and Bx1 =
√
d, Bx2 = d. We also have OPTd,3(k+1),BF,S∞p,γ∞ ,BG ,BG1

= 0.

365

Proof of Theorem B.64. Fix index i, with probability p1 = Θ(2−k), we will have
w(0)
i,j = sign(a(0)

i) · sign(ξk−1), for ∀j. For w(0)
i that satisfy these conditions, we

will have:

sign(a(0)
i)gi,j = |ξk−1|, ∀j ∈ A (B.553)

sign(a(0)
i)gi,j = |ξk+1|, ∀j /∈ A. (B.554)

Then by Lemma 4 in Barak et al. (2022), we have

∥∥∥∥∥sign(a(0)
i)G(w(0)

i , b̃)
∥G(w(0)

i , b̃)∥
−D

∥∥∥∥∥∞ ⩽ max

∣∣∣∣∣∣ 1

k
√

1
k
+ 1
d−k

−
1√
k

∣∣∣∣∣∣ ,
∣∣∣∣∣∣ 1

(d− k)
√

1
k
+ 1
d−k

∣∣∣∣∣∣

(B.555)

⩽

√
k

d− k
(B.556)

and

∥sign(a(0)
i)G(w(0)

i , b̃)∥2 =
√
k|ξk−1|2 + (d− k)|ξk+1|2 = Θ(d

Θ(k)). (B.557)

From here, we can see that if we setγ∞ =
√
k

d−k
,BG = BG1 =

√
k|ξk−1|2 + (d− k)|ξk+1|2,

p = p1, we will have (D,+1), (D,−1) ∈ S∞p,γ∞,BG,BG1
by our symmetric initialization.

As a result, we have f∗ ∈ Fd,3(k+1),BF,S∞p,γ∞ ,BG ,BG1
. Finally, it is easy to verify that

f∗(x) = XOR(xA), thus OPTd,3(k+1),BF,S∞p,γ∞ ,BG ,BG1
= 0.

Theorem B.65 (Uniform Parity Functions: Main Result (Alternative)). ForDparity−uniform
setting, for any δ ∈ (0, 1) satisfying δ ⩽ O(1

d2) and for any ϵ ∈ (0, 1) when

m = poly
(

log
(

1
δ

)
, 1
ϵ

, 2Θ(k),d
)

, T = Θ
(
dΘ(k)

)
,n = Θ

(
dΘ(k)

)
(B.558)

trained by Algorithm 1 with hinge loss, with probability at least 1− δ over the initialization,

366

with proper hyper-parameters, there exists t ∈ [T] such that

Pr[sign(gΞ(t)(x)) ̸= y] ⩽
k2
√
d log(d)
d− k

+ ϵ. (B.559)

Proof of Theorem B.65. Plug the values of parameters into Theorem B.62 and directly
get the result.

B.5.7 Multiple Index Model with Low Degree Polynomial

Problem Setup

The multiple-index data problem has been used for studying network learning Bietti
et al. (2022); Damian et al. (2022). We consider proving guarantees for the setting
in Damian et al. (2022), following our framework. We use the properties of the
problem to prove the key lemma (i.e., the existence of good networks) in our
framework and then derive the final guarantee from our theorem of the simple
setting (Theorem 3.4).
Data Distributions. We draw input from the distribution DX = N(0, Id×d), and we
assume the target function is g∗(x) : Rd −→ R, where g∗ is a degree τ polynomial
normalized so that Ex∼DX

[g∗(x)2] = 1.

Assumption B.66. There exists linearly independent vectors u1, . . . ,ur such that g∗(x) =
g(⟨x,u1⟩, . . . , ⟨x,ur⟩). H := Ex∼DX

[∇2g∗(x)] has rank r, where H is a Hessian matrix.

Definition B.67. Denote the normalized condition number of H by

κ :=
∥H†∥√
r

. (B.560)

Initialization and Loss. For ∀i ∈ [m], we use the following initialization:

a
(0)
i ∼ {−1, 1}, w(0)

i ∼ N

(
0, 1
d
Id×d

)
and bi = 0. (B.561)

367

For this regression problem, we use mean square loss:

LDX
(gΞ) = Ex∼DX

[
(gΞ(x) − g∗(x))2] . (B.562)

Training Process. We use the following one-step training algorithm for this specific
data distribution.

Algorithm 7 Network Training via Gradient Descent Damian et al. (2022). Special
case of Algorithm 4

Initialize (a(0), W(0),b) as in Equation (3.9) and Equation (B.561); Sample Z ∼ DnX
ρ = 1

n

∑
x∈Z g

∗(x), β = 1
n

∑
x∈Z g

∗(x)x
y = g∗(x) − ρ− β · x
W(1) = W(0) − η(1)(∇WL̃Z(fΞ(0)) + λ(1)W(0))
Re-initialize bi ∼ N(0, 1)
for t = 2 to T do
a(t) = a(t−1) − η(t)∇aL̃Z(gΞ(t−1))

end for

Lemma B.68 (Multiple Index Model with Low Degree Polynomial: Existence
of Good Networks. Rephrase of Lemma 25 in Damian et al. (2022)). Assume
n ⩾ d2rκ2(Cl log(nmd))τ+1, d ⩾ Cdκr

3/2, and m ⩾ rτκ2τ(Cl log(nmd))6τ+1 for
sufficiently large constants Cd,Cl, and let η(1) =

√
d

(Cl log(nmd))3 and λ(1) = 1
η(1) . Then

with probability 1 − 1
poly(m,d) , there exists ã ∈ Rm such that f(ã,W(1),b) satisfies

LDX

(
f(ã,W(1),b)

)
⩽ O

(
1
n
+
rτκ2τ(Cl log(nmd))6τ+1)

m

)
(B.563)

and

∥ã∥2
2 ⩽ O

(
rτκ2τ(Cl log(nmd))6τ

m

)
. (B.564)

368

Multiple Index Model: Final Guarantee

Considering training by Algorithm 7, we have the following results.

Theorem B.69 (Multiple Index Model with Low Degree Polynomial: Main Result).
Assume n ⩾ Ω

(
d2rκ2(Cl log(nmd))τ+1 +m

)
, d ⩾ Cdκr3/2, and

m ⩾ Ω

(
1
ϵ
rτκ2τ(Cl log(nmd))6τ+1

)

for sufficiently large constants Cd,Cl. Let η(1) =
√

d
(Cl log(nmd))3 and λ(1) = 1

η(1) , and

η = η(t) = Θ(m−1), for all t ∈ {2, 3, . . . , T }. For any ϵ ∈ (0, 1), if T ⩾ Ω
(
m2

ϵ

)
, then

with properly set parameters and Algorithm 7, with high probability that there exists t ∈ [T]

such that

LDX
g(a(t),W(1),b) ⩽ ϵ. (B.565)

Proof of Theorem B.69. By Theorem B.68, we have for properly chosen hyper-parameters,

OPTW(1),b,Ba2 ⩽ LDX

(
f(ã,W(1),b)

)
⩽O

(
1
n
+
rτκ2τ(Cl log(nmd))6τ+1)

m

)
(B.566)

⩽
ϵ

3 . (B.567)

We compute the L-smooth constant of L̃Z

(
f(a,W(1),b)

)
to a.∥∥∥∇aL̃Z

(
g(a1,W(1),b)

)
−∇aL̃Z

(
g(a2,W(1),b)

)∥∥∥
2

(B.568)

=

∥∥∥∥∥ 1
n

∑
x∈Z

[
2
(
g(a1,W(1),b)(x) − g∗ − g(a2,W(1),b)(x) + g∗

)
σ(W(1)⊤x − b)

]∥∥∥∥∥
2

(B.569)

⩽

∥∥∥∥∥ 1
n

∑
x∈Z

[
2
(
a⊤

1 σ(W(1)⊤x − b) − a⊤
2 σ(W(1)⊤x − b)

)
σ(W(1)⊤x − b)

]∥∥∥∥∥
2

(B.570)

⩽
1
n

∑
x∈Z

[
2 ∥a1 − a2∥2

∥∥σ(W(1)⊤x − b)
∥∥2

2

]
. (B.571)

369

By the proof of Lemma 25 in Damian et al. (2022), we have for ∀i ∈ [4m], with
probability at least 1− 1

poly(m,d) , |⟨wi, x⟩| ⩽ 1, with some large polynomial poly(m,d).
As a result, we have

1
n

∑
x∈Z

∥∥W(1)⊤x
∥∥2

2 ⩽ m+
1

poly(m,d) ⩽ O(m). (B.572)

Thus, we have,

L = O

(
1
n

∑
x∈Z

∥∥σ(W(1)⊤x − b)
∥∥2

2

)
(B.573)

⩽ O

(
1
n

∑
x∈Z

∥∥W(1)⊤x − b
∥∥2

2

)
(B.574)

⩽ O

(
1
n

∑
x∈Z

∥∥W(1)⊤x
∥∥2

2 + ∥b∥
2
2

)
(B.575)

⩽ O(m). (B.576)

This means that we can let η = Θ
(
m−1) and we will get our convergence result. We

can bound ∥a(1)∥2 and ∥ã∥2 by ∥a(1)∥2 = O
(√
m
)

and ∥ã∥2 = O
(
rτκ2τ(Cl log(nmd))6τ

m

)
=

O(ϵ). So, if we choose T ⩾ Ω
(
m
ϵη

)
, there exists t ∈ [T] such that L̃Z

(
g(a(t),W(1),b)

)
−

L̃Z

(
g(ã,W(1),b)

)
⩽ O

(
L∥a(1)−ã∥2

2
T

)
⩽ ϵ/3.

We also have
√

∥ã∥2
2(∥W(1)∥2

FB
2
x+∥b∥2

2)

n
⩽ ϵ

3 . Then our theorem gets proved by
Theorem 3.4.

B.6 Auxiliary Lemmas
In this section, we present some Lemmas used frequently.

370

Lemma B.70 (Lemmas on Gradients).

∇WL(x,y)(gΞ) =

[
∂L(x,y)(gΞ)

∂w1
, . . . ,

∂L(x,y)(gΞ)

∂wi

, . . . ,
∂L(x,y)(gΞ)

∂w4m

]
, (B.577)

∂L(x,y)(gΞ)

∂wi

= aiℓ
′(ygΞ(x))y [σ ′ (⟨wi, x⟩− bi)] x, (B.578)

∇WLD(gΞ) =

[
∂LD(gΞ)

∂w1
, . . . , ∂LD(gΞ)

∂wi

, . . . , ∂LD(gΞ)

∂w4m

]
, (B.579)

∂LD(gΞ)

∂wi

= aiE(x,y) [ℓ
′(ygΞ(x))y [σ ′ (⟨wi, x⟩− bi)] x] , (B.580)

∂LD(gΞ)

∂ai
= E(x,y) [ℓ

′(ygΞ(x))y [σ (⟨wi, x⟩− bi)]] . (B.581)

Proof. These can be verified by direct calculation.

Lemma B.71 (Property of Symmetric Initialization). For any x ∈ Rd, we have
gΞ(0)(x) = 0 . For all i ∈ [2m], we have w(1)

i = −w(1)
i+2m. When input data is sym-

metric, i.e, E(x,y)[yx] = 0, for all i ∈ [m], we have w(1)
i = w(1)

i+m.

Proof of Theorem B.71. By symmetric initialization, we have gΞ(0)(x) = 0. For all
i ∈ [2m], we have

w(1)
i =− η(1)ℓ ′(0)a(0)

i E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

x
]

(B.582)

=η(1)ℓ ′(0)a(0)
i+2mE(x,y)

[
yσ ′

[
⟨w(0)

i+2m, x⟩− bi+2m

]
x
]

(B.583)

=− w(1)
i+2m. (B.584)

When E(x,y)[yx] = 0, for all i ∈ [m], we have

w(1)
i =− η(1)ℓ ′(0)a(0)

i E(x,y)

[
yσ ′

[
⟨w(0)

i , x⟩− bi
]

x
]

(B.585)

=η(1)ℓ ′(0)a(0)
i+mE(x,y)

[
yσ ′

[
⟨−w(0)

i+m, x⟩+ bi+m
]

x
]

(B.586)

=η(1)ℓ ′(0)a(0)
i+mE(x,y)

[
yσ ′

[
⟨−w(0)

i+m, x⟩+ bi+m
]

x − yx
]

(B.587)

=η(1)ℓ ′(0)a(0)
i+mE(x,y)

[
−yσ ′

[
⟨w(0)

i+m, x⟩− bi+m
]

x
]

(B.588)

371

=w(1)
i+m. (B.589)

Lemma B.72 (Property of Direction Neighborhood). If w ∈ CD,γ, we have ρw ∈ CD,γ

for any ρ ̸= 0. We also have 0 /∈ CD,γ. Also, if (D, s) ∈ Sp,γ,BG , we have (−D, s) ∈
Sp,γ,BG .

Proof. These can be verified by direct calculation.

Lemma B.73 (Maximum Gaussian Tail Bound). Mn is the maximum of n i.i.d. stan-
dard normal Gaussian. Then

Pr
(
Mn ⩾

√
2 logn+

z√
2 logn

)
⩽ e−z. (B.590)

Proof. These can be verified by direct calculation.

Lemma B.74 (Chi-squared Tail Bound). If X is a χ2(k) random variable. Then, ∀z ∈ R,
we have

Pr(X ⩾ k+ 2
√
kz+ 2z) ⩽ e−z. (B.591)

Proof. These can be verified by direct calculation.

Lemma B.75 (Gaussian Tail Bound). If g is standard Gaussian and z > 0, we have

1√
2π

z

z2 + 1e
−z2/2 < Pr

g∼N(0,1)
[g > z] <

1√
2π

1
z
e−z

2/2. (B.592)

Proof. These can be verified by direct calculation.

Lemma B.76 (Gaussian Tail Expectation Bound). If g is standard Gaussian and z ∈ R,
we have

|Eg∼N(0,1)[I[g > z]g]| < 2 Pr
g∼N(0,1)

[g > z]0.9. (B.593)

372

Proof of Theorem B.76. For any p ∈ (0, 1), we have∣∣∣∣∣
∫√

2erf−1(2p−1)

−∞
e−

x2
2 x√

2π
dx

∣∣∣∣∣ < 2p0.9, (B.594)

where
√

2erf−1(2p− 1) is the quantile function of the standard Gaussian. We finish
the proof by replacing p to be Prg∼N(0,1)[g > z].

Lemma B.77. If a function g satisfy h(n + 2) = 2h(n + 1) − (1 − ρ2)h(n) + β for
n ∈ N+ where ρ,β > 0, then h(n) = − β

ρ2 + c1(1 − ρ)n + c2(1 + ρ)n, where c1, c2 only
depends on h(1) and h(2).

Proof. These can be verified by direct calculation.

Lemma B.78 (Rademacher Complexity Bounds. Rephrase of Lemma 48 in Damian
et al. (2022)). For fixed W,b, let F = {g(a,W,b) : ∥a∥ ⩽ Ba2}. Then,

R(F) ⩽

√
B2
a2(∥W∥2

FB
2
x + ∥b∥2

2)

n
. (B.595)

373

c appendix for chapter 4

Roadmap. In Section C.1, we provide the potential limitations of this work. In
Section C.2, we discuss the societal impacts of our work. In Section C.3, we provide
more related works. In Section C.4, we introduce some definitions that will be used
in the proof. In Section C.5, we introduce some auxiliary lemma from previous
work that we need. In Section C.6, Section C.7, Section C.8, Section C.9, we provide
the proof of our Lemmas and our main results. In particular, we provide two
versions of proof (1) k = 3 and (2) general k ⩾ 3. We use k = 3 version to illustrate
our proof intuition and then extend our proof to the general k version. Finally, in
Section C.10, we provide more experimental results and implementation details.

C.1 Limitations
Our work has made progress in exploring how neural networks and Transformers
can solve complex mathematical problems such as modular addition operation, but
the practical application scope of their conclusions is limited.

On the other hand, we admit that our theorem can provide intuition but cannot
fully explain the phenomena shown in Figure 4.4. Thus, we would like to intro-
duce this more general data setting to the community so that we can study and
understand grokking in a more broad way. Studying the relationship between the
number of neurons and the grokking strength is interesting and important, and we
will leave it as our future work.

C.2 Societal Impact
Our work aims to understand the potential of large language models in mathe-
matical reasoning and modular arithmetic. Our paper is purely theoretical and
empirical in nature (mathematics problem) and thus we foresee no immediate
negative ethical impact.

374

We propose that neural networks and transformers prefer to learn Fourier
circuits when training on modular addition involving k inputs under SGD, which
may have a positive impact on the machine learning community. We hope our work
will inspire effective algorithm design and promote a better understanding of large
language models learning mechanisms.

C.3 More Related Work
Theoretical Work About Fourier Transform. To calculate Fourier transform there
are two main methodologies: one uses carefully chosen samples through hashing
functions (referenced in works like Indyk et al. (2014); Indyk and Kapralov (2014);
Kapralov (2016, 2017)) to achieve sublinear sample complexity and running time,
while the other uses random samples (as discussed in Bourgain (2014); Haviv and
Regev (2017); Nakos et al. (2019)) with sublinear sample complexity but nearly
linear running time. There are many other works studying Fourier transform (Song,
2019; Jin et al., 2023; Gao et al., 2022; Lee et al., 2019b; Chen et al., 2020b; Song et al.,
2022; Chen et al., 2016; Song et al., 2023a; Chen et al., 2023; Song et al., 2023b).

C.4 More Notations and Definitions
We use i to denote

√
−1. Let z = a+ ib denote a complex number where a and b

are real numbers. Then we have z = a− ib and |z| :=
√
a2 + b2.

For any positive integer n, we use [n] to denote set {1, 2, · · · ,n}. We use E[] to
denote expectation. We use Pr[] to denote probability. We use z⊤ to denote the
transpose of a vector z.

Considering a vector z, we denote the ℓ2 norm as ∥z∥2 := (
∑n
i=1 z

2
i)

1/2. We
denote the ℓ1 norm as ∥z∥1 :=

∑n
i=1 |zi|. The number of non-zero entries in vector z

is defined as ∥z∥0. ∥z∥∞ is defined as maxi∈[n] |zi|.
We define the vector norm and matrix norm as the following.

375

Definition C.1 (Lb (vector) norm). Given a vector v ∈ Rn and b ⩾ 1, we have
∥v∥b := (

∑n
i=1 |vi|

b)1/b.

Definition C.2 (La,b (matrix) norm). The La,b norm of a network with parameters
θ = {θi}

m
i=1 is ∥θ∥a,b := (

∑m
i=1 ∥θi∥ba)1/b, where θi denotes the vector of concatenated

parameters for a single neuron.

We define our regularized training objective function.

Definition C.3. Let l be the cross-entropy loss. Our regularized training objective function
is

Lλ(θ) :=
1

|Dp|

∑
(x,y)∈Dp

l(f(θ, x),y) + λ∥θ∥2,k+1.

Definition C.4. We define Θ∗ := arg maxθ∈Θ h(θ).

Finally, letΩ := Rp×(k+1) denote the domain of each θi, and letΩ ′ be a subset
of Ω. We say the parameter set θ = {θ1, . . . , θm} has directional support on Ω ′, if
for every i ∈ [m], either θi = 0 or there exists αi > 0 such that αiθi ∈ Ω ′.

C.5 Tools from Previous Work
Section C.5.1 states that we can use the single neuron level optimization to get the
maximum-margin network. Section C.5.2 introduces the maximum-margin for
multi-class.

C.5.1 Tools from Previous Work: Implying Single/Combined
Neurons

Lemma C.5 (Lemma 5 in page 8 in Morwani et al. (2024)). If the following conditions
hold

• Given Θ := {θ : ∥θ∥a,b ⩽ 1}.

376

• Given Θ′∗
q := arg maxθ∈Θ E(x,y)∼q[g

′(θ, x,y)].

• GivenΩ := {θi : ∥θi∥a ⩽ 1}.

• GivenΩ′∗
q := arg maxθi∈Ω E(x,y)∼q[ψ

′(θ, x,y)].

Then:

• Let θ ∈ Θ′∗
q . We have θ only has directional support onΩ′∗

q .

• Given θ∗1 , . . . , θ∗m ∈ Ω′∗
q , we have for any set of neuron scalars where

∑m
i=1 α

ν
i =

1,αi ⩾ 0, the weights θ = {αiθ
∗
i }
m
i=1 is in Θ′∗

q .

Given q∗, then we can get the θ∗ satisfying

θ∗ ∈ arg min
θ∈Θ

E
(x,y)∼q∗

[g′(θ, x,y)]. (C.1)

C.5.2 Tools from Previous Work: Maximum Margin for
Multi-Class

Lemma C.6 (Lemma 6 in page 8 in Morwani et al. (2024)). If the following conditions
hold

• Given Θ = {θ : ∥θ∥a,b ⩽ 1} and Θ′∗
q = arg maxθ∈Θ E(x,y)∼q[g

′(θ, x,y)].

• GivenΩ = {θi : ∥θi∥a ⩽ 1} andΩ′∗
q = arg maxθi∈Ω E(x,y)∼q[ψ

′(θ, x,y)].

• Suppose that ∃{θ∗,q∗} such that Equations equation 4.4 and equation C.1, and 4.8
holds.

Then, we can show:

• θ∗ ∈ arg maxθ∈Θ g(θ, x,y)

• ∀θ̂ ∈ arg maxθ∈Θmin(x,y)∈D g(θ, x,y) the below properties hold:

- θ̂ only has directional support onΩ′∗
q∗ .

- ∀(x,y) ∈ spt(q∗), f(θ̂, x,y) − maxy′∈Y\{y} f(θ̂, x,y′) = γ∗.

377

Condition C.7 (Condition C.1 in page 8 in Morwani et al. (2024)). We haveg′(θ∗, x,y) =
g(θ∗, x,y) for all (x,y) ∈ spt(q∗), where spt is the support. It means: {y ′ ∈ Y\{y} :

τ(x,y)[y ′] > 0} ⊆ arg max
y ′∈Y\{y}

f(θ∗, x)[y ′].

C.6 Class-weighted Max-margin Solution of Single
Neuron

Section C.6.1 introduces some definitions. Section C.6.2 shows how we transfer the
problem to discrete Fourier space. Section C.6.3 proposes the weighted margin of
the single neuron. Section C.6.4 shows how we transfer the problem to discrete
Fourier space for general k version. Section C.6.5 provides the solution set for
general k version and the maximum weighted margin for a single neuron.

C.6.1 Definitions

Definition C.8. When k = 3, let

ηu1,u2,u3,w(δ) := Ea1,a2,a3 [(u1(a1) + u2(a2) + u3(a3))
3w(a1 + a2 + a3 − δ)].

Definition C.9. Let η be defined in Definition C.8. When k = 3, provided the following
conditions are met

• We denote B as the ball that ∥u1∥2 + ∥u2∥2 + ∥u3∥2 + ∥w∥2 ⩽ 1.

We define

Ω′∗
q = arg max

u1,u2,u3,w∈B

(ηu1,u2,u3,w(0) − Eδ̸=0[ηu1,u2,u3,w(δ)]).

C.6.2 Transfer to Discrete Fourier Space

The goal of this section is to prove the following Lemma,

Lemma C.10. When k = 3, provided the following conditions are met

378

• We denote B as the ball that ∥u1∥2 + ∥u2∥2 + ∥u3∥2 + ∥w∥2 ⩽ 1.

• We defineΩ ′∗
q in Definition C.9.

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + a2 + a3, τ(a1,a2,a3)[c
′] :=

1/(p− 1).

We have the following

Ω′∗
q = arg max

u1,u2,u3,,w∈B

6
(p− 1)p3

∑
j̸=0

û1(j)û2(j)û3(j)ŵ(−j).

Proof. We have

ηu1,u2,u3,w(δ) = Ea1,a2,a3 [(u1(a1) + u2(a2) + u3(a3))
3w(a1 + a2 + a3 − δ)]

= Ea1,a2,a3 [(u1(a1)
3 + 3u1(a1)

2u2(a2) + 3u1(a1)
2u3(a3) + 3u1(a1)u2(a2)

2

+ 6u1(a1)u2(a2)u3(a3) + 3u1(a1)u3(a3)
2 + u2(a2)

3 + 3u2(a2)
2u3(a3)

+ 3u2(a2)u3(a3)
2 + u3(a3)

3)w(a1 + a2 + a3 − δ)].

Recall B is defined as Lemma Statement.
The goal is to solve the following mean margin maximization problem:

arg max
u1,u2,u3,w∈B

(ηu1,u2,u3,w(0) − Eδ̸=0[ηu1,u2,u3,w(δ)])

=
p

p− 1(ηu1,u2,u3,w(0) − Eδ[ηu1,u2,u3,w(δ)]), (C.2)

where the equation follows τ(a1,a2,a3)[c
′] := 1/(p − 1) ∀c ′ ̸= a1 + a2 + a3 and

1 − 1
p−1 = p

p−1 .
First, note that

Ea1,a2,a3 [u1(a1)
3w(a1 + a2 + a3 − δ)]

= Ea1 [u1(a1)
3Ea2,a3 [w(a1 + a2 + a3 − δ)]]

= 0,

379

where the first step follows from taking out the u1(a1) from the expectation for
a2,a3, and the last step is from the definition of w.

Similarly for the u2(a2)
3,u3(a3)

3 components of η, they equal to 0.
Note that

Ea1,a2,a3 [u1(a1)
2u2(a2)w(a1 + a2 + a3 − δ)]

= Ea1 [u1(a1)
2Ea2 [u2(a2)Ea3 [w(a1 + a2 + a3 − δ)]]]

= 0,

where the first step follows from simple algebra and the last step comes from the
definition of w.

Similarly for theu1(a1)
2u3(a3),u2(a2)

2u1(a1),u2(a2)
2u3(a3),u3(a3)

2u1(a1),u3(a3)
2u2(a2)

components of η, they equal to 0.
Hence, we can rewrite Eq. equation C.2 as

arg max
u1,u2,u3,w∈B

6p
p− 1(η̃u1,u2,u3,w(0) − Eδ[η̃u1,u2,u3,w(δ)]),

where

η̃u1,u2,u3,w(δ) := Ea1,a2,a3 [u1(a1)u2(a2)u3(a3)w(a1 + a2 + a3 − δ)].

Let ρ := e2πi/p, and let û1, û2, û3, ŵ be the DFT of u1,u2,u3, and w respectively:

η̃u1,u2,u3,w(δ)

= Ea1,a2,a3 [(
1
p

p−1∑
j1=0

û1(j1)ρ
j1a1)(

1
p

p−1∑
j2=0

û2(j2)ρ
j2a2)(

1
p

p−1∑
j3=0

û3(j3)ρ
j3a3)(

1
p

p−1∑
j4=0

ŵ(j4)ρ
j4(a1+a2+a3−δ))]

=
1
p4

∑
j1,j2,j3,j4

û1(j1)û2(j2)û3(j3)ŵ(j4)ρ
−j4δ(Ea1 [ρ

(j1+j4)a1])(Ea2 [ρ
(j2+j4)a2])(Ea3 [ρ

(j3+j4)a3])

380

=
1
p4

∑
j

û1(j)û2(j)û3(j)ŵ(−j)ρ
jδ

where the first step follows from ρ := e2πi/p and û1, û2, û3, ŵ are the discrete Fourier
transforms of u1,u2,u3,w, the second step comes from simple algebra, the last step
is from that only terms where j1 + j4 = j2 + j4 = j3 + j4 = 0 survive.

Hence, we need to maximize

6p
p− 1(η̃u1,u2,u3,w(0) − Eδ[η̃u1,u2,u3,w(δ)])

=
6p
p− 1(

1
p4

∑
j

û1(j)û2(j)û3(j)ŵ(−j) −
1
p4

∑
j

û1(j)û2(j)û3(j)ŵ(−j)(Eδρjδ))

=
6

(p− 1)p3

∑
j̸=0

û1(j)û2(j)û3(j)ŵ(−j).

=
6

(p− 1)p3

∑
j∈[−(p−1)/2,+(p−1)/2]\0

û1(j)û2(j)û3(j)ŵ(−j). (C.3)

where the first step is from η̃u1,u2,u3,w(δ)definition, the second step is fromEδρjδ = 0
when j ̸= 0, and the last step follows from simple algebra.

C.6.3 Get Solution Set

Lemma C.11. When k = 3, provided the following conditions are met

• We denote B as the ball that ∥u1∥2 + ∥u2∥2 + ∥u3∥2 + ∥w∥2 ⩽ 1.

• We defineΩ ′∗
q in Definition C.9.

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + a2 + a3, τ(a1,a2,a3)[c
′] :=

1/(p− 1).

381

• For any ζ ∈ {1, . . . , p−1
2 }, there exists a scaling constant β ∈ R and

u1(a1) = β · cos(θ∗u1
+ 2πζa1/p)

u2(a2) = β · cos(θ∗u2
+ 2πζa2/p)

u3(a3) = β · cos(θ∗u3
+ 2πζa3/p)

w(c) = β · cos(θ∗w + 2πζc/p)

where θ∗u1
, θ∗u2

, θ∗u3
, θ∗w ∈ R are some phase offsets satisfying θ∗u1

+ θ∗u2
+ θ∗u3

= θ∗w.

Then, we have the following

Ω′∗
q ={(u1,u2,u3,w)},

and

max
u1,u2,u3,w∈B

(ηu1,u2,u3,w(0) − Eδ̸=0[ηu1,u2,u3,w(δ)]) =
3
16 ·

1
p(p− 1) .

Proof. By Lemma C.10, we only need to maximize Equation equation C.3.
Thus, the mass of û1, û2, û3, and ŵmust be concentrated on the same frequencies.

For all j ∈ Zp, we have

û1(−j) = û1(j), û2(−j) = û2(j), û3(−j) = û3(j), ŵ(−j) = ŵ(j) (C.4)

as u1,u2,u3,w are real-valued.
For all j ∈ Zp and for u1,u2,u3,w, we denote θu1 , θu2 , θu3 , θw ∈ [0, 2π)p as their

phase, e.g.:

û1(j) = |û1(j)| exp(iθu1(j)).

Consider the odd p, Equation equation C.3 becomes:

equation C.3

382

=
6

(p− 1)p3

∑
j∈[−(p−1)/2,+(p−1)/2]\0

û1(j)û2(j)û3(j)ŵ(−j)

=
6

(p− 1)p3

(p−1)/2∑
j=1

(û1(j)û2(j)û3(j)ŵ(j) + û1(j)û2(j)û3(j)ŵ(j))

=
6

(p− 1)p3

(p−1)/2∑
j=1

|û1(j)||û2(j)||û3(j)||ŵ(j)|·(
exp(i(θu1(j) + θu2(j) + θu3(j) − θw(j)) + exp(i(−θu1(j) − θu2(j) − θu3(j) + θw(j))

)
=

12
(p− 1)p3

(p−1)/2∑
j=1

|û1(j)||û2(j)||û3(j)||ŵ(j)| cos(θu1(j) + θu2(j) + θu3(j) − θw(j)).

where the first step comes from definition equation C.3, the second step follows
from Eq. equation C.4, the third step comes from û1(−j) = û1(j) and û1(j) =

|û1(j)| exp(iθu1(j)), the last step follow from Euler’s formula.
Thus, we need to optimize:

max
u1,u2,u3,w∈B

12
(p− 1)p3

(p−1)/2∑
j=1

|û1(j)||û2(j)||û3(j)||ŵ(j)| cos(θu1(j) + θu2(j) + θu3(j) − θw(j)).

(C.5)

The norm constraint ∥u1∥2 + ∥u2∥2 + ∥u3∥2 + ∥w∥2 ⩽ 1 is equivalent to

∥û1∥2 + ∥û2∥2 + ∥û3∥2 + ∥ŵ∥2 ⩽ p

by using Plancherel’s theorem. Thus, we need to select them in such a way that

θu1(j) + θu2(j) + θu3(j) = θw(j),

ensuring that, for each j, the expression cos(θu1(j) + θu2(j) + θu3(j) − θw(j)) = 1 is
maximized, except in cases where the scalar of the j-th term is 0.

383

This further simplifies the problem to:

max
|û1|,|û2|,|û3|,|ŵ|:∥û1∥2+∥û2∥2+∥û3∥2+∥ŵ∥2⩽p

12
(p− 1)p3

(p−1)/2∑
j=1

|û1(j)||û2(j)||û3(j)||ŵ(j)|.

(C.6)

Then, we have

|û1(j)||û2(j)||û3(j)||ŵ(j)| ⩽ (
1
4 · (|û1(j)|

2 + |û2(j)|
2 + |û3(j)|

2 + |ŵ(j)|2))2. (C.7)

where the first step is from inequality of quadratic and geometric means.
We define z : {1, . . . , p−1

2 }→ R as

z(j) := |û1(j)|
2 + |û2(j)|

2 + |û3(j)|
2 + |ŵ(j)|2.

We need to have û1(0) = û2(0) = û3(0) = ŵ(0) = 0. Then, the upper-bound of
Eq. equation C.6 is given by

12
(p− 1)p3 · max

∥z∥1⩽
p
2

(p−1)/2∑
j=1

(
z(j)

4)2

=
3

4(p− 1)p3 · max
∥z∥1⩽

p
2

(p−1)/2∑
j=1

z(j)2

=
3

4(p− 1)p3 · max
∥z∥1⩽

p
2

∥z∥2
2

⩽
3

4(p− 1)p3 ·
p2

4

=
3

16 ·
1

p(p− 1) ,

where the first step follows from simple algebra, the second step comes from the
definition of L2 norm, the third step follows from ∥z∥2 ⩽ ∥z∥1 ⩽ p

2 , the last step
comes from simple algebra.

384

For the inequality of quadratic and geometric means, Eq. equation C.7 becomes
equality when |û1(j)| = |û2(j)| = |û3(j)| = |ŵ(j)|. To achieve ∥z∥2 =

p
2 , all the mass

must be placed on a single frequency. Hence, for some frequency ζ ∈ {1, . . . , p−1
2 },

to achieve the upper bound, we have:

|û1(j)| = |û2(j)| = |û3(j)| = |ŵ(j)| =
{ √p/8 if j = ±ζ

0 otherwise
, (C.8)

In this case, Eq. equation C.6 matches the upper bound.

12
(p− 1)p3 · (

p

8)
2 =

3
16 ·

1
p(p− 1) ,

where the first step is by simple algebra. Hence, the maximum-margin is 3
16 ·

1
p(p−1) .

Let θ∗u1
:= θu1(ζ). Combining all the results, up to scaling, it is established that

all neurons which maximize the expected class-weighted margin conform to the
form:

u1(a1) =
1
p

p−1∑
j=0

û1(j)ρ
ja1

=
1
p
· (û1(ζ)ρ

ζa1 + û1(−ζ)ρ
−ζa1)

=
1
p
· (
√
p

8 exp(iθ∗u1
)ρζa1 +

√
p

8 exp(−iθ∗u1
)ρ−ζa1)

=

√
1

2p cos(θ∗u1
+ 2πζa1/p),

where the first step comes from the definition of u1(a), the second step and third
step follow from Eq. equation C.8, the last step follows from Euler’s formula.

385

Similarly,

u2(a2) =

√
1

2p cos(θ∗u2
+ 2πζa2/p)

u3(a3) =

√
1

2p cos(θ∗u3
+ 2πζa3/p)

w(c) =

√
1

2p cos(θ∗w + 2πζc/p),

for some phase offsets θ∗u1
, θ∗u2

, θ∗u3
, θ∗w ∈ R satisfying θ∗u1

+ θ∗u2
+ θ∗u3

= θ∗w and
some ζ ∈ Zp\{0}, where u1,u2,u3, and w shares the same ζ.

C.6.4 Transfer to Discrete Fourier Space for General k Version

Definition C.12. Let

ηu1,...,uk,w(δ) := Ea1,...,ak [(u1(a1) + · · ·+ uk(ak))kw(a1 + · · ·+ ak − δ)].

Definition C.13. Let η be defined in Definition C.12. Provided the following conditions
are met

• We denote B as the ball that ∥u1∥2 + · · ·+ ∥uk∥2 + ∥w∥2 ⩽ 1.

We define

Ω′∗
q = arg max

u1,...,uk,w∈B

(ηu1,...,uk,w(0) − Eδ̸=0[ηu1,...,uk,w(δ)]).

The goal of this section is to prove the following Lemma,

Lemma C.14. Provided the following conditions are met

• Let B denote the ball that ∥u1∥2 + · · ·+ ∥uk∥2 + ∥w∥2 ⩽ 1.

386

• We defineΩ ′∗
q in Definition C.13.

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + · · ·+ ak, τ(a1, . . . ,ak)[c ′] :=
1/(p− 1).

We have the following

Ω′∗
q = arg max

u1,...,uk,w∈B

k!
(p− 1)pk

∑
j̸=0

ŵ(−j)

k∏
i=1

ûi(j).

Proof. We have

ηu1,...,uk,w(δ) = Ea1,...,ak[(u1(a1) + · · ·+ uk(ak))kw(a1 + · · ·+ ak − δ)].

The goal is to solve the following mean margin maximization problem:

arg max
u1,...,uk,w∈B

(ηu1,...,uk,w(0) − Eδ̸=0[ηu1,...,uk,w(δ)])

=
p

p− 1(ηu1,...,uk,w(0) − Eδ[ηu1,...,uk,w(δ)]), (C.9)

where the equation follows τ(a1, . . . ,ak)[c ′] := 1/(p− 1) ∀c ′ ̸= a1 + · · ·+ ak and
1 − 1

p−1 = p
p−1 .

We note that all terms are zero rather than w(·) ·
∏k
i=1 ui(ai).

Hence, we can rewrite Eq. equation C.9 as

arg max
u1,...,uk,w∈B

k!p
p− 1(η̃u1,...,uk,w(0) − Eδ[η̃u1,...,uk,w(δ)]),

where

η̃u1,...,uk,w(δ) := Ea1,...,ak [w(a1 + · · ·+ ak − δ)
k∏
i=1

ui(ai)].

387

Let ρ := e2πi/p, and û1, . . . , ûk, ŵ denote the discrete Fourier transforms of
u1, . . . ,uk, and w respectively. We have

η̃u1,...,uk,w(δ) =
1

pk+1

p−1∑
j=0

ŵ(−j)ρjδ
k∏
i=1

ûi(j)

which comes from ρ := e2πi/p and û1, . . . , ûk, ŵ are the discrete Fourier transforms
of u1, . . . ,uk,w.

Hence, we need to maximize

k!p
p− 1(η̃u1,...,uk,w(0) − Eδ[η̃u1,...,uk,w(δ)])

=
k!p
p− 1 ·

(
1

pk+1

p−1∑
j=0

ŵ(−j)

k∏
i=1

ûi(j) −
1

pk+1

p−1∑
j=0

ŵ(−j)(Eδ[ρjδ])
k∏
i=1

ûi(j)

)

=
k!

(p− 1)pk
∑
j̸=0

ŵ(−j)

k∏
i=1

ûi(j).

=
k!

(p− 1)pk
∑

j∈[−(p−1)/2,+(p−1)/2]\0

ŵ(−j)

k∏
i=1

ûi(j). (C.10)

where the first step follows from the definition of η̃u1,...,uk,w(δ), the second step
follows from Eδ[ρjδ] = 0 when j ̸= 0, the last step is from simple algebra.

C.6.5 Get Solution Set for General k Version

Lemma C.15 (Formal version of Lemma 4.10). Provided the following conditions are
met

• We denote B as the ball that ∥u1∥2 + · · ·+ ∥uk∥2 + ∥w∥2 ⩽ 1.

• LetΩ ′∗
q be defined as Definition C.13.

388

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + · · ·+ ak, τ(a1, . . . ,ak)[c ′] :=
1/(p− 1).

• For any ζ ∈ {1, . . . , p−1
2 }, there exists a scaling constant β ∈ R and

u1(a1) = β · cos(θ∗u1
+ 2πζa1/p)

u2(a2) = β · cos(θ∗u2
+ 2πζa2/p)

. . .

uk(ak) = β · cos(θ∗uk + 2πζak/p)

w(c) = β · cos(θ∗w + 2πζc/p)

where θ∗u1
, . . . , θ∗uk , θ∗w ∈ R are some phase offsets satisfying θ∗u1

+ · · ·+ θ∗uk = θ
∗
w.

Then, we have the following

Ω′∗
q ={(u1, . . . ,uk,w)},

and

max
u1,...,uk,w∈B

(ηu1,...,uk,w(0) − Eδ̸=0[ηu1,...,uk,w(δ)]) =
2(k!)

(2k+ 2)(k+1)/2(p− 1)p(k−1)/2 .

Proof. By Lemma C.14, we only need to maximize Equation equation C.10. Thus,
the mass of û1, . . . , ûk, and ŵmust be concentrated on the same frequencies. For
all j ∈ Zp, we have

ûi(−j) = ûi(j), ŵ(−j) = ŵ(j) (C.11)

as u1, . . . ,uk,w are real-valued. For all j ∈ Zp and for u1,u2,u3,w, we denote
θu1 , . . . , θuk , θw ∈ [0, 2π)p as their phase, e.g.:

û1(j) = |û1(j)| exp(iθu1(j)). (C.12)

Considering odd p, Equation equation C.10 becomes:

389

equation C.10 =
k!

(p− 1)pk
∑

j∈[−(p−1)/2,+(p−1)/2]\0

ŵ(−j)

k∏
i=1

ûi(j)

=
k!

(p− 1)pk
(p−1)/2∑
j=1

(

k∏
i=1

ûi(j)ŵ(j) + ŵ(j)

k∏
i=1

ûi(j))

=
2(k!)

(p− 1)pk
(p−1)/2∑
j=1

|ŵ(j)| cos(
k∑
i=1

θui(j) − θw(j))

k∏
i=1

|ûi(j)|.

where the first step follows from definition equation C.10, the second step comes
from Eq. equation C.11, the last step follows from Eq. equation C.12, i.e., Euler’s
formula.

Thus, we need to optimize:

max
u1,...,uk,w∈B

2(k!)
(p− 1)pk

(p−1)/2∑
j=1

|ŵ(j)| cos(
k∑
i=1

θui(j) − θw(j))

k∏
i=1

|ûi(j)|. (C.13)

We can transfer the norm constraint to

∥û1∥2 + · · ·+ ∥ûk∥2 + ∥ŵ∥2 ⩽ p

by using Plancherel’s theorem.
Therefore, we need to select them in a such way that θu1(j)+ · · ·+θuk(j) = θw(j),

ensuring that, for each j, the expression cos(θu1(j) + · · · + θuk(j) − θw(j)) = 1 is
maximized, except in cases where the scalar of the j-th term is 0.

This further simplifies the problem to:

max
∥û1∥2+···+∥ûk∥2+∥ŵ∥2⩽p

2(k!)
(p− 1)pk

(p−1)/2∑
j=1

|ŵ(j)|

k∏
i=1

|ûi(j)|. (C.14)

390

Then, we have

|ŵ(j)|

k∏
i=1

|ûi(j)| ⩽ (
1

k+ 1 · (|û1(j)|
2 + · · ·+ |ûk(j)|

2 + |ŵ(j)|2))(k+1)/2. (C.15)

where the first step follows from inequality of quadratic and geometric means.
We define z : {1, . . . , p−1

2 }→ R, where

z(j) := |û1(j)|
2 + · · ·+ |ûk(j)|

2 + |ŵ(j)|2.

We need to have û1(0) = · · · = ûk(0) = ŵ(0) = 0. Then, the upper-bound of
Equation equation C.14 is given by

2(k!)
(p− 1)pk · max

∥z∥1⩽
p
2

(p−1)/2∑
j=1

(
z(j)

k+ 1)
(k+1)/2

=
2(k!)

(k+ 1)(k+1)/2(p− 1)pk · max
∥z∥1⩽

p
2

(p−1)/2∑
j=1

z(j)(k+1)/2

⩽
2(k!)

(k+ 1)(k+1)/2(p− 1)pk · (p/2)(k+1)/2

=
2(k!)

(2k+ 2)(k+1)/2(p− 1)p(k−1)/2 ,

where the first step follows from simple algebra, the second step comes from the
definition of L2 norm, the third step follows from ∥z∥2 ⩽ ∥z∥1 ⩽ p

2 , the last step
follows from simple algebra.

For the inequality of quadratic and geometric means, Eq. equation C.15 becomes
equality when |û1(j)| = · · · = |ûk(j)| = |ŵ(j)|. To achieve ∥z∥2 = p

2 , all the mass
must be placed on a single frequency. Hence, for some frequency ζ ∈ {1, . . . , p−1

2 },
to achieve the upper bound, we have:

391

|û1(j)| = · · · = |ûk(j)| = |ŵ(j)| =
{ √ p

2(k+1) , if j = ±ζ;

0, otherwise.
(C.16)

In this case, Equation equation C.14 matches the upper bound. Hence, this is the
maximum-margin.

Let θ∗u1
:= θu1(ζ). Combining all the results, up to scaling, it is established that

all neurons which maximize the expected class-weighted margin conform to the
form:

u1(a1) =
1
p

p−1∑
j=0

û1(j)ρ
ja1

=
1
p
· (û1(ζ)ρ

ζa1 + û1(−ζ)ρ
−ζa1)

=
1
p
· (
√

p

2(k+ 1) exp(iθ∗u1
)ρζa1 +

√
p

2(k+ 1) exp(−iθ∗u1
)ρ−ζa1)

=

√
2

(k+ 1)p cos(θ∗u1
+ 2πζa1/p),

where the first step comes from the definition of u1(a), the second step and third
step follow from Eq. equation C.16, the last step follows from Eq. equation C.12 i.e.,
Euler’s formula.

We have similar results for other neurons where θ∗u1
, . . . , θ∗uk , θ∗w ∈ R satisfying

θ∗u1
+ · · ·+θ∗uk = θ

∗
w and some ζ ∈ Zp\{0}, where u1, . . . ,uk, andw shares the same

ζ.

C.7 Construct Max Margin Solution
Section C.7.1 proposed the sum-to-product identities for k inputs. Section C.7.2
shows how we construct θ∗ when k = 3. Section C.7.3 gives the constructions for

392

θ∗ for general k version.

C.7.1 Sum-to-product Identities

Lemma C.16 (Sum-to-product Identities). If the following conditions hold

• Let a1, . . . ,ak denote any k real numbers

We have

• Part 1.

22 · 2! · a1a2 = (a1 + a2)
2 − (a1 − a2)

2 − (−a1 + a2)
2 + (−a1 − a2)

2

• Part 2.

23 · 3! · a1a2a3

= (a1 + a2 + a3)
3 − (a1 + a2 − a3)

3 − (a1 − a2 + a3)
3 − (−a1 + a2 + a3)

3

+ (a1 − a2 − a3)
3 + (−a1 + a2 − a3)

3 + (−a1 − a2 + a3)
3 − (−a1 − a2 − a3)

3

• Part 3.

2k · k! ·
k∏
i=1

ai =
∑

c∈{−1,+1}k
(−1)(k−

∑k
i=1 ci)/2(

k∑
j=1

cjaj)
k.

Proof. Proof of Part 1.
We define A1,A2,A3,A4 as follows

A1 := (a1 + a2)
2,A2 := (a1 − a2)

2,A3 := (−a1 + a2)
2,A4 := (−a1 − a2)

2,

For the first term, we have

A1 = a
2
1 + a

2
2 + 2a1a2.

393

For the second term, we have

A2 = a
2
1 + a

2
2 − 2a1a2.

For the third term, we have

A3 = a
2
1 + a

2
2 − 2a1a2.

For the fourth term, we have

A4 = a
2
1 + a

2
2 + 2a1a2.

Putting things together, we have

(a1 + a2)
2 − (a1 − a2)

2 − (−a1 + a2)
2 + (−a1 − a2)

2 = A1 −A2 −A3 +A4

= 8a1a2

= 23a1a2

Proof of Part 2.
We define B1,B2,B3,B4,B5,B6,B7,B8 as follows

B1 := (a1 + a2 + a3)
3,

B2 := (a1 + a2 − a3)
3,

B3 := (a1 − a2 + a3)
3,

B4 := (−a1 + a2 + a3)
3,

B5 := (a1 − a2 − a3)
3,

B6 := (−a1 + a2 − a3)
3,

B7 := (−a1 − a2 + a3)
3,

B8 := (−a1 − a2 − a3)
3,

394

For the first term, we have

B1 = a
3
1 + a

3
2 + a

3
3 + 3a2a

2
3 + 3a2a

2
1 + 3a1a

2
3 + 3a1a

2
2 + 3a3a

2
1 + 3a3a

2
2 + 6a1a2a3.

For the second term, we have

B2 = a
3
1 + a

3
2 − a

3
3 + 3a2a

2
3 + 3a2a

2
1 + 3a1a

2
3 + 3a1a

2
2 − 3a3a

2
1 − 3a3a

2
2 − 6a1a2a3.

For the third term, we have

B3 = a
3
1 − a

3
2 + a

3
3 − 3a2a

2
3 − 3a2a

2
1 + 3a1a

2
3 + 3a1a

2
2 + 3a3a

2
1 + 3a3a

2
2 − 6a1a2a3.

For the fourth term, we have

B4 = − a3
1 + a

3
2 + a

3
3 + 3a2a

2
3 + 3a2a

2
1 − 3a1a

2
3 − 3a1a

2
2 + 3a3a

2
1 + 3a3a

2
2 − 6a1a2a3.

For the fifth term, we have

B5 = a
3
1 − a

3
2 − a

3
3 − 3a2a

2
3 − 3a2a

2
1 + 3a1a

2
3 + 3a1a

2
2 − 3a3a

2
1 − 3a3a

2
2 + 6a1a2a3.

For the sixth term, we have

B6 = − a3
1 + a

3
2 − a

3
3 + 3a2a

2
3 + 3a2a

2
1 − 3a1a

2
3 − 3a1a

2
2 − 3a3a

2
1 − 3a3a

2
2 + 6a1a2a3.

For the seventh term, we have

B7 = − a3
1 − a

3
2 + a

3
3 − 3a2a

2
3 − 3a2a

2
1 − 3a1a

2
3 − 3a1a

2
2 + 3a3a

2
1 + 3a3a

2
2 + 6a1a2a3.

For the eighth term, we have

B8 = − a3
1 − a

3
2 − a

3
3 − 3a2a

2
3 − 3a2a

2
1 − 3a1a

2
3 − 3a1a

2
2 − 3a3a

2
1 − 3a3a

2
2 − 6a1a2a3.

395

Putting things together, we have

(a1 + a2 + a3)
3 − (a1 + a2 − a3)

3 − (a1 − a2 + a3)
3 − (−a1 + a2 + a3)

3

+ (a1 − a2 − a3)
3 + (−a1 + a2 − a3)

3 + (−a1 − a2 + a3)
3 − (−a1 − a2 − a3)

3

= B1 − B2 − B3 − B4 + B5 + B6 + B7 − B8

= 48a1a2a3

= 3 · 24a1a2a3

Proof of Part 3.

2k · k! ·
k∏
i=1

ai =
∑

c∈{−1,+1}k
(−1)(k−

∑k
i=1 ci)/2(

k∑
j=1

cjaj)
k.

We first let a1 = 0. Then each term on RHS can find a corresponding negative
copy of this term. In detail, let c1 change sign and we have, (−1)(k−c1−

∑k
i=2 ci)/2(c1 ·

0 +
∑k
j=2 cjaj)

k = −(−1)(k+c1−
∑k
i=2 ci)/2(−c1 · 0 +

∑k
j=2 cjaj)

k. We can find this
mapping is always one-to-one and onto mapping with each other. Thus, we have
RHS is constant 0 regardless of a2, . . . ,ak. Thus, a1 is a factor of RHS. By symmetry,
a2, . . . ,ak also are factors of RHS. Since RHS is k-th order, we have RHS= α

∏k
i=1 ai

where α is a constant. Take a1 = · · · = ak = 1, we have α = 2k · k! =RHS. Thus, we
finish the proof.

C.7.2 Constructions for θ∗

Lemma C.17. When k = 3, provided the following conditions are met

• We denote B as the ball that ∥u1∥2 + ∥u2∥2 + ∥u3∥2 + ∥w∥2 ⩽ 1.

• We defineΩ ′∗
q in Definition C.9.

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + a2 + a3, τ(a1,a2,a3)[c
′] :=

1/(p− 1).

396

• Let cosζ(x) denote cos(2πζx/p)

• Let sinζ(x) denote sin(2πζx/p)

Then, we have

• The maximum L2,4-margin solution θ∗ will consist of 16(p− 1) neurons θ∗i ∈ Ω
′∗
q

to simulate p−1
2 type of cosine computation, each cosine computation is uniquely

determined a ζ ∈ {1, . . . , p−1
2 }. In particular, for each ζ the cosine computation is

cosζ(a1 + a2 + a3 − c),∀a1,a2,a3, c ∈ Zp.

Proof. Referencing Lemma C.11, we can identify elements withinΩ ′
q. Our set θ∗

will be composed of 16(p − 1) neurons, including 32 neurons dedicated to each
frequency in the range 1, . . . , p−1

2 . Focusing on a specific frequency ζ, for the sake
of simplicity, let us use cosζ(x) to represent cos(2πζx/p) and sinζ(x) likewise. We
note:

cosζ(a1 + a2 + a3 − c) (C.17)

= cosζ(a1 + a2 + a3) cosζ(c) + sinζ(a1 + a2 + a3) sinζ(c)

= cosζ(a1 + a2) cosζ(a3) cosζ(c) − sinζ(a1 + a2) sinζ(a3) cosζ(c)

+ sinζ(a1 + a2) cosζ(a3) sinζ(c) + cosζ(a1 + a2) sinζ(a3) sinζ(c)

= (cosζ(a1) cosζ(a2) − sinζ(a1) sinζ(a2)) cosζ(a3) cosζ(c)

− (sinζ(a1) cosζ(a2) + cosζ(a1) sinζ(a2)) sinζ(a3) cosζ(c)

+ (sinζ(a1) cosζ(a2) + cosζ(a1) sinζ(a2)) cosζ(a3) sinζ(c)

+ ((cosζ(a1) cosζ(a2) − sinζ(a1) sinζ(a2))) sinζ(a3) sinζ(c)

= cosζ(a1) cosζ(a2) cosζ(a3) cosζ(c) − sinζ(a1) sinζ(a2) cosζ(a3) cosζ(c)

− sinζ(a1) cosζ(a2) sinζ(a3) cosζ(c) − cosζ(a1) sinζ(a2) sinζ(a3) cosζ(c)

+ sinζ(a1) cosζ(a2) cosζ(a3) sinζ(c) + cosζ(a1) sinζ(a2) cosζ(a3) sinζ(c)

+ cosζ(a1) cosζ(a2) sinζ(a3) sinζ(c) − sinζ(a1) sinζ(a2) sinζ(a3) sinζ(c) (C.18)

where all steps comes from trigonometric function.

397

Each of these 8 terms can be implemented by 4 neuronsϕ1,ϕ2, · · · ,ϕ4. Consider
the first term, cosζ(a1) cosζ(a2) cosζ(a3) cosζ(c).

For the i-th neuron, we have

ϕi = (ui,1(a1) + ui,2(a2) + ui,3(a3))
3 ·wi(c).

By changing (θi,j)
∗, we can change the constant factor of cosζ(·) to be +β or −β.

Hence, we can view ui,j(·),wi(·) as the following:

ui,1(·) := pi,1 · cosζ(·),

ui,2(·) := pi,2 · cosζ(·),

ui,3(·) := pi,3 · cosζ(·),

wi(·) := pi,4 · cosζ(·)

where pi,j ∈ {−1, 1}.
For simplicity, let di denote cosζ(ai).
We set (θ∗u1

, θ∗u2
, θ∗u3

, θ∗w) = (0, 0, 0, 0), then

p1,1,p1,2,p1,3,p1,4 = 1,

then we have

ϕ1 = (d1 + d2 + d3)
3 cosζ(c).

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (0, 0,π,π), then p2,1,p2,2 = 1 and p2,3,p2,4 = −1, then

we have

ϕ2 = −(d1 + d2 − d3)
3 cosζ(c).

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (0,π, 0,π), then p3,1,p3,3 = 1 and p3,2,p3,4 = −1, then

398

we have

ϕ3 = −(d1 − d2 + d3)
3 cosζ(c).

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (π, 0, 0,π), then p4,1,p4,4 = −1 and p2,2,p2,3 = 1, then

we have

ϕ4 = −(−d1 + d2 + d3)
3 cosζ(c).

Putting them together, we have

4∑
i=1

ϕi(a1,a2,a3)

=

4∑
i=1

(ui,1(a1) + ui,2(a2) + ui,3(a3))
3wi(c)

=

4∑
i=1

(pi,1 cosζ(a1) + pi,2 cosζ(a2) + pi,3 cosζ(a3))
3wi(c)

= [(d1 + d2 + d3)
3 − (d1 + d2 − d3)

3 − (d1 − d2 + d3)
3 − (−d1 + d2 + d3)

3] cosζ(c)

= 24d1d2d3 cosζ(c)

= 24 cosζ(a1) cosζ(a2) cosζ(a3) cosζ(c) (C.19)

where the first step comes from the definition of ϕi, the second step comes from the
definition of ui,j, the third step comes from di = cosζ(ai), the fourth step comes
from simple algebra, the last step comes from di = cosζ(ai).

Similarly, consider − sinζ(a1) sinζ(a2) cosζ(a3) cosζ(c).
We set (θ∗u1

, θ∗u2
, θ∗u3

, θ∗w) = (π/2,π/2, 0,π), then we have

ϕ1 = −(sinζ(a1) + sinζ(a2) + cosζ(a3))
3 cosζ(c).

399

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (π/2,π/2,−π, 0), then we have

ϕ2 = (sinζ(a1) + sinζ(a2) − cosζ(a3))
3 cosζ(c).

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (π/2,−π/2, 0, 0), then we have

ϕ3 = (sinζ(a1) − sinζ(a2) + cosζ(a3))
3 cosζ(c).

We set (θ∗u1
, θ∗u2

, θ∗u3
, θ∗w) = (−π/2,π/2, 0, 0), then we have

ϕ4 = (− sinζ(a1) + sinζ(a2) + cosζ(a3))
3 cosζ(c).

Putting them together, we have

4∑
i=1

ϕi(a1,a2,a3)

= − 24 sinζ(a1) sinζ(a2) cosζ(a3) cosζ(c) (C.20)

Similarly, all other six terms in Eq. equation C.17 can be composed by four neurons
with different (θ∗u1

, θ∗u2
, θ∗u3

, θ∗w).
When we include such 56 neurons for all frequencies ζ ∈ {1, . . . , p−1

2 }, we have
that the network will calculate the following function

f(a1,a2,a3, c) =
(p−1)/2∑
ζ=1

cosζ(a1 + a2 + a3 − c)

=

p−1∑
ζ=1

1
2 · exp(2πiζ(a1 + a2 + a3 − c)/p)

=

p−1

2 if a1 + a2 + a3 = c

0 otherwise

400

where the first step comes from the definition of f(a1,a2,a3, c), the second step
comes from Euler’s formula, the last step comes from the properties of discrete
Fourier transform.

The scaling factor β for each neuron can be selected such that the entire network
maintains an L2,4-norm of 1. In this setup, every data point lies exactly on the margin,
meaning q = unif(Zp) uniformly covers points on the margin, thus meeting the
criteria for q∗ as outlined in Definition 4.5. Furthermore, for any input (a1,a2,a3),
the function f yields an identical result across all incorrect labels c′, adhering to
Condition 4.8.

C.7.3 Constructions for θ∗ for General k Version

Lemma C.18 (Formal version of Lemma 4.11). Provided the following conditions are
met

• We denote B as the ball that ∥u1∥2 + · · ·+ ∥uk∥2 + ∥w∥2 ⩽ 1.

• We defineΩ ′∗
q in Definition C.9.

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + · · ·+ ak, τ(a1, . . . ,ak)[c ′] :=
1/(p− 1).

• Let cosζ(x) denote cos(2πζx/p)

• Let sinζ(x) denote sin(2πζx/p)

Then, we have

• The maximum L2,k+1-margin solution θ∗ will consist of 22k−1 · p−1
2 neurons θ∗i ∈ Ω

′∗
q

to simulate p−1
2 type of cosine computation, each cosine computation is uniquely

determined a ζ ∈ {1, . . . , p−1
2 }. In particular, for each ζ the cosine computation is

cosζ(a1 + · · ·+ ak − c),∀a1, . . . ,ak, c ∈ Zp.

Proof. By Lemma C.11, we can get elements of Ω ′∗
q . Our set θ∗ will be composed

of 22k−1 · p−1
2 neurons, including 22k−1 neurons dedicated to each frequency in the

401

range 1, . . . , p−1
2 . Focusing on a specific frequency ζ, for the sake of simplicity, let

us use cosζ(x) to represent cos(2πζx/p) and sinζ(x) likewise.
We define

a[k] :=

k∑
i=1

ak

and we also define

ak+1 := −c.

For easy of writing, we will write cosζ as cos and sinζ as sin. We have the
following.

cosζ(
k∑
i=1

ai − c)

= cos(
k∑
i=1

ai − c)

= cos(a[k+1])

= cos(a[k]) cos(ak+1) − sin(a[k]) sin(ak+1)

= cos(a[k−1] + ak) cos(ak+1) − sin(a[k−1] + ak) sin(ak+1)

= cos(a[k−1]) cos(ak) cos(ak+1) − sin(a[k−1]) sin(ak) cos(ak+1)

− sin(a[k−1]) cos(ak) sin(ak+1) − cos(a[k−1]) sin(ak) sin(ak+1)

=
∑

b∈{0,1}k+1

k+1∏
i=1

cos1−bi(ai) · sinbi(ai) · 1[
k+1∑
i=1

bi%2 = 0] · (−1)1 [
∑k+1
i=1 bi%4=2], (C.21)

where the first step comes from the simplicity of writing, the second step comes
from the definition of a[k+1] and ak+1, the third step comes from the trigonometric
function, the fourth step also follows trigonometric function, and the last step comes
from the below two observations:

402

• First, we observe that cos(a+ b) = cos(a) cos(b) − sin(a) sin(b) and sin(a+

b) = sin(a) cos(b) + cos(a) sin(b). When we split cos once, we will remove
one cos product and we may add zero or two sin products. When we split
sin once, we may remove one sin product and we will add one sin product as
well. Thus, we can observe that the number of sin products in each term is
always even.

• Second, we observe only when we split cos and add two sin products will
introduce a −1 is this term. Thus, when the number of sin products %4 = 2,
the sign of this term will be −1. Otherwise, it will be +1.

Note that we have 2k non-zero term in Eq. equation C.21. Each of these 2k terms
can be implemented by 2k−1 neurons ϕ1, · · · ,ϕ2k−1 .

For the i-th neuron, we have

ϕi = (

k∑
j=1

ui,j(aj))
k ·wi(c).

By changing (θi,j)
∗, we can change the ui,j(aj) from cosζ(·) to be − cosζ(·) or

sinζ(·) or − sinζ(·). Denote θ∗ui as (θi,ai)∗.
For simplicity, let di denote the i-th product in one term of Eq. equation C.21.

By fact that

2k · k! ·
k∏
i=1

di =
∑

c∈{−1,+1}k
(−1)(k−

∑k
i=1 ci)/2(

k∑
j=1

cjdj)
k,

each term can be constructed by 2k−1 neurons (note that there is a symmetric effect
so we only need half terms). Based on Eq. equation C.21 and the above fact with
carefully check, we can see that θ∗u1

+ · · ·+ θ∗uk = θ
∗
w. Thus, we need 2k · 2k−1 · p−1

2
neurons in total.

When we include such 2k · 2k−1 neurons for all frequencies ζ ∈ {1, . . . , p−1
2 }, we

403

have the network will calculate the following function

f(a1, . . . ,ak, c) =
(p−1)/2∑
ζ=1

cosζ(
k∑
i=1

ai − c)

=

p−1∑
ζ=1

1
2 · exp(2πiζ(

k∑
i=1

ai − c)/p)

=

p−1

2 if
∑k
i=1 ai = c

0 otherwise

where the first step comes from the definition of f(a1, . . . ,ak, c), the second step
comes from Euler’s formula, the last step comes from the properties of discrete
Fourier transform.

The scaling parameter β for each neuron can be adjusted to ensure that the
network possesses an L2,k+1-norm of 1. For this network, all data points are posi-
tioned on the margin, which implies that q = unif(Zp) naturally supports points
along the margin, aligning with the requirements for q∗ presented in Definition 4.5.
Additionally, for every input (a1, . . . ,ak), the function f assigns the same outcome
to all incorrect labels c′, thereby fulfilling Condition 4.8.

C.8 Check Fourier Frequencies
Section C.8.1 proves all frequencies are used. Section C.8.2 proves all frequencies
are used for general k version.

C.8.1 All Frequencies are Used

Let f : Z4
p → C. Its multi-dimensional discrete Fourier transform is defined as:

f̂(j1, j2, j3, j4)

404

:=
∑
a1∈Zp

e−2πi·j1a1/p(
∑
a2∈Zp

e−2πi·j2a2/p(
∑
a3∈Zp

e−2πi·j3a3/p(
∑
c∈Zp

e−2πi·j4c/pf(a1,a2,a3, c))).

Lemma C.19. When k = 3, if the following conditions hold

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + a2 + a3, τ(a1,a2,a3)[c
′] :=

1/(p− 1).

• f is the maximum L2,4-margin solution.

Then, for any j1 = j2 = j3 = −j4 ̸= 0, we have f̂(j1, j2, j3, j4) > 0.

Proof. In this proof, let j1, j2, j3, j4 ∈ Z, and θu = θ∗u ·
p

2π to simplify the notation. By
Lemma C.11,

u1(a1) =

√
1

2p cosp(θu1 + ζa1). (C.22)

Let

f(a1,a2,a3, c)

=

H∑
h=1

ϕh(a1,a2,a3, c)

=

H∑
h=1

(uh,1(a1) + uh,2(a2) + uh,3(a3))
3wh(c)

= (
1

2p)
2
H∑
h=1

(cosp(θuh,1 + ζha1) + cosp(θuh,2 + ζha2) + cosp(θuh,3 + ζha3))
3 cosp(θwh + ζhc)

where each neuron conforms to the previously established form, and the width
H function is an arbitrary margin-maximizing network. The first step is from the
definition of f(a1,a2,a3, c), the subsequent step on the definition ofϕh(a1,a2,a3, c),
and the final step is justified by Eq. equation C.22.

405

We can divide each ϕ into ten terms:

ϕ(a1,a2,a3, c)

= ϕ(1)(a1,a2,a3, c) + · · ·+ ϕ(10)(a1,a2,a3, c)

=
(
u1(a1)

3 + u2(a2)
3 + u3(a3)

3 + 3u1(a1)
2u2(a2) + 3u1(a1)

2u3(a3) + 3u2(a2)
2u1(a1)

+ 3u2(a2)
2u3(a3) + 3u3(a3)

2u1(a1) + 3u3(a3)
2u2(a2) + 6u1(a1)u2(a2)u3(a3)

)
w(c).

Note, ρ = e2πi/p. ϕ̂1(j1, j2, j3, j4) is nonzero only for j1 = 0, and ϕ̂4(j1, j2, j3, j4) is
nonzero only for j1 = j2 = 0. Similar to other terms. For the tenth term, we have

ϕ̂10(j1, j2, j3, j4) = 6
∑

a1,a2,a3,c∈Zp

u1(a1)u2(a2)u3(a3)w(c)ρ
−(j1a1+j2a2+j3a3+j4c)

= 6û1(j1)û2(j2)û3(j3)ŵ(j4).

In particular,

û1(j1) =
∑
a1∈Zp

√
1

2p cosp(θu1 + ζa1)ρ
−j1a1

= (8p)−1/2
∑
a1∈Zp

(ρθu1+ζa1 + ρ−(θu1+ζa1))ρ−j1a1

= (8p)−1/2(ρθu1
∑
a1∈Zp

ρ(ζ−j1)a1 + ρ−θu1
∑
a1∈Zp

ρ−(ζ+j1)a1)

=

√
p/8 · ρθu1 if j1 = +ζ√
p/8 · ρ−θu1 if j1 = −ζ

0 otherwise

where the first step comes from û1(j1) definition, the second step comes from Euler’s
formula, the third step comes from simple algebra, the last step comes from the
properties of discrete Fourier transform. Similarly for û2, û3 and ŵ. As we consider

406

ζ to be nonzero, we ignore the ζ = 0 case. Hence, ϕ̂10(j1, j2, j3, j4) is nonzero only
when j1, j2, j3, j4 are all±ζ. We can summarize that ϕ̂(j1, j2, j3, j4) can only be nonzero
if one of the following satisfies:

• j1 · j2 · j3 = 0

• j1, j2, j3, j4 = ±ζ.

Setting aside the previously discussed points, it’s established in Lemma C.6
that the function fmaintains a consistent margin for various inputs as well as over
different classes, i.e., f can be broken down as

f(a1,a2,a3, c) = f1(a1,a2,a3, c) + f2(a1,a2,a3, c)

where

f1(a1,a2,a3, c) = F(a1,a2,a3)

for some F : Zp × Zp × Zp → R, and

f2(a1,a2,a3, c) = λ · 1a1+a2+a3=c

where λ > 0 is the margin of f. Then, we have the DFT of f1 and f2 are

f̂1(j1, j2, j3, j4) =

F̂(j1, j2, j3) if j4 = 0

0 otherwise

and

407

f̂2(j1, j2, j3, j4) =

λp3 if j1 = j2 = j3 = −j4

0 otherwise
.

Hence, when j1 = j2 = j3 = −j4 ̸= 0, we must have f̂(j1, j2, j3, j4) > 0.

C.8.2 All Frequencies are Used for General k Version

Let f : Zk+1
p → C. Its multi-dimensional discrete Fourier transform is defined as:

f̂(j1, . . . , jk+1)

:=
∑
a1∈Zp

e−2πi·j1a1/p(. . . (
∑
ak∈Zp

e−2πi·jkak/p(
∑
c∈Zp

e−2πi·jk+1c/pf(a1, . . . ,ak, c))).

Lemma C.20. If the following conditions hold

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + · · ·+ ak, τ(a1, . . . ,ak)[c ′] :=
1/(p− 1).

• f is the maximum L2,k+1-margin solution.

Then, for any j1 = · · · = jk = −jk+1 ̸= 0, we have f̂(j1, . . . , jk+1) > 0.

Proof. For this proof, for all j1, . . . , jk+1 ∈ Z, to simplify the notation, let θu = θ∗u ·
p

2π ,
by Lemma C.15, so

u1(a1) =

√
2

(k+ 1)p cosp(θu1 + ζa1). (C.23)

Let

f(a1, . . . ,ak, c)

408

=

H∑
h=1

ϕh(a1, . . . ,ak, c)

=

H∑
h=1

(uh,1(a1) + · · ·+ uh,k(ak))
kwh(c)

= (
2

(k+ 1)p)
(k+1)/2

H∑
h=1

(cosp(θuh,1 + ζha1) + · · ·+ cosp(θuh,k + ζhak))
k cosp(θwh + ζhc)

where each neuron conforms to the previously established form, and the width
H function is an arbitrary margin-maximizing network. The first step is based on the
definition of f(a1, . . . ,ak, c), the subsequent step on the definition ofϕh(a1, . . . ,ak, c),
and the final step is justified by Eq. equation C.23.

Each neuron ϕ we have

ϕ̂(j1, . . . , jk, jk+1) = k!
∑

a1,...,ak,c∈Zp

w(c)ρ−(j1a1+···+jkak+jk+1c)
k∏
i=1

ui(ai)

= k!ŵ(jk+1)

k∏
i=1

ûi(ji).

In particular,

û1(j1) =
∑
a1∈Zp

√
2

(k+ 1)p cosp(θu1 + ζa1)ρ
−j1a1

=

√
1

2(k+ 1)p
∑
a1∈Zp

(ρθu1+ζa1 + ρ−(θu1+ζa1))ρ−j1a1

=

√
1

2(k+ 1)p(ρ
θu1

∑
a1∈Zp

ρ(ζ−j1)a1 + ρ−θu1
∑
a1∈Zp

ρ−(ζ+j1)a1)

409

=

√

p
2(k+1) · ρ

θu1 if j1 = +ζ√
p

2(k+1) · ρ
−θu1 if j1 = −ζ

0 otherwise,

where the first step comes from û1(j1) definition, the second step comes from Euler’s
formula, the third step comes from simple algebra, the last step comes from the
properties of discrete Fourier transform. Similarly for ûi and ŵ. We consider ζ to
be nonzero, so we ignore the ζ = 0 case. Hence, ϕ̂(j1, . . . , jk, jk+1) is nonzero only
when j1, . . . , jk, jk+1 are all ±ζ. We can summarize that ϕ̂(j1, . . . , jk, jk+1) can only
be nonzero if one of the below conditions satisfies:

•
∏k
i=1 ji = 0

• j1, . . . , jk, jk+1 = ±ζ.

Setting aside the previously discussed points, it’s established in Lemma C.6 that the
function fmaintains a consistent margin for various inputs as well as over different
classes, i.e., f can be broken down as

f(a1, . . . ,ak, c) = f1(a1, . . . ,ak, c) + f2(a1, . . . ,ak, c)

where

f1(a1, . . . ,ak, c) = F(a1, . . . ,ak)

for some F : Zkp → R, and

f2(a1, . . . ,ak, c) = λ · 1a1+···+ak=c

where λ > 0 is the margin of f. Then, we have the DFT of f1 and f2 are

410

f̂1(j1, . . . , jk, jk+1) =

F̂(j1, . . . , jk) if jk+1 = 0

0 otherwise

and

f̂2(j1, . . . , jk, jk+1) =

λpk if j1 = · · · = jk = −jk+1

0 otherwise
.

Hence, when j1 = · · · = jk = −jk+1 ̸= 0, we must have f̂(j1, . . . , jk, jk+1) > 0.

C.9 Main Result
Section C.9.1 proves the main result for k = 3. Section C.9.2 proves the general k
version of our main result.

C.9.1 Main result for k = 3

Theorem C.21. When k = 3, let f(θ, x) be the one-hidden layer networks defined in
Section 4.3. If the following conditions hold

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + a2 + a3, τ(a1,a2,a3)[c
′] :=

1/(p− 1).

• m ⩾ 16(p− 1) neurons.

Then we have the maximum L2,4-margin network satisfying:

• The maximum L2,4-margin for a given dataset Dp is:

γ∗ =
3

16 ·
1

p(p− 1) .

411

• For each neuron ϕ({u1,u2,u3,w};a1,a2,a3), there is a constant scalar β ∈ R and a
frequency ζ ∈ {1, . . . , p−1

2 } satisfying

u1(a1) = β · cos(θ∗u1
+ 2πζa1/p)

u2(a2) = β · cos(θ∗u2
+ 2πζa2/p)

u3(a3) = β · cos(θ∗u3
+ 2πζa3/p)

w(c) = β · cos(θ∗w + 2πζc/p)

where θ∗u1
, θ∗u2

, θ∗u3
, θ∗w ∈ R are some phase offsets satisfying θ∗u1

+ θ∗u2
+ θ∗u3

= θ∗w.

• For each frequency ζ ∈ {1, . . . , p−1
2 }, there exists one neuron using this frequency

only.

Proof. By Lemma C.11, we get the single neuron class-weighted margin solution
setΩ ′∗

q satisfying Condition 4.8 and γ∗.
By Lemma C.17 and Lemma C.5, we can construct network θ∗ which uses

neurons inΩ ′∗
q and satisfies Condition 4.8 and Definition 4.5 with respect to q =

unif(Zp). By Lemma C.6, we know it is the maximum-margin solution.
By Lemma C.19, when j1 = j2 = j3 = −j4 ̸= 0, we must have f̂(j1, j2, j3, j4) > 0.

However, as discrete Fourier transform ϕ̂ of each neuron is nonzero, for each
frequency, we must have that there exists one neuron using it.

C.9.2 Main Result for General k Version

Theorem C.22 (Formal version of Theorem 4.9). Let f(θ, x) be the one-hidden layer
networks defined in Section 4.3. If the following conditions hold

• We adopt the uniform class weighting: ∀c ′ ̸= a1 + · · ·+ ak, τ(a1, . . . ,ak)[c ′] :=
1/(p− 1).

• m ⩾ 22k−1 · p−1
2 neurons.

Then we have the maximum L2,k+1-margin network satisfying:

412

• The maximum L2,k+1-margin for a given dataset Dp is:

γ∗ =
2(k!)

(2k+ 2)(k+1)/2(p− 1)p(k−1)/2 .

• For each neuron ϕ({u1, . . . ,uk,w};a1, . . . ,ak) there is a constant scalar β ∈ R and
a frequency ζ ∈ {1, . . . , p−1

2 } satisfying

u1(a1) = β · cos(θ∗u1
+ 2πζa1/p)

. . .

uk(ak) = β · cos(θ∗uk + 2πζak/p)

w(c) = β · cos(θ∗w + 2πζc/p)

where θ∗u1
, . . . , θ∗uk , θ∗w ∈ R are some phase offsets satisfying θ∗u1

+ · · ·+ θ∗uk = θ
∗
w.

• For every frequency ζ ∈ {1, . . . , p−1
2 }, there exists one neuron using this frequency

only.

Proof. Follow the same proof sketch as Theorem C.21 by Lemma C.15, Condition
4.8, Lemma C.18, Lemma C.5, Definition 4.5, Lemma C.6, Lemma C.20.

C.10 More Empirical Details and Results

C.10.1 Implement Details

Licenses for Existing Assets & Open Access to Data and Code. Our code is based
on a brilliant open source repository, https://github.com/Sea-Snell/grokking, which
requires MIT License. We provide all of our codes in the supplemental material,
including dataset generation code. We do not require open data access as we run
experiments on synthetic datasets, i.e., modular addition.

413

Experimental Result Reproducibility. We provide all of our codes in the sup-
plemental material with a clear README file and clear configuration files for our
experiments reproducibility.

Experimental Setting/Details & Experiment Statistical Significance. The
detailed configuration can be found in supplemental material. We make a copy
version here for convenience.

For two-layer neural network training, we have the following details:

• number of data loader workers: 4

• batch size: 1024

• learning rate: 5× 10−3

• regularization strength λ: 0.005

• AdamW hyper-parameter (β1,β2): (0.9, 0.98)

• warm-up steps: 10

For one-layer Transformer training, we have the following details:

• number of data loader workers: 4

• batch size: 1024

• learning rate: 1× 10−3

• regularization strength λ: 0.001

• AdamW hyper-parameter (β1,β2): (0.9, 0.98)

• warm-up steps: 10

All results we ran 3 times with different random seeds. In Figure 4.4, we reported
the mean and variance range.

Experiments Compute Resources. All experiments is conducted on single A100
40G NVIDIA GPU. All experiments can be finished in at most three days.

414

C.10.2 One-hidden Layer Neural Network

In Figure C.1 and Figure C.2, we use SGD to train a two-layer network withm =

1536 = 22k−2 · (p − 1) neurons, i.e., Eq. equation 4.2, on k = 3-sum mod-p =

97 addition dataset, i.e., Eq. equation 4.1. In Figure C.3 and Figure C.4, we use
SGD to train a two-layer network with m = 5632 = 22k−2 · (p − 1) neurons, i.e.,
Eq. equation 4.2, on k = 5-sum mod-p = 23 addition dataset, i.e., Eq. equation 4.1.

Figure C.1 and Figure C.3 show that the networks trained with stochastic gradi-
ent descent have single-frequency hidden neurons, which support our analysis in
Lemma 4.10. Furthermore, Figure C.2 and Figure C.4 demonstrate that the network
will learn all frequencies in the Fourier spectrum which is consistent with our
analysis in Lemma 4.11. Together, they verify our main results in Theorem 4.9 and
show that the network trained by SGD prefers to learn Fourier-based circuits.

C.10.3 One-layer Transformer

In Figure C.5 , we train a one-layer transformer with m = 160 heads attention,
on k = 3-sum mod-p = 61 addition dataset, i.e., Eq. equation 4.1. In Figure C.6
, we train a one-layer transformer with m = 160 heads attention, on k = 5-sum
mod-p = 17 addition dataset, i.e., Eq. equation 4.1.

Figure C.5 and Figure C.6 show that the one-layer transformer trained with
stochastic gradient descent learns 2-dim cosine shape attention matrices, which
is similar to one-hidden layer neural networks in Figure C.1 and Figure C.3. This
means that the attention layer has a similar learning mechanism to neural networks
in the modular arithmetic task, where it prefers to learn Fourier-based circuits when
trained by SGD.

415

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

0 20 40 60 80 100
0.5

0.0

0.5

0 10 20 30 40 500

500

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

0 20 40 60 80 100
0.5
0.0
0.5

0 10 20 30 40 500

500

1000

Figure C.1: Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network withm = 1536
neurons is trained on k = 3-sum mod-p = 97 addition dataset. We even split the
whole datasets (pk = 973 data points) into the training and test datasets. Every
row represents a random neuron from the network. The left figure shows the
final trained embeddings, with red dots indicating the true weight values, and
the pale blue interpolation is achieved by identifying the function that shares the
same Fourier spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in Lemma 4.10.

416

0 10 20 30 40 50
Frequency

0

10

20

30

40

Nu
m

be
r o

f n
eu

ro
ns

All frequency covered (p=97, k=3, m=1536)

0.0 0.2 0.4 0.6 0.8 1.0
Max normalized power

0.0%

10.0%

20.0%

30.0%

40.0%

Nu
m

be
r o

f n
eu

ro
ns

Initial distribution (p=97, k=3, m=1536) Max margin distribution (p=97, k=3, m=1536)

60%

40%

20%

0%
0.0 0.2 0.4 0.6 0.8 1.0

Max normalized power

N
u
m

b
e
r
 o

f
n
e
u
r
o
n
s

Figure C.2: All Fourier spectrum frequencies being covered and the maximum
normalized power of the embeddings (hidden layer weights). The one-hidden
layer network withm = 1536 neurons is trained on k = 3-sum mod-p = 97 addition
dataset. We denote û[i] as the Fourier transform of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2)

be the maximum normalized power. Mapping each neuron to its maximum normal-
ized power frequency, (a) shows the final frequency distribution of the embeddings.
Similar to our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized power of
the neural network with random initialization. (c) shows, in frequency space, the
embeddings of the final trained network are one-sparse, i.e., maximum normalized
power being almost 1 for all neurons. This is consistent with our maximum-margin
analysis results in Lemma 4.11.

417

0 5 10 15 20
0.5

0.0

0.5

0 2 4 6 8 100

25

0 5 10 15 20
0.25
0.00
0.25

0 2 4 6 8 100

10

0 5 10 15 200.5

0.0

0.5

0 2 4 6 8 100

20

0 5 10 15 20
0.5

0.0

0.5

0 2 4 6 8 100

20

0 5 10 15 20
0.5

0.0

0.5

0 2 4 6 8 100

20

0 5 10 15 20
0.5

0.0

0.5

0 2 4 6 8 100

25

0 5 10 15 20
0.5

0.0

0.5

0 2 4 6 8 100

25

0 5 10 15 20
0.25

0.00

0.25

0 2 4 6 8 100

10

Figure C.3: Cosine shape of the trained embeddings (hidden layer weights) and
corresponding power of Fourier spectrum. The two-layer network withm = 5632
neurons is trained on k = 5-sum mod-p = 23 addition dataset. We even split the
whole datasets (pk = 235 data points) into the training and test datasets. Every
row represents a random neuron from the network. The left figure shows the
final trained embeddings, with red dots indicating the true weight values, and
the pale blue interpolation is achieved by identifying the function that shares the
same Fourier spectrum. The right figure shows their Fourier power spectrum. The
results in these figures are consistent with our analysis statements in Lemma 4.10.

418

0 2 4 6 8 10
Frequency

0

100

200

300

400

Nu
m

be
r o

f n
eu

ro
ns

All frequency covered (p=23, k=5, m=5632)

0.0 0.2 0.4 0.6 0.8 1.0
Max normalized power

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Nu
m

be
r o

f n
eu

ro
ns

Initial distribution (p=23, k=5, m=5632) Max margin distribution (p=23, k=5, m=5632)

80%

60%

40%

20%

0%

0.0 0.2 0.4 0.6 0.8 1.0

Max normalized power

N
u
m

b
e
r
 o

f
n
e
u
r
o
n
s

Figure C.4: All Fourier spectrum frequencies being covered and the maximum
normalized power of the embeddings (hidden layer weights). The one-hidden
layer network withm = 5632 neurons is trained on k = 5-sum mod-p = 23 addition
dataset. We denote û[i] as the Fourier transform of u[i]. Let maxi |û[i]|2/(

∑
|û[j]|2)

be the maximum normalized power. Mapping each neuron to its maximum normal-
ized power frequency, (a) shows the final frequency distribution of the embeddings.
Similar to our construction analysis in Lemma 4.11, we have an almost uniform
distribution over all frequencies. (b) shows the maximum normalized power of
the neural network with random initialization. (c) shows, in frequency space, the
embeddings of the final trained network are one-sparse, i.e., maximum normalized
power being almost 1 for all neurons. This is consistent with our maximum-margin
analysis results in Lemma 4.11.

419

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60 0.4

0.2

0.0

0.2

0.4

0 5 10 15 20 25 30 35 40 45 50 55

0
5

10
15
20
25
30
35
40
45
50
55

0

5

10

15

20

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

0.75

0.50

0.25

0.00

0.25

0.50

0.75
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

1.0

0.5

0.0

0.5

1.0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56

0

20

40

60

80

100

120

Figure C.5: 2-dimension cosine shape of the trained WKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention heads
m = 160 is trained on k = 3-sum mod-p = 61 addition dataset. We even split the
whole datasets (pk = 613 data points) into training and test datasets. Every row
represents a random attention head from the transformer. The left figure shows
the final trained attention weights being an apparent 2-dim cosine shape. The right
figure shows their 2-dim Fourier power spectrum. The results in these figures are
consistent with Figure C.1.

420

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
2

4
6

8
10

12
14

16

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
2

4
6

8
10

12
14

16

0.02

0.01

0.00

0.01

0.02

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
2

4
6

8
10

12
14

16 0.04

0.02

0.00

0.02

0.04
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
2

4
6

8
10

12
14

16 0.4

0.2

0.0

0.2

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure C.6: 2-dimension cosine shape of the trained WKQ (attention weights) and
their Fourier power spectrum. The one-layer transformer with attention heads
m = 160 is trained on k = 5-sum mod-p = 17 addition dataset. We even split the
whole datasets (pk = 175 data points) into training and test datasets. Every row
represents a random attention head from the transformer. The left figure shows
the final trained attention weights being an apparent 2-dim cosine shape. The right
figure shows their 2-dim Fourier power spectrum. The results in these figures are
consistent with Figure C.3.

421

d appendix for chapter 5

D.1 Limitations
We study and understand an interesting phenomenon of in-context learning: smaller
models are more robust to noise, while larger ones are more easily distracted, lead-
ing to different ICL behaviors. Although we study two stylized settings and give
the closed-form solution, our analysis cannot extend to real Transformers easily due
to the high non-convex function and complicated design of multiple-layer Trans-
formers. Also, our work does not study optimization trajectory, which we leave
as future work. On the other hand, we use simple binary classification real-world
datasets to verify our analysis, which still has a gap for the practical user using the
LLM scenario.

D.2 Deferred Proof for Linear Regression

D.2.1 Proof of Theorem 5.4.1

Here, we provide the proof of Theorem 5.4.1.

Theorem 5.4.1 (Optimal rank-r solution for regression). Recall the loss function ℓ̃ in
Theorem 5.1. Let

U∗,u∗ = arg min
U∈Rd×d,rank(U)⩽r,u∈R

ℓ̃(U,u).

Then U∗ = cQV∗Q⊤,u = 1
c

, where c is any nonzero constant, and V∗ = diag([v∗1 , . . . , v∗d])
satisfies for any i ⩽ r, v∗i = N

(N+1)λi+tr(D)
and for any i > r, v∗i = 0.

Proof of Theorem 5.4.1. Note that,

arg min
U∈Rd×d,rank(U)⩽r,u∈R

ℓ̃(U,u) = arg min
U∈Rd×d,rank(U)⩽r,u∈R

ℓ̃(U,u) − min
U∈Rd×d,u∈R

ℓ̃(U,u)

= arg min
U∈Rd×d,rank(U)⩽r,u∈R

(ℓ̃(U,u) − min
U∈Rd×d,u∈R

ℓ̃(U,u)).

422

Thus, we may consider Equation (D.4) in Theorem D.1 only. On the other hand,
we have

Γ =(1 +
1
N
)Λ+

1
N

tr(Λ)Id×d

=(1 +
1
N
)QDQ⊤ +

1
N

tr(D)QId×dQ⊤

=Q((1 +
1
N
)D +

1
N

tr(D)Id×d)Q⊤.

We denote D ′ = (1+ 1
N
)D+ 1

N
tr(D)Id×d. We can seeΛ 1

2 = QD 1
2 Q⊤, Γ 1

2 = QD ′ 1
2 Q⊤,

and Γ−1 = QD ′−1Q⊤. We denote V = uQ⊤UQ. Since Γ and Λ are commutable and
the Frobenius norm (F-norm) of a matrix does not change after multiplying it by
an orthonormal matrix, we have Equation (D.4) as

ℓ̃(U,u) − min
U∈Rd×d,u∈R

ℓ̃(U,u) =1
2∥Γ

1
2 (uΛ

1
2 UΛ 1

2 −ΛΓ−1)∥2
F

=
1
2∥Γ

1
2Λ

1
2 (uU − Γ−1)Λ

1
2∥2
F

=
1
2∥D

′ 1
2 D 1

2 (V − D ′−1
)D 1

2∥2
F.

As WKQ is a matrix whose rank is at most r, we have V is also at most rank r. Then,
we denote V∗ = arg minV∈Rd×d,rank(V)⩽r ∥D ′ 1

2 D 1
2 (V − D ′−1)D 1

2∥2
F. We can see that

V∗ is a diagonal matrix. Denote D ′ = diag([λ ′
1, . . . , λ ′

d]) and V∗ = diag([v∗1 , . . . , v∗d]).
Then, we have

∥D ′ 1
2 D 1

2 (V − D ′−1
)D 1

2∥2
F (D.1)

=

d∑
i=1

(λ ′
i

1
2λi(v

∗
i −

1
λ ′
i

))2 (D.2)

=

d∑
i=1

((1 +
1
N
)λi +

tr(D)

N
)λ2
i(v

∗
i −

1
(1 + 1

N
)λi +

tr(D)
N

)2. (D.3)

As V∗ is the minimum rank r solution, we have that v∗i ⩾ 0 for any i ∈ [d] and if v∗i >

423

0, we have v∗i = 1
(1+ 1

N)λi+
tr(D)
N

. Denote g(x) = ((1 + 1
N
)x + tr(D)

N
)x2(1

(1+ 1
N)x+

tr(D)
N

)2 =

x2(1
(1+ 1

N)x+
tr(D)
N

). It is easy to see that g(x) is an increasing function on [0,∞). Now,
we use contradiction to show that V∗ only has non-zero entries in the first r diagonal
entries. Suppose i > r, such that v∗i > 0, then we must have j ⩽ r such that v∗j = 0
as V∗ is a rank r solution. We find that if we set v∗i = 0, v∗j = 1

(1+ 1
N)λj+

tr(D)
N

and all
other values remain the same, Equation (D.3) will strictly decrease as g(x) is an
increasing function on [0,∞). Thus, here is a contradiction. We finish the proof by
V∗ = uQ⊤U∗Q.

D.2.2 Behavior Difference

Theorem 5.4.2 (Behavior difference for regression). Let w = Q(s + ξ) ∈ Rd where
s, ξ ∈ Rd are truncated and residual vectors defined above. The optimal rank-r solution
fLSA,θ in Theorem 5.4.1 satisfies:

L(fLSA,θ; Ê)

:=Ex1,ϵ1,...,xM,ϵM,xq(fLSA,θ(Ê) − ⟨w, xq⟩)2

=
1
M
∥s∥2

(V∗)2D3 +
1
M

(∥s + ξ∥2
D + σ2) tr((V∗)2D2)

+ ∥ξ∥2
D +

∑
i∈[r]

s2
iλi(λiv

∗
i − 1)2.

Proof of Theorem 5.4.2. By Theorem 5.4.1, w.l.o.g, letting c = 1, the optimal rank-r
solution fLSA,θ satisfies θ = (WPV , WKQ), and

W∗PV =

(
0d×d 0d
0⊤
d 1

)
, W∗KQ =

(
U∗ 0d
0⊤
d 0

)
,

where U∗ = QV∗Q⊤.
We can see that U∗ and Λ commute. Denote Λ̂ := 1

M

∑M
i=1 xix⊤

i . Note that we
have

ŷq =fLSA,θ(Ê)

424

=

(
0d×d 0d
0⊤
d 1

)
(
ÊÊ⊤

M
)

(
U∗ 0d
0⊤
d 0

)
xq

=

(
0d×d 0d
0⊤
d 1

)(
1
M
(xqx⊤

q +
∑M
i=1 xix⊤

i)
1
M
(
∑M
i=1 xix⊤

i w +
∑M
i=1 ϵixi)

1
M
(
∑M
i=1 w⊤xix⊤

i +
∑M
i=1 ϵix⊤

i)
1
M

∑M
i=1(w⊤xi + ϵi)2

)

·

(
U∗ 0d
0⊤
d 0

)
xq

=(w⊤Λ̂+
1
M

M∑
i=1

ϵix⊤
i)U∗xq.

Then, we have

Ex1,ϵ1,...,xM,ϵM,xq(ŷq − ⟨w, xq⟩)2

=Ex1,ϵ1,...,xM,ϵM,xq(w⊤Λ̂U∗xq +
1
M

M∑
i=1

ϵix⊤
i U∗xq − w⊤xq)2

=E[(w⊤Λ̂U∗xq − w⊤xq)2]︸ ︷︷ ︸
(I)

+E[(
1
M

M∑
i=1

ϵix⊤
i U∗xq)2]︸ ︷︷ ︸

(II)

,

where the last equality is due to i.i.d. of ϵi. We see that the label noise can only
have an effect in the second term. For the term (I) we have,

(I) =E[(w⊤Λ̂U∗xq − w⊤ΛU∗xq + w⊤ΛU∗xq − w⊤xq)2]

=E[(w⊤Λ̂U∗xq − w⊤ΛU∗xq)2]︸ ︷︷ ︸
(III)

+E[(w⊤ΛU∗xq − w⊤xq)2]︸ ︷︷ ︸
(IV)

,

where the last equality is due to E[Λ̂] = Λ and Λ̂ is independent with xq. Note the
fact that U∗ and Λ commute. For the (III) term, we have

(III) =E[E[(w⊤Λ̂U∗xq)2 + (w⊤ΛU∗xq)2 − 2(w⊤Λ̂U∗xq)(w⊤ΛU∗xq)]|xq]

=E[(w⊤Λ̂U∗xq)2 − (w⊤ΛU∗xq)2].

425

By the property of trace, we have,

(III) =E[tr(Λ̂ww⊤Λ̂(U∗)2Λ)] − ∥w∥2
(U∗)2Λ3

=E[
1
M2 tr((

M∑
i=1

xix⊤
i)ww⊤(

M∑
i=1

xix⊤
i)(U∗)2Λ)] − ∥w∥2

(U∗)2Λ3

=E[
M− 1
M

tr(Λww⊤Λ(U∗)2Λ) +
1
M

tr(x1x⊤
1 ww⊤x1x⊤

1 (U∗)2Λ)] − ∥w∥2
(U∗)2Λ3

=−
1
M
∥w∥2

(U∗)2Λ3 +
1
M

E[tr(x1x⊤
1 ww⊤x1x⊤

1 (U∗)2Λ)]

= −
1
M
∥w∥2

(U∗)2Λ3 +
1
M

E[tr((∥w∥2
ΛΛ+ 2Λw⊤wΛ)(U∗)2Λ)]

=
1
M
∥w∥2

(U∗)2Λ3 +
1
M
∥w∥2

Λ tr((U∗)2Λ2),

where the third last equality is by Theorem D.2. Furthermore, injecting w = Q(s+ξ),
as ξ⊤V∗ is a zero vector, we have

(III) =
1
M
∥s + ξ∥2

(V∗)2D3 +
1
M
∥s + ξ∥2

D tr((V∗)2D2)

=
1
M
∥s∥2

(V∗)2D3 +
1
M
∥s + ξ∥2

D tr((V∗)2D2).

Similarly, for the term (IV), we have

(IV) =E[((s + ξ)⊤Q⊤ΛU∗xq − (s + ξ)⊤Q⊤xq)2]

=E[(s⊤DV∗Q⊤xq − s⊤Q⊤xq − ξ⊤Q⊤xq)2]

=s⊤(V∗)2D3s + s⊤Ds + ξ⊤Dξ− 2s⊤V∗D2s

=ξ⊤Dξ+
∑
i∈[r]

s2
iλi(λ

2
i(v

∗
i)

2 − 2λiv∗i + 1)

=∥ξ∥2
D +

∑
i∈[r]

s2
iλi(λiv

∗
i − 1)2,

where the third equality is due to s⊤Aξ = 0 for any diagonal matrix A ∈ Rd×d.
Now, we analyze the label noise term. By U∗ and Λ being commutable, for the

426

term (II), we have

(II) =
σ2

M2E[(
M∑
i=1

x⊤
i U∗xq)2]

=
σ2

M2E[tr((
M∑
i=1

xi)⊤U∗ΛU∗(

M∑
i=1

xi))]

=
σ2

M
E[tr(x⊤

1 U∗ΛU∗x1)]

=
σ2

M
tr((V∗)2D2),

where all cross terms vanish in the second equality. We conclude by combining
four terms.

Theorem 5.4.3 (Behavior difference for regression, special case). Let 0 ⩽ r ⩽ r ′ ⩽ d

and w = Qs where s is r-dim truncated vector. Denote the optimal rank-r solution as f1

and the optimal rank-r ′ solution as f2. Then,

L(f2; Ê) − L(f1; Ê)

=
1
M

(∥s∥2
D + σ2)(

r ′∑
i=r+1

(
Nλi

(N+ 1)λi + tr(D)
)2).

Proof of Theorem 5.4.3. Let V∗ = diag([v∗1 , . . . , v∗d]) satisfying for any i ⩽ r, v∗i =
N

(N+1)λi+tr(D)
and for any i > r, v∗i = 0. Let V ′∗ = diag([v ′∗1 , . . . , v ′∗d]) be satisfied for

any i ⩽ r ′, v ′∗i = N
(N+1)λi+tr(D)

and for any i > r ′, v ′∗i = 0. Note that V∗ is a truncated
diagonal matrix of V ′∗. By Theorem 5.4.1 and Theorem 5.4.2, we have

L(f2; Ê) − L(f1; Ê) =(
1
M
∥s∥2

(V ′∗)2D3 +
1
M

(∥s∥2
D + σ2) tr((V ′∗)2D2) +

∑
i∈[r ′]

s2
iλi(λiv

′∗
i − 1)2)

− (
1
M
∥s∥2

(V∗)2D3 +
1
M

(∥s∥2
D + σ2) tr((V∗)2D2) +

∑
i∈[r]

s2
iλi(λiv

∗
i − 1)2)

=
1
M

(∥s∥2
D + σ2)(tr((V ′∗)2D2) − tr((V∗)2D2))

427

=
1
M

(∥s∥2
D + σ2)(

r ′∑
i=r+1

(
Nλi

(N+ 1)λi + tr(D)
)2).

D.2.3 Auxiliary Lemma

Theorem D.1 provides the structure of the quadratic form of our MSE loss.

Lemma D.1 (Corollary A.2 in Zhang et al. (2023c)). The loss function ℓ̃ in Theorem 5.1
satisfies

min
U∈Rd×d,u∈R

ℓ̃(U,u) = −
1
2 tr[Λ2Γ−1],

where U = cΓ−1,u = 1
c

for any non-zero constant c are minimum solution. We also have

ℓ̃(U,u) − min
U∈Rd×d,u∈R

ℓ̃(U,u) = 1
2∥Γ

1
2 (uΛ

1
2 UΛ 1

2 −ΛΓ−1)∥2
F. (D.4)

Lemma D.2. Let x ∼ N(0,Λ), ϵ ∼ N(0,σ2) and y = ⟨w, x⟩+ ϵ, where w ∈ Rd is a fixed
vector. Then we have

E[y2xx⊤] =σ2Λ+ ∥w∥2
ΛΛ+ 2Λw⊤wΛ,

E(yx)E(yx)⊤ =Λ⊤ww⊤Λ,

E[(yx − E(yx))(yx − E(yx))⊤] =σ2Λ+ ∥w∥2
ΛΛ+Λw⊤wΛ.

Proof of Theorem D.2. Asy is a zero mean Gaussian, by Isserlis’ theorem Wick (1950);
Michalowicz et al. (2009), for any i, j ∈ [d] we have

E[y2xixj] =E[y2]E[xixj] + 2E[yxi]E[yxj]

=(σ2 + w⊤Λw)Λi,j + 2Λ⊤
i ww⊤Λj.

Thus, we have E[y2xx⊤] = (σ2 + w⊤Λw)Λ + 2Λw⊤wΛ. Similarly, we also have

428

E(yx)E(yx)⊤ = Λ⊤ww⊤Λ. Thus, we have

E[(yx − E(yx))(yx − E(yx))⊤]

=E[y2xx⊤ − yxE(yx)⊤ − E(yx)yx⊤ + E(yx)E(yx)⊤]

=E[y2xx⊤] − E(yx)E(yx)⊤

=(σ2 + w⊤Λw)Λ+Λw⊤wΛ.

D.3 Deferred Proof for Parity Classification

D.3.1 Proof of Theorem 5.5.1

Here, we provide the proof of Theorem 5.5.1.

Theorem 5.5.1 (Optimal solution for parity). Consider k = 2ν1 ,d = 2ν2 , and let g∗1
and g∗2 denote the optimal solutions form = 2(ν1 + 1) andm = 2(ν2 + 1), respectively.

When 0 < pT <
1
4−γ

d(d−1)
2 (1

4+γ)+
1
4−γ

, g∗1 neurons are a subset of g∗2 neurons. Specifically,
for any i ∈ [2(ν2 + 1)], let V∗,(i) be diagonal matrix and

• For any i ∈ [ν2] and iτ ∈ [d], let a∗
i = −1 and V∗,(i)

iτ,iτ = (2 digit(bin(iτ − 1), i) −
1)/(4γ).

• For i = ν2 + 1 and any iτ ∈ [d], let a∗
i = +1 and V∗,(i)

iτ,iτ = −νj/(4γ) for g∗j .

• For i ∈ [2(ν2 + 1)] \ [ν2 + 1], let a∗
i = a∗

i−ν2−1 and V∗,(i) = −V∗,(i−ν2−1).

Let W∗,(i) = GV∗,(i)G⊤. Up to permutations, g∗2 has neurons (a∗, W∗,(1), . . . , W∗,(m))

and g∗1 has the {1, . . . ,ν1,ν2 + 1,ν2 + 2 . . . ,ν2 + ν1 + 1, 2ν2 + 2}-th neurons of g∗2 .

Proof of Theorem 5.5.1. Recall tτ = (iτ, jτ). Let zτ ∈ Rd satisfy zτ,iτ = zτ,jτ = 2γ and
all other entries are zero. Denote V(i) = G⊤W(i)G. Notice that ∥W(i)∥2

F = ∥V(i)∥2
F.

429

Thus, we denote V∗,(i) = G⊤W∗,(i)G. Then, we have

Eτ[ℓ(yτ,q · g(Xτ, yτ, xτ,q))]

=Eτ[ℓ(yτ,q(
∑
i∈[m]

aiσ[
y⊤
τ Xτ
N

W(i)xτ,q]))]

=Eτ[ℓ(yτ,q(
∑
i∈[m]

aiσ[z⊤
τV(i)ϕτ,q]))]

=Eτ[ℓ(yτ,q(
∑
i∈[m]

aiσ[2γ(V(i)
iτ,: + V(i)

jτ,:)ϕτ,q]))].

We can see that for any i ∈ [m], |a∗
i | = 1 and V∗,(i)

j,l = 0 when j ̸= l. As ReLU is a
homogeneous function, we have

Eτ[ℓ(yτ,q · g∗(Xτ, yτ, xτ,q))]

= (1 − pT)E[ℓ(2γϕτ,q,iτϕτ,q,jτ(
∑
i∈[m]

a∗
iσ[V

∗,(i)
iτ,iτϕτ,q,iτ + V∗,(i)

jτ,jτϕτ,q,jτ]))|tτ ∈ S1]︸ ︷︷ ︸
(I)

+ pTE[ℓ(2γϕτ,q,iτϕτ,q,jτ(
∑
i∈[m]

a∗
iσ[V

∗,(i)
iτ,iτϕτ,q,iτ + V∗,(i)

jτ,jτϕτ,q,jτ]))|tτ ∈ S2]︸ ︷︷ ︸
(II)

.

We have

(I) =(1 − pT) ·

{
(
1
4 + γ)E[ℓ(2γ(

∑
i∈[m]

a∗
iσ[V

∗,(i)
iτ,iτ + V∗,(i)

jτ,jτ]))|tτ ∈ S1]

+
1
4E[ℓ(−2γ(

∑
i∈[m]

a∗
iσ[V

∗,(i)
iτ,iτ − V∗,(i)

jτ,jτ]))|tτ ∈ S1]

+ (
1
4 − γ)E[ℓ(2γ(

∑
i∈[m]

a∗
iσ[−V∗,(i)

iτ,iτ − V∗,(i)
jτ,jτ]))|tτ ∈ S1]

+
1
4E[ℓ(−2γ(

∑
i∈[m]

a∗
iσ[−V∗,(i)

iτ,iτ + V∗,(i)
jτ,jτ]))|tτ ∈ S1]

}
.

430

We can get a similar equation for (II).

We make some definitions to be used. We define a pattern as (z1, {(iτ, z2), (jτ, z3)}),
where z1, z2, z3 ∈ {±1}. We define a pattern is covered by a neuron means there
exists i ∈ [m], such that a∗

i = z1 and sign(V∗,(i)
iτ,iτ) = z2 and sign(V∗,(i)

jτ,jτ) = z3. We
define a neuron as being positive when its a∗

i = +1 and being negative when its
a∗
i = −1. We define a pattern as being positive if z1 = +1 and being negative if
z1 = −1.

Then all terms in (I) and (II) can be written as:

αE[ℓ(2γz1(
∑
i∈[m]

a∗
iσ[z2V∗,(i)

iτ,iτ + z3V∗,(i)
jτ,jτ]))],

where α is the scalar term. Note that there are total k(k−1)
2 × 4 patterns in (I) and

(d(d−1)
2 − k(k−1)

2) × 4 patterns in (II). The loss depends on the weighted sum of
non-covered patterns. To have zero loss, we need all patterns to be covered bym
neurons, i.e., (a∗, V∗,(1), . . . , V∗,(m)).

Note that one neuron at most cover d(d−1)
2 patterns. Also, by 0 < pT <

1
4−γ

d(d−1)
2 (1

4+γ)+
1
4−γ

, we have

d(d− 1)
2 pT(

1
4 + γ) < (1 − pT)(

1
4 − γ),

which means the model will only cover all patterns in (I) before covering a pattern
in (II) in purpose.

Now, we show that the minimum number of neurons to cover all patterns in (I)
and (II) is 2(ν2 + 1).

First, we show that 2(ν2 + 1) neurons are enough to cover all patterns in (I) and
(II). For i ∈ [ν2] and iτ ∈ [d], V(i)

iτ,iτ = (2 digit(bin(iτ − 1), i) − 1)/(4γ) and all
non-diagonal entries in V(i) being zero and ai = −1. For i = ν2 + 1 and iτ ∈ [d],

431

V(i)
iτ,iτ = −ν2/(4γ) and all non-diagonal entries in V(i) being zero and ai = +1. For
i ∈ [2(ν2 + 1)] \ [ν2 + 1], let V(i) = −V(i−ν2−1) and ai = ai−ν2−1.

We can check that this construction can cover all patterns in (I) and (II) and
only needs 2(ν2 + 1) neurons. V(ν2+1) and V(2(ν2+1)) cover all positive patterns.
All other neurons cover all negative patterns. This is because bin(iτ) and bin(jτ)
have at least one digit difference. If bin(iτ) and bin(jτ) are different in the i-th
digit, then (−1, {(iτ,−1), (jτ,+1)}) and (−1, {(iτ,+1), (jτ,−1)}) are covered by the
i-th and i+ ν2 + 1-th neuron.

We can also check that the scalar 1
4γ and ν2

4γ is the optimal value. Note that

(1) For any negative patterns, the positive neurons will not have a cancellation
effect on the negative neurons, i.e., when yq = −1, the positive neurons will
never activate.

(2) For each negative neuron, there exist some patterns that are uniquely covered
by it.

(3) For any positive patterns, there are at most ν2 − 1 negative neurons that will
have a cancellation effect on the positive neurons, i.e., when yq = +1, these
negative neurons will activate simultaneously. Also, we can check that there
is a positive pattern such that there are ν2 − 1 negative neurons that will have
a cancellation effect.

(4) For two positive neurons, there exist some patterns that are uniquely covered
by one of them.

Due to hinge loss, we can see that 1
4γ is tight for negative neurons as (1) and (2).

Similarly, we can also see that ν2
4γ is tight for positive neurons as (3) and (4).

Second, we prove that we need at least 2(ν2+1) neurons to cover all patterns in (I)
and (II). We can see that we need at least 2 positive neurons to cover all positive
patterns. Then, we only need to show that 2ν2 − 1 neurons are not enough to cover
all negative patterns. We can prove that all negative patterns are covered equivalent

432

to all numbers from {0, 1, . . . , 2ν2 − 1} are encoded by {(V(1)
i,i , . . . , V(ν2)

i,i) | i ∈ [k]}.
Then 2ν2 − 1 is not enough to do so.

Therefore, the minimum number of neurons to cover all patterns in (I) and (II)
is 2(ν2 + 1).

Thus, when m = 2(ν1 + 1), the optimal solution will cover all patterns in (I)
but not all in (II). When m ⩾ 2(ν2 + 1), the optimal solution will cover all patterns
in (I) and (II). We see that g∗1 neurons as the subset of g∗2 neurons, while the only
difference is that the scalar of positive neurons is ν1

4γ for g∗1 and ν2
4γ for g∗2 . Thus, we

finished the proof.

D.3.2 Proof of Theorem 5.5.2

Here, we provide the proof of Theorem 5.5.2.

Theorem 5.5.2 (Behavior difference for parity). Assume the same condition as Theo-
rem 5.5.1. For j ∈ {1, 2}, Let θj denote the parameters of g∗j . For l ∈ [M], let ξl be uniformly
drawn from {±1}d, and Ξ =

∑
l∈[M] ξl

M
. Then, for any δ ∈ (0, 1), with probability at least

1 − δ over the randomness of test data, we have

g∗j (Xτ, yτ, xτ,q) = h(θj, 2γϕ̂τ,q + PDj(Ξ)) + ϵj

:=
∑
i∈[m]

a∗
iσ[diag(V∗,(i))⊤(2γϕ̂τ,q + PDj(Ξ))]+ϵj

where ϵj = O(
√
νj
M

log 1
δ
) and we have

• 2γϕ̂τ,q is the signal useful for prediction: 0 = ℓ(yq · h(θ1, 2γϕ̂τ,q)) = ℓ(yq ·
h(θ2, 2γϕ̂τ,q)).

• PD1(Ξ)) and PD2(Ξ)) is noise not related to labels, and E[∥PD1(Ξ))∥
2
2]

E[∥PD2(Ξ))∥
2
2]
= ν1+1
ν2+1 .

Proof of Theorem 5.5.2. Let Φτ = [ϕτ,1, . . . ,ϕτ,M]⊤ ∈ RM×d. Recall tτ = (iτ, jτ). Let
zτ ∈ Rd satisfy zτ,iτ = zτ,jτ = 2γ and all other entries are zero. We see tτ as an

433

index set and let rτ = [d] \ tτ. Then, we have

g∗2(Xτ, yτ, xτ,q)

=
∑
i∈[m]

a∗
iσ[

y⊤
τ Xτ
M

W∗,(i)xτ,q]

=
∑
i∈[m]

a∗
iσ[

y⊤
τΦ

τ

M
V∗,(i)ϕτ,q]

=
∑
i∈[m]

a∗
iσ[

y⊤
τΦ

τ
:,tτ

M
V∗,(i)

tτ,: ϕτ,q,tτ +
y⊤
τΦ

τ
:,rτ

M
V∗,(i)

rτ,: ϕτ,q,rτ].

Note that we can absorb the randomness of yτ,Φτ:,rτ ,ϕτ,q,rτ together.
Let zi for i ∈ [n] uniformly draw from {−1,+1}. By Chernoff bound for binomial

distribution (Theorem D.3), for any 0 < ϵ < 1, we have

Pr(|
∑
i∈[n] zi

n
| ⩾ ϵ) ⩽ 2 exp(−ϵ

2n

6).

Thus, for any 0 < δ < 1, with probability at least 1 − δ over the randomness of
evaluation data, such that

|Ξ⊤tτ diag(V∗,(i)
tτ,tτ)| ⩽ O(

√
1
M

log 1
δ
).

Then, for any 0 < δ < 1, with probability at least 1 − δ over the randomness of
evaluation data, we have

g∗2(Xτ, yτ, xτ,q)

=
∑
i∈[m]

a∗
iσ[

y⊤
τΦ

τ
:,tτ

M
V∗,(i)

tτ,: ϕτ,q,tτ + Ξ
⊤ diag(V∗,(i)) − Ξ⊤tτ diag(V∗,(i)

tτ,tτ)]

=
∑
i∈[m]

a∗
iσ[z⊤

τV∗,(i)
tτ,: ϕτ,q,tτ + Ξ

⊤ diag(V∗,(i)) − Ξ⊤tτ diag(V∗,(i)
tτ,tτ)]

=
∑
i∈[m]

a∗
iσ[2γdiag(V∗,(i)

tτ,tτ)
⊤ϕτ,q,tτ + Ξ

⊤ diag(V∗,(i)) − Ξ⊤tτ diag(V∗,(i)
tτ,tτ)]

434

=
∑
i∈[m]

a∗
iσ[diag(V∗,(i))⊤(2γϕ̂τ,q + Ξ) − Ξ

⊤
tτ diag(V∗,(i)

tτ,tτ)]

=
∑
i∈[m]

a∗
iσ[diag(V∗,(i))⊤(2γϕ̂τ,q + Ξ) +O(

√
1
M

log 1
δ
)]

=
∑
i∈[m]

a∗
iσ[diag(V∗,(i))⊤(2γϕ̂τ,q + PD2(Ξ)) +O(

√
1
M

log 1
δ
)]

= h(θ2, 2γϕ̂τ,q + PD2(Ξ)) +O(

√
ν2

M
log 1

δ
).

Similarly, we have g∗1(Xτ, yτ, xτ,q) = h(θ1, 2γϕ̂τ,q + PD1(Ξ)) +O(
√
ν1
M

log 1
δ
).

As tτ ∈ S1 and the number of (ϕiτ ,ϕjτ) being balanced as training, by careful
checking, we can see that ℓ(yq · h(θ1, 2γϕ̂τ,q)) = ℓ(yq · h(θ2, 2γϕ̂τ,q)) = 0 and we
have 2γϕ̂τ,q is the signal part.

On the other hand, we know that all the first half columns in D2 are orthogonal
with each other, and the second half columns in D2 are opposite to the first half
columns. We have the same fact to D1. As Ξ is a symmetric noise distribution, we
have E[∥PD1(Ξ))∥

2
2]

E[∥PD2(Ξ))∥
2
2]
= ν1+1
ν2+1 and we have PD1(Ξ)) and PD2(Ξ)) is the noise part.

D.3.3 Auxiliary Lemma

Lemma D.3 (Chernoff bound for binomial distribution). Let Z ∼ Bin(n,p) and let
µ = E[Z]. For any 0 < ϵ < 1, we have

Pr(|Z− µ| ⩾ ϵµ) ⩽ 2 exp(−ϵ
2µ

3).

435

e appendix for chapter 6

E.1 Proof of Theoretical Analysis

E.1.1 Auxiliary lemmas

We first present some Lemmas we will use later.

Lemma E.1. For the logistic loss ℓ(z) = ln(1+exp(−z)), we have the following statements
(1) ℓ(z) is strictly decreasing and convex function on R and ℓ(z) > 0; (2) ℓ ′(z) = −1

1+exp(z) ,
ℓ ′(z) ∈ (−1, 0); (3) ℓ ′(z) is strictly concave on [0,+∞), (4) for any c > 0, ℓ ′(z + c) ⩽
exp(−c)ℓ ′(z).

Proof. These can be verified by direct calculation.

Lemma E.2.

∂L(x,y)(w)

∂wj

= ℓ ′(yfw(x))zj, (E.1)

∂L(w)

∂wj

= E(x,y) [ℓ
′(yfw(x))zj] (E.2)

∂Lλ(w)

∂wj

= E(x,y) [ℓ
′(yfw(x))zj] + λwj (E.3)

Proof. These can be verified by direct calculation.

Lemma E.3. For any j ∈ R, we have probability density function of zj with mean 1
2 and

variance 1
12 following the form

f{zj}(z) =

1, if 0 ⩽ z ⩽ 1

0, otherwise .

436

For any j ∈ U, we have probability density function of zj with mean γ and variance 1
3 − γ

2

following the form

f{zj}(z) =

1
2 − γ, if − 1 ⩽ z < 0
1
2 + γ, if 0 ⩽ z ⩽ 1

0, otherwise .

Proof. Then these can be verified by direct calculation from the definition.

Lemma E.4. We haveP
[∑

j∈U zj ⩽ 0
]
⩽ exp

(
− (d−r)γ2

2

)
, P
[∑

j∈R zj ⩽ r
4

]
⩽ exp

(
−r8
)
.

Proof. By Hoeffding’s inequality,

P

[∑
j∈U

zj ⩽ 0
]
=P

[∑
j∈U

(zj − γ) ⩽ −(d− r)γ

]
(E.4)

⩽ exp
(
−
(d− r)γ2

2

)
. (E.5)

The others are proven in a similar way.

E.1.2 Optimal solution of ERM-ℓ2 on ID task

Lemma E.5 (Restatement of Lemma 6.1 (1)(2)). Consider the ID setting with the ERM-
ℓ2 objective function. Then the optimal w∗ for the ERM-ℓ2 objective function following
conditions (1) for any j ∈ R, w∗

j =: α and (2) for any j ∈ U, w∗
j := β.

Proof of Lemma E.5.

Lλ(w∗) =E(x,y)∼DidL(x,y)(w∗) +
λ

2∥w
∗∥2

2

=E(x,y)∼Didℓ(yfw∗(x)) + λ

2∥w
∗∥2

2

=E(x,y)∼Didℓ

(
d∑
j=1

w∗
j zj

)
+
λ

2∥w
∗∥2

2

437

By Lemma E.1, we have Lλ(w) a is convex function. By symmetry of zj, for any
l, l ′ ∈ R, l ̸= l ′,

E

[
ℓ

(
d∑
j=1

w∗
j zj

)]
+
λ

2∥w
∗∥2

2 (E.6)

=
1
2

E

ℓ
 ∑
j∈[d],j̸=l,j̸=l ′

w∗
j zj + w∗

lzl(x,y) + w∗
l ′zl ′(x,y)

+
λ

2∥w
∗∥2

2

 (E.7)

+
1
2

E

ℓ
 ∑
j∈[d],j̸=l,j̸=l ′

w∗
j zj + w∗

lzl ′(x,y) + w∗
l ′zl(x,y)

+
λ

2∥w
∗∥2

2

 (E.8)

⩾E

ℓ
 ∑
j∈[d],j̸=l,j̸=l ′

w∗
j zj +

w∗
l + w∗

l ′

2 zl ′(x,y) + w∗
l + w∗

l ′

2 zl(x,y)

+
λ

2∥w
∗∥2

2,

(E.9)

where the last inequality follows Jensen’s inequality. The minimum is achieved
when w∗

l = w∗
l ′ .

A similar argument as above proves statement (2).

Now, we will bound the α and β. Recall that for any j ∈ R, w∗
j =: α and for any

j ∈ U, w∗
j := β.

Lemma E.6 (Restatement of Lemma 6.1 (3)). Letα,β be values defined in the Lemma E.5.
Then, we have 0 < β < α < 1√

r
. Moreover, α

β
< 3

4γ .

Proof of Lemma E.6. By Lemma E.5

Lλ(w∗) =E

[
ℓ

(
α
∑
j∈R

zj + β
∑
j∈U

zj

)]
+
λ

2 (rα
2 + (d− r)β2) (E.10)

=Lλ(α,β). (E.11)

438

By Lemma E.2, we have for any j ∈ [d]

∂Lλ(w∗)

∂w∗
j

= E(x,y)∼Did [ℓ
′(yf∗w(x))zj] + λw∗

j = 0. (E.12)

We first prove β < α. For any j ∈ R, j ′ ∈ U, we have

λα =λw∗
j (E.13)

=− E(x,y)∼Did [ℓ
′(yf∗w(x))zj] (E.14)

>− E(x,y)∼Did [ℓ
′(yf∗w(x))zj ′(x,y)] (E.15)

=λw∗
j ′ = λβ. (E.16)

Then, we prove β ⩾ 0 by contradiction. Suppose β < 0,

Lλ(α,β) − Lλ(α,−β) (E.17)

=E

[
ℓ

(
α
∑
j∈R

zj + β
∑
j∈U

zj

)]
− E

[
ℓ

(
α
∑
j∈R

zj − β
∑
j∈U

zj

)]
. (E.18)

Note that for any j, j ′ ∈ U, j ̸= j ′, the norm of zj is independent with its sign and
zj, zj ′(x,y) are independent. From γ > 0, we can get P[zj > 0] > 1

2 . Thus, by ℓ
strictly decreasing we have

P

[
ℓ

(
α
∑
j∈R

zj + β
∑
j∈U

zj

)
⩾ z

]
> P

[
ℓ

(
α
∑
j∈R

zj − β
∑
j∈U

zj

)
⩾ z

]
, (E.19)

whereβ case is strictly stochastically dominate−β case. Thus,Lλ(α,β)−Lλ(α,−β) >
0. This is contradicted by β being the optimal value. Thus, we have β ⩾ 0.

Now, we prove α < 1√
r
, for any k ∈ R,

λα =− E(x,y)∼Did

[
ℓ ′

(
α
∑
j∈R

zj + β
∑
j∈U

zj

)
zk

]
(E.20)

439

⩽− E(x,y)∼Did

[
ℓ ′

(
α

∑
j∈R,j̸=k

zj + β
∑
j∈U

zj

)
zk

]
(E.21)

=− E

[
ℓ ′

(
α

∑
j∈R,j̸=k

zj + β
∑
j∈U

zj

)]
E[zk] (E.22)

=−
1
2E
[
ℓ ′

(
α

∑
j∈R,j̸=k

zj + β
∑
j∈U

zj

)∣∣∣∣∣∑
j∈U

zj > 0
]
P

[∑
j∈U

zj > 0
]

(E.23)

−
1
2E
[
ℓ ′

(
α

∑
j∈R,j̸=k

zj + β
∑
j∈U

zj

)∣∣∣∣∣∑
j∈U

zj ⩽ 0
]
P

[∑
j∈U

zj ⩽ 0
]

(E.24)

⩽−
1
2E
[
ℓ ′

(
α

∑
j∈R,j̸=k

zj

)]
+

1
2 exp

(
−
(d− r)γ2

2

)
, (E.25)

where the last inequality is from β ⩾ 0 and ℓ ′(z) ∈ (−1, 0). Using Lemma E.4 one
more time, we have

− E

[
ℓ ′

(
α

∑
j∈R,j̸=k

zj

)]
(E.26)

=− E

[
ℓ ′

(
α

∑
j∈R,j̸=k

zj

∣∣∣∣∣ ∑
j∈R,j̸=k

zj >
r− 1

4

)]
P

[∑
j∈R,j̸=k

zj >
r− 1

4

]
(E.27)

− E

[
ℓ ′

(
α

∑
j∈R,j̸=k

zj

∣∣∣∣∣ ∑
j∈R,j̸=k

zj ⩽
r− 1

4

)]
P

[∑
j∈R,j̸=k

zj ⩽
r− 1

4

]
(E.28)

⩽− ℓ ′
(
α(r− 1)

4

)
+

1
2 exp

(
−
r− 1

8

)
(E.29)

=
1

1 + exp
(
α(r−1)

4

) +
1
2 exp

(
−
r− 1

8

)
. (E.30)

Thus, we have

λα ⩽
1

2
(

1 + exp
(
α(r−1)

4

)) +
1
4 exp

(
−
r− 1

8

)
+

1
2 exp

(
−
(d− r)γ2

2

)
. (E.31)

440

Suppose α ⩾ 1√
r
, we have contradiction,

RHS <O
(

exp
(
−

√
r

5

))
< LHS. (E.32)

Thus, we get α < 1√
r
.

Now, we prove α
β

⩽ 3
4γ , for any k ∈ R, l ∈ U, denote Z = α

∑
j∈R,j̸=k zj +

β
∑
j∈U,j̸=l zj, by Lemma E.1, we have

α

β
=
−E

[
ℓ ′
(
α
∑
j∈R zj + β

∑
j∈U zj

)
zk
]

−E
[
ℓ ′
(
α
∑
j∈R zj + β

∑
j∈U zj

)
zl
] (E.33)

⩽
−E [ℓ ′ (Z) zk]

−E [ℓ ′ (Z+ 2α) zl|zl ⩾ 0]P[zl ⩾ 0] − E [ℓ ′ (Z) zl|zl < 0]P[zl < 0] (E.34)

=
−E [ℓ ′ (Z)]

−E [ℓ ′ (Z+ 2α)]
(1

2 + γ
)
+ E [ℓ ′ (Z)]

(1
2 − γ

) (E.35)

⩽
−E [ℓ ′ (Z)]

− exp(−2α)E [ℓ ′ (Z)]
(1

2 + γ
)
+ E [ℓ ′ (Z)]

(1
2 − γ

) (E.36)

=
1

exp(−2α)
(1

2 + γ
)
−
(1

2 − γ
) (E.37)

⩽
1

exp
(

−2√
r

) (1
2 + γ

)
−
(1

2 − γ
) (E.38)

⩽
1

2γ−
(

1 − exp
(

−2√
r

)) (E.39)

⩽
1

2γ− 2√
r

(E.40)

<
3

4γ , (E.41)

where the second inequality follows Lemma E.1 and the second last inequality
follows 1 + z ⩽ exp(z) for z ∈ R and γ > 3√

r
.

441

E.1.3 Optimal solution of ERM-rank on ID task

Lemma E.7. Consider ID setting with ERM-rank objective function. Denote Rrank is any
subset of R with size |Rrank| = Brank, we have an optimal w∗ for the ERM-rank objective
function following conditions (1) for any j ∈ Rrank, w∗

j > 0 and (2) for any j /∈ Rrank,
w∗
j = 0.

Proof of Lemma E.7. For any j ∈ U, if w∗
j = θ ̸= 0, there exists k ∈ R s.t. w∗

k = 0
by objective function condition. When we reassign w∗

j = 0, w∗
k = |θ|, the objective

function becomes smaller. This is a contradiction. Thus, we finish the proof.

E.1.4 OOD gap between two objective function

Proposition E.8 (Restatement of Proposition 6.3). Assume 1 ⩽ Brank ⩽ r, λ >

Ω

(
√
r

exp
(√

r
5

)
)

,d > r
γ2 + r, r > C, where C is some constant< 20. The optimal solution for

the ERM-rank objective function on the ID tasks has 100% OOD test accuracy, while the
optimal solution for the ERM-ℓ2 objective function on the ID tasks has OOD test accuracy
at most exp

(
− r

10

)
× 100% (much worse than random guessing).

Proof of Proposition E.8. We denote w∗
rank as the optimal solution for the ERM-rank

objective function. By Lemma E.7, the test accuracy for the ERM-rank objective
function is

P(x,y)∼Dood [yfw∗
rank

(x) ⩾ 0] =P(x,y)∼Dood

[∑
j∈R

w∗
rank,jzj +

∑
j∈U

zjw∗
rank,j ⩾ 0

]
(E.42)

=P(x,y)∼Dood

[∑
j∈R

w∗
rank,jzj ⩾ 0

]
(E.43)

=1. (E.44)

We denote w∗
ℓ2

as the optimal solution for the ERM-rank objective function. We
have α,β defined in Lemma E.6. By Lemma E.6, the test accuracy for the ERM-ℓ2

442

objective function is

P(x,y)∼Dood [yfw∗
ℓ2
(x) ⩾ 0] =P(x,y)∼Dood

[
α
∑
j∈R

zj + β
∑
j∈U

zj ⩾ 0
]

(E.45)

⩽P(x,y)∼Dood

[
3

4γ
∑
j∈R

zj +
∑
j∈U

zj ⩾ 0
]

(E.46)

=P

[
3

4γ
∑
j∈R

(
zj −

1
2

)
+
∑
j∈U

(zj + γ) ⩾ −
3r
8γ + (d− r)γ

]
(E.47)

By Hoeffding’s inequality and d > r
γ2 + r > 5r, we have

P

[
3

4γ
∑
j∈R

(
zj −

1
2

)
+
∑
j∈U

(zj + γ) ⩾ −
3r
8γ + (d− r)γ

]
(E.48)

⩽ exp

−
2
(
− 3r

8γ + (d− r)γ
)2

4d

 (E.49)

= exp
(
−

9r2

32γ2 + 2(d− r)2γ2 − 3r
2 (d− r)

4d

)
(E.50)

⩽ exp
(
−

2(d− r)2γ2 − 3r
2 (d− r)

5(d− r)

)
(E.51)

= exp
(
−

4(d− r)γ2 − 3r
10

)
(E.52)

⩽ exp
(
−
r

10

)
. (E.53)

E.2 More Experiments Details and Results

443

Algorithm C L S V Average
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
AND-mask 97.8 ± 0.4 64.3 ± 1.2 73.5 ± 0.7 76.8 ± 2.6 78.1
SelfReg 96.7 ± 0.4 65.2 ± 1.2 73.1 ± 1.3 76.2 ± 0.7 77.8
mDSDI 97.6 ± 0.1 66.4 ± 0.4 74.0 ± 0.6 77.8 ± 0.7 79.0
Fishr 98.9 ± 0.3 64.0 ± 0.5 71.5 ± 0.2 76.8 ± 0.7 77.8
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
ERM-NU (ours) 97.9 ± 0.4 65.1 ± 0.3 73.2 ± 0.9 76.9 ± 0.5 78.3
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
Mixup-NU (ours) 97.9 ± 0.2 64.1 ± 1.4 73.1 ± 0.9 74.8 ± 0.5 77.5
SWAD 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1
SWAD-NU (ours) 99.1 ± 0.4 63.6 ± 0.4 75.9 ± 0.4 80.5 ± 1.0 79.8

Table E.1: Results on VLCS. For each column, bold indicates the best performance,
and underline indicates the second-best performance.

444

Algorithm A C P S Average
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
AND-mask 85.3 ± 1.4 79.2 ± 2.0 96.9 ± 0.4 76.2 ± 1.4 84.4
SelfReg 87.9 ± 1.0 79.4 ± 1.4 96.8 ± 0.7 78.3 ± 1.2 85.6
mDSDI 87.7 ± 0.4 80.4 ± 0.7 98.1 ± 0.3 78.4 ± 1.2 86.2
Fishr 88.4 ± 0.2 78.7 ± 0.7 97.0 ± 0.1 77.8 ± 2.0 85.5
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
ERM-NU (ours) 87.4 ± 0.5 79.6 ± 0.9 96.3 ± 0.7 79.0 ± 0.5 85.6
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
Mixup-NU (ours) 86.7 ± 0.3 78.0 ± 1.3 97.3 ± 0.3 77.3 ± 2.0 84.8
SWAD 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1
SWAD-NU (ours) 89.8 ± 1.1 82.8 ± 1.0 97.7 ± 0.3 83.7 ± 1.1 88.5

Table E.2: Results on PACS.

445

Algorithm A C P R Average
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
AND-mask 59.5 ± 1.1 51.7 ± 0.2 73.9 ± 0.4 77.1 ± 0.2 65.6
SelfReg 63.6 ± 1.4 53.1 ± 1.0 76.9 ± 0.4 78.1 ± 0.4 67.9
mDSDI 62.4 ± 0.5 54.4 ± 0.4 76.2 ± 0.5 78.3 ± 0.1 67.8
Fishr 68.1 ± 0.3 52.1 ± 0.4 76.0 ± 0.2 80.4 ± 0.2 69.2
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
ERM-NU (ours) 63.3 ± 0.2 54.2 ± 0.3 76.7 ± 0.2 78.2 ± 0.3 68.1
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
Mixup-NU (ours) 64.3 ± 0.5 55.9 ± 0.6 76.9 ± 0.4 78.0 ± 0.6 68.8
SWAD 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6
SWAD-NU (ours) 67.5 ± 0.3 58.4 ± 0.6 78.6 ± 0.9 80.7 ± 0.1 71.3

Table E.3: Results on OfficeHome.

446

Algorithm L100 L38 L43 L46 Average
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
AND-mask 50.0 ± 2.9 40.2 ± 0.8 53.3 ± 0.7 34.8 ± 1.9 44.6
SelfReg 48.8 ± 0.9 41.3 ± 1.8 57.3 ± 0.7 40.6 ± 0.9 47.0
mDSDI 53.2 ± 3.0 43.3 ± 1.0 56.7 ± 0.5 39.2 ± 1.3 48.1
Fishr 50.2 ± 3.9 43.9 ± 0.8 55.7 ± 2.2 39.8 ± 1.0 47.4
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
ERM-NU (ours) 52.5 ± 1.2 45.0 ± 0.5 60.2 ± 0.2 40.7 ± 1.0 49.6
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
Mixup-NU (ours) 55.1 ± 3.1 45.8 ± 0.7 56.4 ± 1.2 41.1 ± 0.6 49.6
SWAD 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0
SWAD-NU (ours) 58.1 ± 3.3 47.7 ± 1.6 60.5 ± 0.8 42.3 ± 0.9 52.2

Table E.4: Results on Terra Incognita.

447

Algorithm clip info paint quick real sketch Average
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 16.6 ± 0.3 41.6 ± 1.1 11.3 ± 0.1 55.8 ± 0.4 45.4 ± 0.9 37.2
SelfReg 58.5 ± 0.1 20.7 ± 0.1 47.3 ± 0.3 13.1 ± 0.3 58.2 ± 0.2 51.1 ± 0.3 41.5
mDSDI 62.1 ± 0.3 19.1 ± 0.4 49.4 ± 0.4 12.8 ± 0.7 62.9 ± 0.3 50.4 ± 0.4 42.8
Fishr 58.2 ± 0.5 20.2 ± 0.2 47.7 ± 0.3 12.7 ± 0.2 60.3 ± 0.2 50.8 ± 0.1 41.7
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
ERM-NU (ours) 60.9 ± 0.0 21.1 ± 0.2 49.9 ± 0.3 13.7 ± 0.2 62.5 ± 0.2 52.5 ± 0.4 43.4
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
Mixup-NU (ours) 59.5 ± 0.3 20.5 ± 0.1 49.3 ± 0.4 13.3 ± 0.5 59.6 ± 0.3 51.5 ± 0.2 42.3
SWAD 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5
SWAD-NU (ours) 66.6 ± 0.2 23.2 ± 0.2 54.3 ± 0.2 16.2 ± 0.2 66.1 ± 0.6 56.2 ± 0.2 47.1

Table E.5: Results on DomainNet.

Algorithm VLCS PACS OfficeHome TerraInc DomainNet Average
SWAD 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 66.9
SWAD-CORAL 78.9 ± 0.1 88.3 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 46.8 ± 0.0 67.3
SWAD-MIRO 79.6 ± 0.2 88.4 ± 0.1 72.4 ± 0.1 52.9 ± 0.2 47.0 ± 0.0 68.1
SWAD-NU (ours) 79.8 ± 0.2 88.5 ± 0.2 71.3 ± 0.3 52.2 ± 0.3 47.1 ± 0.1 67.8

Table E.6: Methods combined with SWAD full results on DomainBed benchmark.

448

f appendix for chapter 7

F.1 Proofs for Section 7.2.1
Theorem F.1 (Restatement of Theorem 7.1). If ℓ(t) = −t, then the contrastive loss is
equivalent to the PCA objective on ϕzR :

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕzR − ϕ0∥2] . (F.1)

If additionally ϕ(x) is linear in x, then the contrastive loss is equivalent to the linear PCA
objective on data from the distribution px̄ of x̄ = EzU [x]:

E
[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
= −E

[
∥ϕ(x̄) − ϕ0∥2] . (F.2)

Proof. We first present some preliminaries for the proof. Recall that in our hid-
den representation data model x = g(z). The learned representation is ϕ(x) =

ϕ(g(z)) = ϕ ◦ g(z). For brevity, let us define ϕ(x) = ϕ ◦ g(z) := h(z). Also, the
hidden representations corresponding to (x, x+, x−) are given by (z, z+, z−), where

z = [zR ; zU], z+ = [zR ; z+U], z− = [z−R ; z−U],

where zR and z−R are sampled independently from the distribution DR; and zU, z+U,
and z−U are sampled independently from the distribution DU. The expectation of
an arbitrary function f(z, z+, z−) can be simplified as follows:

E(z,z+,z−) [f(z, z+, z−)] = E(zR,z−R ,zU,z+U,z−U) [f(z, z
+, z−)]

= E(zR,z−R)

[
E(zU,z+U,z−U) [f(z, z

+, z−) | zR, z−R]
]

.

The second step follows the law of iterated expectations.
The negative expected contrastive loss is

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.3)

449

= −E(z,z+,z−)

[
ℓ
(
ϕ(g(z))⊤[ϕ(g(z+)) − ϕ(g(z−))]

)]
(F.4)

= E(z,z+,z−)

[
h(z)⊤[h(z+) − h(z−)]

]
(F.5)

= E(zR,z−R)
[
E
[
h(z)⊤[h(z+) − h(z−)] | zR, z−R

]]
(F.6)

= E(zR,z−R)

[
E [h(z) | zR]

⊤ (E [h(z+) | zR] − E [h(z−) | z−R])
]

(F.7)

= E(zR,z−R)

[
E [ϕ(x) | zR]

⊤ (E [ϕ(x+) | zR] − E [ϕ(x−) | z−R])
]

(F.8)

= E(zR,z−R)

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
. (F.9)

The second equality follows from the choice of loss ℓ(t) = −t, and the fourth
equality follows from the fact that zU, z+U, and z−U are sampled independently from
the distribution DU. Also, we have defined ϕzR := E [ϕ(x) | zR].

Denote the centered representation as ϕ̄zR = ϕzR − ϕ0. Then we have

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.10)

= E(zR,z−R)

[
ϕ⊤
zR

(
ϕzR − ϕz−R

)]
(F.11)

= E(zR,z−R)

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR + ϕ0 − ϕ̄z−R − ϕ0

)]
(F.12)

= E(zR,z−R)

[
(ϕ̄zR + ϕ0)

⊤
(
ϕ̄zR − ϕ̄z−R

)]
(F.13)

= E(zR,z−R)

[
ϕ̄⊤
zR
ϕ̄zR − ϕ̄

⊤
zR
ϕ̄z−R

]
+ E(zR,z−R)

[
ϕ⊤

0

(
ϕ̄zR − ϕ̄z−R

)]
. (F.14)

Since ϕ̄zR and ϕ̄z−R are independent with mean 0, we have E(zR,z−R)[ϕ̄
⊤
zR
ϕ̄z−R] =

0, E(zR,z−R)[ϕ
⊤
0 ϕ̄zR] = 0, and E(zR,z−R)[ϕ

⊤
0 ϕ̄z−R] = 0. Therefore,

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.15)

= EzR
[
ϕ̄⊤
zR
ϕ̄zR
]

(F.16)

= EzR
[
∥ϕ̄zR∥2] (F.17)

= EzR
[
∥ϕzR − ϕ0∥2] , (F.18)

which is the PCA objective on the mean representation ϕzR .

450

If additionally ϕ(x) is linear in x, then

− E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.19)

= EzR
[
∥ϕzR − ϕ0∥2] (F.20)

= Ex̄
[
∥ϕ(x̄) − ϕ(x0)∥2] (F.21)

which is the linear PCA objective on the data from the distribution of x̄ = E[x|zR].

Theorem F.2 (Restatement of Theorem 7.2). Under Assumptions (A1)(A2)(A3):

(1) The optimal representation ϕ∗ does not encode zU: ϕ∗ ◦ g(z) is independent of zU.

(2) For any invariant feature i ∈ R, there exists Bi > 0 such that as long as the repre-
sentations’ norm Br ⩾ Bi, the optimal representation encodes zi. Furthermore, if zR
is discrete, then Bi is monotonically decreasing in Pr[zR\{i} = z−R\{i}, zi ̸= z

−
i], the

probability that in zR and z−R , the i-th feature varies while the others remain the same.

Proof. (1) Recall that

ϕzR = E[ϕ ◦ g(z) | zR], ϕ0 = Ez[ϕ ◦ g(z)] = EzR[ϕzR]. (F.22)

Then the contrastive loss at pre-training is:

E(x,x+,x−)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − ϕ(x−)]

)]
(F.23)

= E(z,z+,z−)

[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−))

)]
(F.24)

= E(zR,z−R)
[
E
[
ℓ
(
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−))

)
| zR, z−R

]]
(F.25)

⩾ E(zR,z−R)
[
ℓ
(
E
[
(ϕ ◦ g(z))⊤(ϕ ◦ g(z+) − ϕ ◦ g(z−)) | zR, z−R

])]
(F.26)

= E(zR,z−R)
[
ℓ
(
E[ϕ ◦ g(z) | zR]⊤

(
E[ϕ ◦ g(z+) | zR] − E[ϕ ◦ g(z−) | z−R]

))]
(F.27)

= E(zR,z−R)

[
ℓ
(
ϕ⊤
zR
ϕzR − ϕ

⊤
zR
ϕz−R

)]
, (F.28)

where the inequality comes from the convexity of ℓ(z) and Jensen’s inequality
applied to the inner expectation. The inequality becomes equality when the repre-

451

sentation function ϕ is invariant to the spurious features zU, i.e., with probability 1
over the distribution, ϕ ◦ g(z) = ϕzR . Therefore, the spurious features zU are not
encoded in the optimal representation, proving the first part.

(2) First consider the case when z has discrete values from a finite set. When
the generative function g(z) is not independent of zi, we assume for contradiction
that the optimal representation ϕ is independent of zi. From (1), we know that it
is independent of zU. So there exists an f such that ϕ ◦ g(z) = f(zR\{i}). Without
loss of generality, suppose U = ∅, then ϕ ◦ g(z) = f(z−i).

Since the generative function g(z) is not independent of zi, there exist z and z−,
such that z−i = z−−i, zi ̸= z−i , g(z) ̸= g(z−), and z, z− have non-zero probabilities.
So Pr[z−i = z−−i, zi ̸= z−i] > 0.

Now construct a new representation function ϕ̄ ∈ Rk+n,n = |Z| such that
ϕ̄ ◦ g(z) = h(z) as follows :

h(z) =
[√

1 − α2f(z−i), α∥f(z−i)∥Iz
]

(F.29)

where Iz is the one-hot encoding of the value z. Note that ϕ̄ still satisfies that norm
bound since ∥ϕ̄(x)∥ = ∥h(z)∥ = ∥f(z−i)∥. We next show that the contrastive loss of
ϕ̄ can be smaller than that of ϕ, leading to a contradiction and finishing the proof.

The contrastive loss of ϕ̄ (using the fact that z+ = z when U = ∅) is

E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)]
(F.30)

= E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] + Ez,z− [ℓ(0)]Pr[z = z−].

(F.31)

We only need to consider the first term.

E(z,z−)

[
ℓ
(
h(z)⊤h(z) − h(z)⊤h(z−)

)
| z ̸= z−

]
Pr[z ̸= z−] (F.32)

= E(z,z−)

[
ℓ
(
∥f(z−i)∥2 − (1 − α2)f(z−i)

⊤f(z−−i)
)︸ ︷︷ ︸

T1

| z−i ̸= z−−i
]

Pr[z−i ̸= z−−i]

(F.33)

452

+ E(z,z−)

[
ℓ
(
α2∥f(z−i)∥2)︸ ︷︷ ︸

T2

| z−i = z
−
−i, zi ̸= z−i

]
Pr[z−i = z−−i, zi ̸= z−i]. (F.34)

When α = 0, the above reduces to the corresponding terms for ϕ, so we would like
to show that there exists non-zero α that leads to smaller loss values.

Recall that ℓ(·) is decreasing by property (A3). Let α =
√

1/2/Br, where
Br = ∥f(z−i)∥. Then when switching from ϕ to ϕ̄, T2 goes from ℓ(0) to ℓ(1/2), a con-
stant reduction. For T1, if f(z−i)⊤f(z−−i) is positive, then T1 decreases; if f(z−i)⊤f(z−−i)
is negative, then T1 increases from ℓ(B2

r − f(z−i)
⊤f(z−−i)) to ℓ(B2

r − f(z−i)
⊤f(z−−i) +

α2f(z−i)
⊤f(z−−i)). Note that |α2f(z−i)

⊤f(z−−i)| ⩽ 1 (by the Cauchy-Schwarz inequal-
ity); so the increase in T1 diminishes whenBr grows, by the property (A3) of ℓ. Then
when Br is large enough, the increase in T1 is smaller than the decrease in T2. So
from ϕ to ϕ̄, the contrastive loss decreases, contradicting that ϕ is optimal. Finally,
since the reduction in (F.34) is smaller when Pr[z−i = z−−i, zi ̸= z−i] is smaller, then
Bi needs to be larger. So Bi is monotonically decreasing in Pr[z−i = z−−i, zi ̸= z−i].

Now consider the general case when z may not be from a finite set. For any
ϵ0 > 0, there exists a ℓ2 ball B of bounded radius such that the probability of z
outside the ball is at most ϵ0. Since ϕ ◦ g’s are regular by assumption, there exists
a partition Z ∩B into finitely many subsets such that in each subset and for each
ϕ ◦ g, the function value varies by at most ϵ0. Construct a new distribution D ′

z

for z: select a representative point in each subset, and put a probability mass to
it equal to that of the original distribution Dz in this subset, and normalize the
probabilities over the subsets. The new distribution is over a finite set so the above
argument holds. Furthermore, the difference in the T1 term for D ′

z and Dz can be
made arbitrarily small by choosing sufficiently small ϵ0; similarly for T2. Then the
argument also holds for Dz, which completes the proof for the general case.

453

F.1.1 Inductive Biases are Needed for Analyzing Prediction
Success

We have analyzed what features are encoded in the representation. However, encod-
ing the information does not equate to good prediction performance, in particular,
with linear predictors. Recently, Saunshi et al. (2022) demonstrated that existing
analyses that ignore the inductive biases of the model and algorithm cannot ade-
quately explain the prediction success, and provided examples where such analysis
can lead to vacuous bounds. One may wonder if our hidden representation data
model can provide inductive biases that avoid such vacuous bounds. Unfortunately,
similar issues as in Saunshi et al. (2022) remain.

To illustrate that inductive biases are still needed in our data model, consider
the following simple example. Suppose zR ∈ {−1, 1}2 and can be recovered from
x; the label y is simply the first coordinate in zR. Suppose the representation
satisfies ϕ(x) ∈ R2, ∥ϕ(x)∥ = 1, and contrastive learning uses the logistic loss ℓ(z).
Let ϕ(x) be such that ϕ ◦ g(z) = h(zR), and h((−1,−1)) = (−1, 0),h((−1, 1)) =

(1, 0),h((1,−1)) = (0,−1),h((1, 1)) = (0, 1). It can be verified that this ϕ is optimal
for the contrastive loss. However, on the representation ϕ, the classification is an
XOR-problem (Fig. F.1), for which there is no non-trivial error bound for linear
predictors. This contradicts the success of linear probing in practice.

Furthermore, some restrictions on the data distributions are also needed. Sup-
pose all optimal representations are linearly separable with certain inductive biases
on the representation function class. Suppose the label y depends on zR. Without
restrictions on the labeling function, one can consider a random y ∈ {−1,+1} over
any zR. Then for any linear predictor on any optimal representation, in expectation
the error is 1/2, so there is always a labeling function for which no non-trivial error
can be achieved. Our analysis thus requires restrictions on the dependence of the
label on zR (in particular, we will assume linear dependence).

454

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

XOR structure in the space of in 2-d

y=1
y=-1

Figure F.1: A two-dim example of XOR structure in the space of ϕ.

F.2 Proofs and More Analysis for Section 7.2.2

F.2.1 Lemmas for a more general setting

We will prove the results in a more general setting, where the mixture can be
uneven and the variances of different types of features can be different. The results
in Section 7.2.2 then follow from these lemmas.

In the more general setting, the diverse pre-training data is a mixture of data
from T different tasks Dt’s, while the target task is one of the tasks. In the mixture,
the task Dt has weight wt > 0 and

∑T
t=1wt = 1. All tasks share a public feature

set S of size s, and each task Dt additionally owns a private disjoint feature set Pt
of size r − s, i.e., Pt ∩ S = ∅ for t ∈ [T] and Pt1 ∩ Pt2 = ∅ for t1 ̸= t2. The invariant
features for Dt are then Rt = S ∪ Pt. All invariant features are ∪Tt=1Rt ⊆ R, k := |R|,
and spurious features are U = [d] \ R. In task Dt, the positive pairs (x, x+) are
generated as follows:

zS ∼ N(0,σ2
S,tI), zPt ∼ N(0,σ2

R,tI), zR\Rt = 0, (F.35)

zU ∼ N(0,σ2
U,tI), z = [zR; zU], x = g(z), (F.36)

z+U ∼ N(0,σ2
U,tI), z+ = [zR; z+U], x+ = g(z+), (F.37)

455

and x− is simply an i.i.d. copy from the same distribution as x. In practice, multiple
independent negative examples are used, and thus we consider the following
contrastive loss

min
ϕ∈Φ

E(x,x+)

[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
(F.38)

to pre-train a representation ϕ. Then, when using ϕ for prediction in the target
task Dt, the predictor class should contain a predictor matching the ground-truth
label, so consider the class:

Fϕ,t = {f(z) = u⊤
t z : ut ∈ Rk, ∥ut∥ ⩽ Bϕ,t} (F.39)

where Bϕ,t is the minimum value such that there exists ut ∈ Fϕ,t with y = u⊤
t ϕ(x)

on Dt.
Recall that we assume a linear data model and linear representation functions

ϕ:

• x is linear in z: x = g(z) =MzwhereM ∈ Rd×d is an orthonormal dictionary.
The label in task Dt is linear in its invariant features y = (u∗

t)
⊤zRt for some

u∗
t ∈ Rr.

• The representations are linear functions with weights of bounded spectral/Frobe-
nius norms:

Φ = {ϕ(x) =Wx :W∈Rk×d, ∥W∥⩽1, ∥W∥F⩽
√
r}.

Here the norm bounds are chosen to be the minimum values to allow recov-
ering the invariant features in the target task, i.e., there exists ϕ ∈ Φ such that
ϕ(x) = [zRt ; 0].

Lemma F.3. Consider the above setting. Let α,αt(t ∈ [T]) be the optimizer for

min
α̃,α̃1,...,α̃T

T∑
t=1

wtE
[
ℓ
(
α̃σ2

S,tZ+ α̃tσ
2
R,tZt

)]
, (F.40)

456

subject to α̃s+

T∑
t=1

α̃t(r− s) ⩽ r, (F.41)

α̃, α̃t ∈ [0, 1], (F.42)

where Z ∼ χ2
s and Zt ∼ χ2

r−s.
Then the optimal representation ϕ∗(x) the loss (F.38) in contrastive learning satisfies

ϕ∗(x) =W∗x with anyW∗ of the form:

W∗ = [QA∗, 0]M−1 (F.43)

where Q ∈ Rk×k is any orthonormal matrices, A∗ is a k× k diagonal matrix with

A∗
jj =

√
α if j ∈ S,
√
αt if j ∈ Pt,

0 otherwise,

(F.44)

and the matrix of zeros has size k× (d− k).

Proof. For each Dt,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − Ex−ϕ(x−)]

)]
(F.45)

= E(z,z+)

[
ℓ
(
(WMz)⊤(WMz+ − Ez−[WMz−])

)]
(F.46)

= E(z,z+)

[
ℓ
(
z⊤(M⊤W⊤WM)(z+ − Ez−[z−])

)]
(F.47)

⩾ EzR
[
ℓ
(
(EzU [z])

⊤M⊤W⊤WM(Ez+U [z
+] − Ez−[z−])

)]
(F.48)

= EzR
[
ℓ
(
[zR; 0]⊤M⊤W⊤WM([zR; 0] − 0)

)]
(F.49)

= EzR
[
ℓ
(
∥WM[zR; 0]∥2)] (F.50)

where the inequality comes from the convexity of ℓ(t) and Jensen’s inequality.
Similar to Theorem 7.2, the equality holds if and only ifWMz does not depend on
zU andWMz+ does not depend on z+U, so the optimal solution should satisfy this
condition.

457

LetWM = [AR,AU]whereAR ∈ Rk×k,AU ∈ Rk×(d−k). By rotational invariance
of zS, and zPt , without loss of generality, we can assume AR = QA where A is
a diagonal matrix with diagonal entries ajj’s and Q is any orthonormal matrix.
Furthermore, AU = 0 in the optimal solution since it does not affect the loss but
only decreases the norm bound on AR. So on data from the task Dt,

EDt

[
ℓ
(
∥WM[zR; 0]∥2)] = EzRt

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
. (F.51)

Then on the mixture,

E(x,x+)

[
ℓ
(
ϕ(x)⊤[ϕ(x+) − Ex−ϕ(x−)]

)]
(F.52)

⩾
T∑
t=1

wtE{zj}

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.53)

=

T∑
t=1

wtE{z̃j∼N(0,1)}

[
ℓ

(∑
j∈S

a2
jjσ

2
S,tz̃

2
j +

∑
j∈Pt

a2
jjσ

2
R,tz̃

2
j

)]
(F.54)

:=g({ajj}), (F.55)

where each z̃j is a random variable drawn from standard Gaussian.
Now consider the minimum of the function g({ajj}) on the right hand side,

under the constraints that |ajj| ⩽ 1 and
∑
j a

2
jj ⩽ r. Before finishing the proof of

Lemma F.3, we have the following claim for this optimization.

Claim F.4. There exist α,αt satisfying 0 ⩽ α,αt ⩽ 1 and αs +
∑T
t=1 αt(r − s) =∑

j a
2
jj ⩽ r, such that the minimum of the above optimization (F.55) is achieved when

a2
jj = α for any j ∈ S, and a2

jj = αt for any j ∈ Pt and t ∈ [T].

Proof. We need to prove that to achieve the minimum,

(1) a2
ℓℓ = a

2
ℓ ′ℓ ′ for any ℓ ̸= ℓ ′ ∈ S;

(2) a2
ℓℓ = a

2
ℓ ′ℓ ′ for any ℓ ̸= ℓ ′ ∈ Pt and any t ∈ [T];

458

For (1): By symmetry of zj’s and the convexity of ℓ(·), for any t ∈ [T],

E

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.56)

=
1
2E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j + a

2
ℓℓz

2
ℓ + a

2
ℓ ′ℓ ′z

2
ℓ ′ +

∑
j∈Pt

a2
jjz

2
j

 (F.57)

+
1
2E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j + a

2
ℓℓz

2
ℓ ′ + a

2
ℓ ′ℓ ′z

2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 (F.58)

⩾ E

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j +

a2
ℓℓ + a

2
ℓ ′ℓ ′

2 z2
ℓ ′ +

a2
ℓℓ + a

2
ℓ ′ℓ ′

2 z2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 . (F.59)

Then

g({ajj}) (F.60)

⩾
T∑
t=1

wtE

ℓ
 ∑
j∈S,j̸=ℓ,j̸=ℓ ′

a2
jjz

2
j +

a2
ℓℓ + a

2
ℓ ′ℓ ′

2 z2
ℓ ′ +

a2
ℓℓ + a

2
ℓ ′ℓ ′

2 z2
ℓ +

∑
j∈Pt

a2
jjz

2
j

 .

(F.61)

Therefore, the minimum is achieved when a2
ℓℓ = a

2
ℓ ′ℓ ′ .

A similar argument as above proves statement (2).

These statements mean that, for any t ∈ [T], the minimum is achieved when
a2
jj = α for j ∈ S, and a2

jj = αt for j ∈ Pt, for some values α,αt ⩾ 0. Let Z =∑
j∈S z̃

2
j ,Zt =

∑
j∈Pt z̃

2
j . Then Z ∼ χ2

s and Zt ∼ χ2
r−s, and we have:

g({ajj}) =

T∑
t=1

wtE

[
ℓ

(∑
j∈S

ασ2
S,tz̃

2
j +

∑
j∈Pt

αtσ
2
R,tz̃

2
j

)]
(F.62)

=

T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ+ αtσ
2
R,tZt

)]
. (F.63)

459

Given the constraint αs+
∑T
t=1 αt(r− s) =

∑
j a

2
jj ⩽ r, 0 ⩽ α,αt ⩽ 1, we complete

the proof of Lemma F.3.

Given this result we can now analyze the generalization error when predicting
on the target task Dt.

Lemma F.5. Consider any t ∈ [T]. Let vt,1 =
∑
j∈S(u

∗
t)

2
j and vt,2 =

∑
j∈Pt(u

∗
t)

2
j .

Suppose in ϕ∗ (calculated in Lemma F.3), α,αt > 0. Suppose the prediction loss ℓc is
L-Lipschitz.

Then the Empirical Risk Minimizer ût ∈ Fϕ∗,t on ϕ∗ usingm labeled data points from
Dt has risk

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x),y)] ⩽ 8
√

2 ln(4/δ)
m

+ 4L

√
1
m

(
vt,1

α
+
vt,2

αt

)(√
sασ2

S,t + (r− s)αtσ2
R,t +O

(√
max{ασ2

S,t,αtσ2
R,t}

2r

sασ2
S,t + (r− s)αtσ2

R,t

))
.

Proof. For any t ∈ [T], we only need to bound the Rademacher complexityRm(Fϕ∗,t)

of Fϕ∗,t; the statement then follows from standard generalization bounds,

E(x,y)∼Dt
[ℓc(ût

⊤ϕ∗(x),y)] ⩽ 4LRm(Fϕ∗,t) + 8
√

2 ln(4/δ)
m

.

Given the representation ϕ∗ in Lemma F.3, to ensure there exists a predictor
in Fϕ∗,t matching the ground-truth label, f(ϕ∗(x)) = u⊤

t ϕ
∗(x) = y = (u∗

t)
⊤zRt ,

predictor ut should satisfy

EDt
[(ŷ− y)2] = 0⇔∀zRt , ut

⊤[QA∗, 0]M−1M[zRt ; 0; zU] = u∗
t
⊤zRt (F.64)

⇔∀zRt , ut
⊤QA∗[zRt ; 0] = u∗

t
⊤zRt (F.65)

(∗)⇔A∗
1:r,1:r(Q

⊤)1:r,1:kut = u
∗
t (F.66)

⇔∀v ∈ Rr, ut = Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t +Q1:k,r+1:kv. (F.67)

460

The (∗) is from non-zero variance for zRt . ut = Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t is the least-norm

optimal solution, so we have Bϕ∗,t = ∥Q1:k,1:r(A
∗
1:r,1:r)

−1u∗
t∥ =

√
vt,1
α

+
vt,2
αt

. So the
predictor class should be

Fϕ∗,t =

{
f(ϕ∗) = u⊤

t ϕ
∗ : ut ∈ Rk, ∥ut∥ ⩽ Bϕ∗,t =

√
vt,1

α
+
vt,2

αt

}
. (F.68)

The empirical Rademacher complexity and Rademacher complexity of Fϕ∗,t

withm samples are

R̂m(Fϕ∗,t) =
1
m

Eσ

[
sup

fu,ϕ∈Fϕ∗ ,t

m∑
i=1

σifu,ϕ(x
(i))

]
(F.69)

=
1
m

Eσ

[
sup

∥u∥⩽Bϕ∗ ,t

m∑
i=1

σiut
⊤QA∗[z

(i)
Rt

; 0]
]

(F.70)

=
1
m

Eσ

[
sup

∥u∥⩽Bϕ∗ ,t

ut
⊤
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

]
(F.71)

=
Bϕ∗,t

m
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]

, (F.72)

Rm(Fϕ∗,t) =EzR,zU

[
R̂m(Fϕ∗,t)

]
(F.73)

=
Bϕ∗,t

m
E
z
(i)
Rt

[
Eσ

[∥∥∥∥∥
m∑
i=1

σiQ1:k,1:rA
∗
1:r,1:rz

(i)
Rt

∥∥∥∥∥
]]

(F.74)

=
Bϕ∗,t

m
E
z
(i)
Rt

[∥∥∥∥∥A∗
1:r,1:r

m∑
i=1

z
(i)
Rt

∥∥∥∥∥
]

. (F.75)

For any t ∈ [T], define Xt := A∗
1:r,1:r

∑m
i=1 z

(i)
Rt

. Note that for j ∈ S, Xt,j = α
∑m
i=1 z

(i)
j

is a Gaussian of mean zero and variance

E[X2
t,j] = αE

(m∑
i=1

z
(i)
j

)2
 = αE

[
m∑
i=1

(
z
(i)
j

)2
]
= mασ2

S,t.

461

Similarly, for j ∈ Pt, Xt,j = αt
∑m
i=1 z

(i)
j is a Gaussian of mean zero and variance

E[X2
t,j] = mαtσ

2
R,t. Since Xt,j is sub-gaussian, X2

t,j −mασ
2
S,t for j ∈ S and X2

t,j −

mαtσ
2
R,t for j ∈ Pt are sub-exponential and more precisely

∥X2
t,j −mασ

2
S,t∥ψ1 ⩽ C1∥X2

t,j∥ψ1 = C1∥Xt,j∥2
ψ2

⩽ C2mασ
2
S,t, j ∈ S, (F.76)

∥X2
t,j −mαtσ

2
R,t∥ψ1 ⩽ C1∥X2

t,j∥ψ1 = C1∥Xt,j∥2
ψ2

⩽ C2mαtσ
2
R,t, j ∈ Pt, (F.77)

whereC1,C2 are absolute constants andC2 > 1. LetK = max(C2mασ
2
S,t,C2mαtσ

2
R,t) =

C2mmax{ασ2
S,t,αtσ2

R,t} and µ := m(sασ2
S,t + (r− s)αtσ

2
R,t). By Bernstein’s inequal-

ity, we have for every γ ⩾ 0 that

P
{∣∣∣∣1r (∥Xt∥2 − µ)

∣∣∣∣ ⩾ γ} ⩽ 2 exp
[
−cmin

(
γ2

K2 , γ
K

)
r

]
(F.78)

⇒P
{∣∣∣∣∥Xt∥2

µ
− 1
∣∣∣∣ ⩾ rγ

µ

}
(F.79)

⩽ 2 exp
[
−
c

C2
2

min
(

γ2

m2 max{ασ2
S,t,αtσ2

R,t}
2 , γ

mmax{ασ2
S,t,αtσ2

R,t}

)
r

]
, (F.80)

where c is an absolute constant. For all numbers z ⩾ 0, we have |z − 1| ⩾ δ ⇒
|z2 − 1| ⩾ max(δ, δ2). Thus, for any δ ⩾ 0, we have

P
{∣∣∣∣∥Xt∥√µ − 1

∣∣∣∣ ⩾ δ} (F.81)

⩽P
{∣∣∣∣∥Xt∥2

2
µ

− 1
∣∣∣∣ ⩾ max(δ, δ2)

}
(F.82)

⩽2 exp
[
−
c

C2
2

min
((

µmax(δ, δ2)

mmax{ασ2
S,t,αtσ2

R,t}r

)2

, µmax(δ, δ2)

mmax{ασ2
S,t,αtσ2

R,t}r

)
r

]
(F.83)

⩽2 exp
[
−
c

C2
2

(
µ

mmax{ασ2
S,t,αtσ2

R,t}r

)2

min
((

max(δ, δ2)
)2, max(δ, δ2)

)
r

]
(F.84)

=2 exp
[
−
c

C2
2

µ2

m2 max{ασ2
S,t,αtσ2

R,t}
2r
δ2
]

, (F.85)

462

where the last inequality is fromµ = m(sασ2
S,t + (r− s)αtσ

2
R,t) ⩽ mmax{ασ2

S,t,αtσ2
R,t}r.

Changing variables to θ = δ
√
µ, we obtain the desired sub-gaussian tail

P {|∥Xt∥−
√
µ| ⩾ θ} ⩽2 exp

[
−
c

C2
2

µ

m2 max{ασ2
S,t,αtσ2

R,t}
2r
θ2
]

. (F.86)

By generalization of integral identity, we have

|E [∥Xt∥−
√
µ]| =

∣∣∣∣∫∞
0
P{∥Xt∥−

√
µ > θ}dθ−

∫ 0

−∞ P{∥Xt∥−
√
µ < θ}dθ

∣∣∣∣ (F.87)

⩽2
∫∞

0
P{|∥Xt∥−

√
µ| > θ}dθ (F.88)

⩽4
∫∞

0
exp

[
−
c

C2
2

µ

m2 max{ασ2
S,t,αtσ2

R,t}
2r
θ2
]
dθ (F.89)

⩽C3
mmax{ασ2

S,t,αtσ2
R,t}
√
r

√
µ

, (F.90)

where C3 is an absolute constant. Thus, we have∣∣∣∣∣Rm(Fϕ∗,t) −

√
1
m

(
vt,1

α
+
vt,2

αt

)
(sασ2

S,t + (r− s)αtσ2
R,t)

∣∣∣∣∣ (F.91)

=
Bϕ∗,t

m
|E [∥Xt∥−

√
µ]| (F.92)

⩽ O

(√
1
m

(
vt,1

α
+
vt,2

αt

) max{ασ2
S,t,αtσ2

R,t}
2r

sασ2
S,t + (r− s)αtσ2

R,t

)
. (F.93)

F.2.2 Proofs of Proposition 7.3 and Proposition 7.4

Given the lemmas for the general case, we are now ready to prove the results in
Proposition 7.3 and Proposition 7.4.

Proposition F.6 (Restatement of Proposition 7.3). Suppose σS,t = σR,t = σU,t = 1 for
any t ∈ [T]. The representation ϕ∗ obtained on an even mixture of data from all the tasks

463

{Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q
(∑

j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some

α ∈ [0, 1], β = min
(

1, r−αs
T(r−s)

)
, where ej’s are the basis vectors andQ is any orthonormal

matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ usingm labeled data points from Dt has
risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)]

⩽4L

√
1
m

(
vt,1

α
+
vt,2

β

)(√
sα+ (r− s)β+O

(√
r

sα+ (r− s)β

))
+ 8
√

2 ln(4/δ)
m

.

Proof. This follows from Lemma F.3, and considering the optimal α,αt for the
following:

g({α,αt}) =
T∑
t=1

wtE
[
ℓ
(
ασ2

S,tZ+ αtσ
2
R,tZt

)]
(F.94)

=
1
T

T∑
t=1

E [ℓ (αZ+ αtZ1)] (F.95)

⩾ E

[
ℓ

(
αZ+ Z1

T∑
t=1

1
T
αt

)]
. (F.96)

The second equation is from that Zt’s follow the same distribution by the symmetry
of z̃j’s. The inequality comes from the convexity of ℓ(t) and Jensen’s inequality. So
the minimum is achieved when αt := β for any t ∈ [T], leading to

g({α,αt}) = E [ℓ (αZ+ βZ1)] (F.97)

subject to the constraints αs + Tβ(r − s) ⩽ r, 0 ⩽ α,β ⩽ 1. Then we get ϕ∗ ◦
g(z) = W∗Mz = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
for some α ∈ [0, 1], β =

min
(

1, r−αs
T(r−s)

)
, where ej’s are the basis vectors and Q is any orthonormal matrix.

464

Finally, the generalization bound follows from Lemma F.5, and that

O

(√
max{α,β}2r
sα+ (r− s)β

)
= O

(√
r

sα+ (r− s)β

)
. (F.98)

This completes the proof.

Proposition F.7 (Restatement of Proposition 7.4). Suppose σS,t = σR,t = σU,t = 1.
The representation ϕ∗

t obtained on data from Dt satisfies ϕ∗
t ◦ g(z) = Q

(∑
j∈Rt zjej

)
where ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗

t ,t on ϕ∗
t usingm labeled data points from Dt has

risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗
t(x),y)] ⩽ 4L

√
r

m
∥u∗
t∥+ 8

√
2 ln(4/δ)
m

.

While on taskDi(i ̸= t), any linear predictor onϕ∗
t has error at least minu EDi

[ℓc(u
⊤zS,y)].

Proof. Following Lemma F.3 (with r = s), we getϕ∗
t ◦g(z) = Q

(∑
j∈Rt zjej

)
, where

ej’s are the basis vectors and Q is any orthonormal matrix. Following the same
argument as in the proof of Lemma F.5, we get

Rm(Fϕ∗,t) =
∥u∗
t∥
m

E
z
(i)
Rt

[∥∥∥∥∥
m∑
i=1

z
(i)
Rt

∥∥∥∥∥
]

(F.99)

⩽

√
r

m
∥u∗
t∥, (F.100)

where the last inequality comes from the property of chi-squared distribution
expectation.

F.2.3 Implication for the trade-off

The propositions then imply the trade-off between universality and label efficiency.
Below we formalize the example discussed in Section 7.2.2.

465

Proposition F.8 (A specific version of Proposition 7.3). Suppose σS,t = σR,t = σU,t =

1 for any t ∈ [T] and r = 2s. The representationϕ∗ obtained on an even mixture of data from
all the tasks {Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S zjej +

∑
j∈R\S

√
1
T
zjej

)
,

where ej’s are the basis vectors and Q is any orthonormal matrix.
The Empirical Risk Minimizer û ∈ Fϕ∗,t on ϕ∗ usingm labeled data points from Dt has
risk

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)] ⩽4L
√

1
m

(vt,1 + Tvt,2)

(√
r

(
T + 1

2T

)
+O (1)

)

+ 8
√

2 ln(4/δ)
m

.

Proof. This follows from Proposition 7.3, and noting that when r = 2s, α = 1 and
β = 1/T are the optimal for:

g({α,β}) = E [ℓ (αZ+ βZ1)] (F.101)

= E
[
ℓ

(
αZ+

r− αs

T(r− s)
Z1

)]
(F.102)

= E
[
ℓ

(
αZ+

2 − α

T
Z1

)]
(F.103)

subject to the constraints αs + Tβ(r − s) ⩽ r, 0 ⩽ α,β ⩽ 1. To see this, note
that Z ∼ χ2

s and Z1 ∼ χ2
r−s = χ2

s follow the same distribution, so αZ + 2−α
T
Z1 for

α = 1 will stochastically dominate its value for other α ∈ [0, 1). The optimal is then
achieved when α = 1 and β = 2−α

T
= 1
T

.

F.2.4 Improving the Trade-off by Contrastive Regularization

The above analysis shows that contrastive learning a representation on unlabeled
data from the target task can help in prediction on this target task. This suggests
that given a representation ϕ∗ pre-trained on diverse data, one can fine-tune it
by contrastive learning on some unlabeled data from the target task to get a rep-
resentation that can lead to better prediction on the target task. In the following,

466

we will formally show that this is indeed the case for the illustrative example in
Section 7.2.2.

Recall that in this example, σS,t = σR,t = σU,t = 1, r = 2s, and vt,1 = vt,2.
The representation ϕ∗ obtained on an even mixture of data from all the tasks
{Dt : 1 ⩽ t ⩽ T } satisfies ϕ∗ ◦ g(z) = Q

(∑
j∈S
√
αzjej +

∑
j∈R\S

√
βzjej

)
, where

ej’s are the basis vectors and Q is any orthonormal matrix, and α = 1,β = 1
T

.
Now, suppose we are given unlabeled data from Dt, and we use them to fine-

tune ϕ∗(x) =W∗x by contrastive learning on these unlabeled data. That is, we find
W nearW∗ to minimize the contrastive loss on the unlabeled data from Dt:

min
ϕ(x)=Wx

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
(F.104)

subject to ∥W −W∗∥F ⩽ γ, ∥W∥ ⩽ 1. (F.105)

for some small γ > 0.

Proposition F.9. For (F.104), ϕ∗
CR,t satisfying the following on x from Dt is an optimal

representation:

ϕ∗
CR,t ◦ g(z) = Q

(∑
j∈S

√
αzjej +

∑
j∈Pt

√
βzjej

)

where
√
α = 1,

√
β = min

(
1,
√

1
T
+ γ√

s

)
.

Proof. Following the argument in Lemma F.3, we still have that ϕ∗
CR,t(x) = Wx

whereW = Q2[A2; 0]M−1 for any orthonormal matrixQ2 and some diagonal matrix
A2 = diagonal(ajj), with ajj =

√
α for j ∈ S and ajj =

√
β for j ∈ Pt for some

α,β ∈ [0, 1]. And the contrastive loss is:

E
[
ℓ
(
ϕ(x)⊤(ϕ(x+) − Ex−ϕ(x−))

)]
= E

[
ℓ

(∑
j∈Rt

a2
jjz

2
j

)]
(F.106)

= E

[
ℓ

(
α
∑
j∈S

z2
j + β

∑
j∈Pt

z2
j

)]
. (F.107)

467

Recall that ϕ∗(x) =W∗xwithW = Q[A; 0]M−1 for any orthonormal matrix Q
and some diagonal matrix A, with Ajj = 1 for j ∈ S and Ajj =

√
1/T for j ∈ Ri \ S

for any i ∈ [T]. Then

∥W −W∗∥F = ∥Q2[A2; 0]M−1 −Q[A; 0]M−1∥F (F.108)

= ∥Q2A2 −QA∥F (F.109)

= ∥A2 −Q
−1
2 QA∥F. (F.110)

SinceQ−1
2 Q is a rotation and A,A2 are diagonal, we can always setQ2 = Qwithout

increasing ∥W −W∗∥F. Then

∥W −W∗∥2
F = ∥A2 −A∥2

F (F.111)

= s(
√
α− 1)2 + s(

√
β−

√
1/T)2 +

∑
j∈Pi,i ̸=t

((A2)jj −
√

1/T)2. (F.112)

To minimize the contrastive loss, we need α,β to be as large as possible, subject
to ∥W −W∗∥2

F ⩽ γ2, and α,β, (A2)
2
jj ∈ [0, 1]. The optimal is then achieved when

α = 1,
√
β = min

(
1,
√

1
T
+ γ√

s

)
, and (A2)jj =

√
1/T for j ∈ Pi, i ̸= t.

Now, recall that by Proposition 7.3, the ERM has risk:

E(x,y)∼Dt
[ℓc(û

⊤ϕ∗(x),y)]

⩽ 4L

√
1
m

(
vt,1

α
+
vt,2

β

)(√
sα+ (r− s)β+O

(√
r

sα+ (r− s)β

))
+ 8
√

2 ln(4/δ)
m

= 4L

√
1
m

(
∥u2
t∥2

2α +
∥u2
t∥2

2β

)(√
sα+ sβ+O (1)

)
+ 8
√

2 ln(4/δ)
m

= O

(
L

√
r∥u∗

t∥2

m

(
2 +

α

β
+
β

α

))

With the fine-tuning using contrastive learning, in the representation learned, α
remains to be 1, while β increases from 1/T to (

√
1/T + γ/

√
s)2. Then the error

bound decreases. This shows that fine-tuning with contrastive learning on unla-

468

beled data from the target task can emphasize the task-specific features zPt , which
then leads to better prediction performance.

F.3 More Experimental Details and Results

F.3.1 Datasets

CIFAR-10. CIFAR-10 (Krizhevsky et al., 2009) dataset consists of 60,000 32 × 32
color images in 10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck. Each class has 6,000 images. There are 50,000 training images and
10,000 test images.
CINIC-10. CINIC-10 (Darlow et al., 2018) consists of 32× 32 color images from
both CIFAR and ImageNet and has 90,000 training images with ten classes identical
to CIFAR-10.
ImageNet. ImageNet (Deng et al., 2009) is a huge visual dataset which is composed
of 1,281,167 training data and 50,000 test data with 1,000 classes. We crop each
color image to 224× 224 as the standard setting.
ImageNet32. ImageNet32 (Deng et al., 2009) is a huge dataset made up of small
color images called the down-sampled version of ImageNet. ImageNet32 comprises
1,281,167 training data and 50,000 test data with 1,000 classes. Each color image is
down-sampled to 32× 32.
ImageNet22k. ImageNet22k (Deng et al., 2009; Ridnik et al., 2021) is a superset
of ImageNet which contains 14.2M training data and 522,500 test data with 21,841
classes. We crop each color image to 224× 224 as the standard setting.
ImageNet-Bird. The ImageNet-Bird is a subset of ImageNet and contains all bird-
related images from ImageNet, which have 59 classes and 76k training images.
ImageNet-Vehicle. The ImageNet-Vehicle is a subset of ImageNet and contains
all vehicle-related images from ImageNet, which have 43 classes and 55k training
images.
ImageNet-Cat/Ball/Shop/Clothing/Fruit. The ImageNet-Cat/Ball/Shop/Clothing
/Fruit is a subset of ImageNet and contains all cat/ball/shop/clothing/fruit-related

469

images from ImageNet, which have 76 classes and 100k training images.
GCC-15M. GCC-15M denotes the merged version of GCC-3M (Sharma et al., 2018)
and GCC-12M (Changpinyo et al., 2021). It is a diverse dataset of visual concepts
with image-text pairs meant to be used for vision-and-language pre-training. GCC-
15M contains 15M training data and more than 600k concepts.
SVHN. The Street View House Numbers (Netzer et al., 2011) contains 10 digits
color images of size 32 × 32 in the natural scene. It has 73,257 digits for training
and 26,032 digits for testing.
MNIST. The Modified National Institute of Standards and Technology (LeCun
et al., 1998) is a database of handwritten gray-scale digits of size 28× 28. It contains
60,000 training images and 10,000 testing images.
EMNIST. Extended MNIST (Cohen et al., 2017) includes gray images of hand-
written letters and digits. The images in EMNIST were converted into the same
size 28× 28 by the same process as MNIST. EMNIST-Letters has 145,600 lowercase
characters with 26 balanced classes, and EMNIST-Digits has 280,000 characters
with ten balanced classes.
Fashion-MNIST. Fashion-MNIST (Xiao et al., 2017) is a dataset of 28×28 gray-scale
images with ten classes: T-shirt/top, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, ankle boot. The training set size is 60,000, and the test set size is 10,000.
Fer2013. Fer2013 is a dataset (Goodfellow et al., 2013) of 48× 48 gray-scale images
with 7 face expression classes: angry, disgust, fear, happy, sad, surprise, neutral.
The training set size is 28,709, and the test set size is 3,589.
FaceScrub. FaceScrub (Ng and Winkler, 2014) is a dataset with 141,130 color face
images of 695 public figures.
GTSRB. The German Traffic Sign Recognition Benchmark (Stallkamp et al., 2012)
is a dataset of color images depicting 43 different traffic signs. The images are not
of fixed dimensions and have a rich background and varying light conditions as
expected of photographed images of traffic signs. The original training set contains
34,799 images, and the original test set contains 12,630 images. We resize each
image to 32×32. The dataset has a significant imbalance in the number of sample
occurrences across classes. We use data augmentation techniques to enlarge the

470

training data and balance the number of samples in each class. We construct a
class-preserving data augmentation pipeline consisting of rotation, translation, and
projection transforms and apply this pipeline to the training images until each class
contains 2,500 examples. So we construct a new training set containing 107,500
images in total. We also construct a new test set by randomly selecting 10,000
images from the original test set for evaluation.
IMDB. IMDB (Maas et al., 2011) is a large movie review text dataset. The dataset is
for binary sentiment classification, positive review or negative review. The dataset
contains 25,000 movie reviews for training and 25,000 for testing.
AGNews. AGNews (Zhang et al., 2015) is a sub-dataset of AG’s corpus of news
articles for text topic classification. It covers the 4 largest classes: world, sports,
business, sci/tech. The AG News contains 30,000 training and 1,900 test samples
per class.

F.3.2 Verifying the Existence of the Trade-off

Model. We evaluate three popular contrastive learning frameworks, MoCo v2 (He
et al., 2020b), NNCLR (Dwibedi et al., 2021) and SimSiam (Chen and He, 2021) .
MoCo v2 can be regarded as SimCLR (Chen et al., 2020d) equipped with a memory
bank, while NNCLR uses nearest-neighbor as the positive pairs. SimSiam can
be regarded as a modification from BYOL (Grill et al., 2020) similar to Barlow
Twins (Zbontar et al., 2021), which does not need negative pairs. We follow the
same data augmentation methods as SimSiam (Chen and He, 2021) for all datasets.
Datasets. We consider three sets of data. In the first set, our downstream task is
CIFAR-10, and the pre-training datasets may include CINIC-10, SVHN, GTSRB,
and ImageNet32. CINIC-10 has classes identical to CIFAR-10 and is the most target-
relevant, while the others are less similar to CIFAR-10. This then provides more
and more diverse pre-training data w.r.t. the target task. In the second set, our
downstream task is MNIST, and the pre-training datasets may include EMNIST-
Digits&Letters, Fashion-MNIST, GTSRB, and ImageNet32. Here, the handwritten
dataset EMNIST-Digits&Letters is the most target-relevant. In the last set, our down-

471

stream task is Fer2013, a face expression classification dataset. The pre-training
datasets may include FaceScrub, CIFAR-10, SVHN, and ImageNet32, where the
face dataset Facescrub is the most target-relevant.
Evaluation & Methods. We pre-train a ResNet18 network (He et al., 2016) as a
feature extractor under different contrastive learning methods using SGD for 800
epochs with a cosine learning-rate scheduler, the base learning rate of 0.06, weight
decay 5e-4, momentum 0.9 and batch size 512. Then we fix the pre-trained feature
extractor and train a linear classifier (Linear Probing, LP) on 1%, 5%, 10%, 20%, 100%
of the labeled data from the downstream task. For LP we use SGD for 200 epochs
with a cosine learning-rate scheduler, the base learning rate of 5.0, no weight decay,
momentum 0.9, and batch size 256. We finally report the test accuracy on a specific
target task and the weighted average test accuracy on all pre-training datasets (i.e.,
using them as the downstream tasks). We use the class number of each pre-training
dataset as the weight, which is consistent with random guessing as a baseline. We
have three types of models pre-trained on three sets of datasets. Thus, we have nine
tasks in total. For each task, we have two pre-trained models initialized by different
random seeds. We evaluated each model three times and we report the average
test accuracy with standard deviation based on multiple runs (six evaluations).

In Figs. F.2(a)(b)(c), we report results for MoCo v2, NNCLR, SimSiam (respec-
tively) on CIFAR-10 as the downstream task. The size and diversity of unlabeled
data for pre-training are increased on the x-axis by incrementally adding datasets
in the following order: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32
(only use a 500k subset)(I). Then, we do LP on CIFAR-10 using different propor-
tions of labeled samples. Similarly, in Figs. F.2(d)(e)(f), we report results for three
models on MNIST. We incrementally add pretraining datasets in the following
order: EMNIST-Digits&Letters (E), Fashion-MNIST (F), GTSRB (G), ImageNet32
(I). In Figs. F.2(g)(h)(i), the downstream task is Fer2013 and we incrementally
add datasets in the following order: FaceScrub (I), CIFAR-10 (C), SVHN (S), Ima-
geNet32 (I).
Results. In Figs. F.2, when the pre-training data becomes more diverse, the average
test accuracy on all pre-training datasets increases (i.e., universality improves),

472

while the test accuracy on the specific target task decreases (i.e., label efficiency
drops). This shows a clear trade-off between universality and label efficiency.
Moreover, with fewer labeled data (from the green line to the red line), the trade-off
phenomenon will be more significant. It supports our claim that diverse pre-training
data allow learning diverse features for better universality, but can down-weight the
features for a specific task resulting in worse prediction. As more diverse unlabeled
data are included, more labeled data from the target task is needed to achieve
comparably-good prediction accuracy. This validates our analysis of the trade-off
in Section 7.2.2.

In Figs. F.2(a)(b)(d)(e)(f)(h), the average test accuracy (x-axis) decreases in the
end because when we add one pre-training dataset, it may hurt the test accuracy of
all other pre-training datasets. In Figs. F.2(g)(h), the downstream task test accuracy
(y-axis) increases in the beginning because when the pre-training unlabeled data
from relevant tasks is not sufficiently large, introducing other pre-training datasets
will help the model to learn features relevant for the downstream task. However,
the downstream task test accuracy will drop later as in other figures.

Please refer to Appendix F.3.5 for more figures.

Larger Scale Experiments

The datasets involved are ImageNet (1.2M data points, 1k classes), ImageNet22k
(14M, 22k classes), and GCC-15M (15M). We compare two UniCL representa-
tions (Yang et al., 2022): the more specific representation pre-trained on ImageNet,
and the one pre-trained on the more diverse dataset ImageNet+GCC-15M. We
compare their performance in two tasks: classification on ImageNet (using 2k
labeled data) and classification on ImageNet22k (using 44k labeled data).

The results are reported in Table F.1. From the specific representation to the
diverse one, we observe that the test accuracy on ImageNet decreases (i.e., effi-
ciency drops), while the test accuracy over ImageNet22k increases (i.e., universality
improves). This again confirms the trade-off.

473

LP Accuracy Pre-training dataset
Target dataset ImageNet ImageNet+GCC-15M

ImageNet (2k label) 79.05 77.66
ImageNet22k (44k label) 9.02 9.86

Table F.1: LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T)
pre-trained 500 epochs on ImageNet and ImageNet+GCC-15M.

F.3.3 Inspecting the Trade-off

Feature Similarity

For each set of pre-training data, we extract a set of features for the target task,
CIFAR-10, MNIST, and Fer2013 respectively, using the pre-trained representation
function. In Fig. F.3 (rows/columns are pre-training data; numbers/colors show
the similarity) first row, the features from different pre-training datasets have low
similarities. This is consistent with our setup in Section 7.2.2 that different tasks only
share some features and each owns many private ones. In the second row, we can
see a decreasing trend of similarity in each row of each sub-figure. This indicates
when gradually adding more diverse pre-training data, the obtained representation
will encode more downstream task-irrelevant information and become less similar
to that before adding more pre-training data. It will hurt the downstream task
performance. This result is consistent with our Proposition 7.3 and 7.4.

Finally, we would like to verify in Theorem 7.2 via CKA similarities. The theorem
says that when we increase the norm bound, the representation can encode more
and more features. To verify this, our experiments will vary the weight decay
regularization coefficient (larger weight decay corresponds to a smaller norm bound
and fewer features learned in the representation). Fig. F.4 shows that the linear
CKA similarity decreases with the increase of the weight decay, then it provides
some support for the theorem.

The Effect of Pre-training and Labeled Data Sizes

We have also conducted finer-grained investigations into the trade-off by varying
the pre-training dataset size and the downstream labeled data on the specific

474

task. Table F.2 shows the results for different pre-training datasets (ImageNet-
Bird, ImageNet, and 10% of ImageNet data) and different labeled datasets (500 to
8k samples from ImageNet-Bird, and the whole ImageNet). Table F.3 shows the
results for a similar setting with ImageNet-Vehicle. Table F.4 shows the results of
UniCL with Swin-T backbone using different pre-training datasets (ImageNet, and
ImageNet+GCC-15M) and different labeled datasets (2k samples from ImageNet,
44k samples from ImageNet22k, the whole ImageNet, and the whole ImageNet22k).

First, we find that the trade-off is hidden when a small amount of data from
the specific task is used for pre-training. The results show that when the specific
pre-training data is small, the representation learned is noisy and the downstream
prediction performance is poor. This is not surprising: in the extreme case with
only 1 pre-training image from the bird task or vehicle task, there is essentially no
information for pre-training. In this case, the results are well inside the Pareto front
of the trade-off curve and thus cannot demonstrate the trade-off.

Second, we find that the trade-off is hidden when a large amount of labeled data
are available for learning predictors on the representation in the specific task. If a
large amount of labeled data is available for training the predictor, the prediction
performance is similar when using the specific or universal representations. This is
consistent with the insights from our analysis: when pre-training on diverse data,
the features specific to the target task are down-weighted but can still be in the
representation, then with a large amount of labeled data from the specific task, the
sample complexity issue is not significant, and thus the trade-off is hidden.

The above experimental studies show that the trade-off is revealed when we
have large-scale pre-training data and a limited amount of labeled data from the target task,
which is indeed the typical interesting case for using pre-trained representations
(especially the large foundation models). The trade-off is significant in this case
and thus crucial for further development of pre-training representations.

475

LP Accuracy Pre-training dataset
Target dataset ImageNet-Bird ImageNet 10% ImageNet

ImageNet-Bird (500 label) 76.00 58.78 30.06
ImageNet-Bird (1k label) 81.42 69.39 35.96
ImageNet-Bird (2k label) 82.88 79.66 39.49
ImageNet-Bird (4k label) 83.83 83.59 44.13
ImageNet-Bird (8k label) 84.71 85.93 48.50

ImageNet (all label) 41.38 73.20 54.08

Table F.2: LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S)
pre-trained on ImageNet-Bird and ImageNet.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Vehicle ImageNet 10% ImageNet

ImageNet-Vehicle (500 label) 61.81 57.86 31.48
ImageNet-Vehicle (1k label) 70.93 67.90 37.76
ImageNet-Vehicle (2k label) 72.09 69.81 39.07
ImageNet-Vehicle (4k label) 74.14 72.93 39.62
ImageNet-Vehicle (8k label) 75.53 74.55 43.53

ImageNet (all label) 39.84 73.20 54.08

Table F.3: LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3
(ViT-S) pre-trained on ImageNet-Vehicle and ImageNet.

LP Accuracy Pre-training dataset
Target dataset ImageNet ImageNet+GCC-15M

ImageNet (2k label) 79.05 77.66
ImageNet22k (44k label) 9.02 9.86

ImageNet (all label) 79.61 81.37
ImageNet22k (all label) 30.90 36.69

Table F.4: LP test accuracy on ImageNet and ImageNet22k with UniCL (Swin-T)
pre-trained 500 epochs on ImageNet and ImageNet+GCC-15M.

More Ablation Studies

We report results from three ablation studies: (1) varying the class number of
ImageNet32, (2) varying the percentage of target-relevant pre-training data, and
(3) replacing CINIC-10 with CIFAR-10 in the pre-training dataset. The results
consistently show the trade-off.
Varying the Class Number of ImageNet32. To further support A1, we show
that the trade-off between universality and label efficiency also exists under a
fixed dataset size. In Fig. F.5, we pre-train MoCo v2 and SimSiam on CIFAR-10 +

476

ImageNet32(200k) and keep the same setting as Fig. F.2 except that we vary the class
number of ImageNet32(200k). In previous experiments, we randomly pick 500,000
images from ImageNet32 without considering labels. Here, we fix the number of
classes to 50, 100, 200, 500, 1000. Then we randomly sample 200,000 images from
the subset of classes. The downstream task is CIFAR-10. In Fig. F.5, we observe that
with a fixed pre-training datasets size, e.g., 250,000, when the data is more diverse,
the pre-training will learn more irrelevant features, and the performance will drop
on the downstream task. This supports our analysis as well.
Varying Target-Relevant pre-training Data Percentage. In Fig. F.6, we use (a)(d)
100% (b)(e) 50% (c)(f) 20% CINIC-10 to train MoCo v2 and SimSiam, and keep
the same setting as Fig. F.2. For Fig. F.6 (b) with 50% CINIC-10, test accuracy drops,
e.g., the test accuracy of 1% CIFAR-10 in Fig. F.6 (a) 80.63% vs. (b) 76.45%. We
can also see the decreasing curve in Fig. F.6 (b). On the other hand, we also have
test accuracy drops in Fig. F.6 (c)(e)(f). However, we can see a U-curve rather
than a strictly decreasing curve in Fig. F.6 (c)(e)(f). ImageNet32 is more relevant
with CIFAR-10 than SVHN and GTSRB, consistent with human intuition. When we
have a small partition of CINIC-10 that does not cover all target-relevant features,
the feature extractor can learn these missing features from ImageNet32. Although
there are many irrelevant features in ImageNet32, the positive effect is larger than
the negative effect, and so it plots a U-curve. It is consistent with our statement
that we need a large and target-relevant pre-training dataset rather than a diverse
irrelevant one.
Replacing CINIC-10 With CIFAR-10. In Fig. F.7, we keep the same setting as Fig. F.2
except we replace CINIC-10 with CIFAR-10. Note that our downstream task is still
CIFAR-10. In Fig. F.7, we can see the same phenomena and similar performance
as Fig. F.2. Thus, if we have a good choice of a task-relevant pre-training dataset,
we can get a similar performance as pre-training on the downstream task domain
directly.

The pre-training unlabeled data from diverse tasks may have a positive effect
when the pre-training unlabeled data from similar (relevant) tasks is not suffi-
ciently large. Moreover, if we choose a good task-relevant pre-training dataset,

477

we can directly get a similar performance as pre-training on the downstream task.
However, when the task-relevant dataset is sufficient, the performance will drop if
we introduce task-irrelevant data in the pre-training dataset (Fig. F.6 (a)(d)).

F.3.4 Improving the Trade-off: Finetune with Contrastive
Regularization

Pretrain data Method 1% label data 5% label data 10% label data 20% label data 100% label data

CINIC10
LP 80.63±0.01 84.42±0.01 85.88±0.05 86.75±0.01 88.41±0.01
FT 68.74±0.46 81.46±0.34 85.20±0.14 88.69±0.29 93.58±0.14

Ours 83.66±0.43 83.04±0.08 86.18±0.24 89.61±0.12 94.51±0.02

+SVHN
LP 77.83±0.01 81.43±0.04 82.95±0.01 83.53±0.01 85.18±0.01
FT 66.01±0.52 80.20±0.07 83.96±0.46 88.01±0.07 93.35±0.10

Ours 79.95±0.36 81.77±0.11 84.98±0.02 88.97±0.14 94.26±0.01

+GTSRB
LP 75.64±0.01 78.18±0.01 79.80±0.02 79.81±0.01 82.07±0.01
FT 62.79±0.57 78.90±0.41 83.89±0.03 87.85±0.03 93.42±0.13

Ours 76.20±0.36 80.26±0.05 84.11±0.06 88.74±0.01 94.32±0.13

+ImageNet32
LP 68.26±0.01 71.04±0.01 73.29±0.02 73.73±0.02 75.64±0.03
FT 65.40±0.16 78.99±0.21 82.96±0.17 86.75±0.10 92.92±0.06

Ours 71.70±1.20 78.94±0.06 83.48±0.02 87.77±0.13 93.66±0.12

Table F.5: Test accuracy on CIFAR-10 with different evaluation methods on MoCo
v2 under different percentages of labeled data. From top to bottom: incrementally
add datasets for pre-training.

Evaluation & Methods. We use the feature extractor (ResNet18) pre-trained as
in Section 7.3.1 by MoCo v2. Then, we report three evaluation methods, Linear
Probing (LP), Finetune (FT), and Finetune with Contrastive Regularization (Ours)
on CIFAR-10 under different percentages of labeled data as in Appendix F.3.2. LP
follows the training protocol in Section 7.3.1. FT and Ours learn a linear predictor
and update the representation, and use the same data augmentation for a fair
comparison. FT follows the training in MAE (He et al., 2022) mostly, using SGD
for 200 epochs with a cosine learning-rate scheduler, the base learning rate of 0.06,
weight decay 5e-4, momentum 0.9 and batch size 256. Moreover, Ours uses the
contrastive loss from MoCo v2 and regularization coefficient λ = 0.1.
Results. In Table F.5, the trade-off phenomenon also exists for FT evaluation,
where the FT test accuracy drops when the pre-training dataset contains more

478

diverse data points. Table F.5 shows that Ours can achieve better performance than
the other baselines. In particular, it outperforms the typical fine-tuning method
consistently, even when the latter also uses the same amount of data augmentation.
This confirms the benefit of contrastive regularization. Fig. F.8 visualizes the features
of different methods by t-SNE. It shows that contrastive regularization can down-
weight the downstream task-irrelevant invariant feature, so it can improve the model
generalization ability, which is consistent with the discussion in Section 7.2.2.

Target data Method Aug 1% label data 5% label data 10% label data 20% label data 100% label data

ImageNet

LP 1 66.04±0.26 76.28±0.05 78.06±0.02 78.73±0.03 77.84±0.02
FT 1 71.09±0.05 75.32±0.11 76.38±0.01 76.92±0.10 82.97±0.02
FT 10 73.28±0.01 76.43±0.14 78.69±0.04 81.56±0.10 83.65±0.01
FT 100 71.83±0.05 77.55±0.07 80.16±0.09 82.23±0.01 83.58±0.05

Ours 10 74.36±0.09 78.60±0.03 80.02±0.08 81.28±0.07 84.94±0.09
Ours 100 73.03±0.04 78.41±0.04 80.48±0.05 82.42±0.03 85.34±0.07

SVHN

LP 1 59.24±0.02 57.25±0.08 56.32±0.17 58.35±0.08 63.44±0.01
FT 1 55.20±0.16 61.73±0.32 64.91±0.12 64.70±0.64 65.76±0.10
FT 10 61.24±0.08 65.89±0.54 68.61±0.52 70.89±0.07 78.22±0.18
FT 100 65.23±0.03 72.34±0.07 75.13±0.11 77.20±0.03 80.13±0.14

Ours 10 62.87±0.42 67.56±0.23 70.16±0.02 72.23±0.09 78.72±0.37
Ours 100 65.30±0.43 72.61±0.07 75.34±0.12 77.64±0.05 82.50±0.01

GTSRB

LP 1 71.20±0.61 83.97±0.08 85.31±0.02 86.34±0.06 86.56±0.01
FT 1 77.18±0.40 87.65±0.18 88.56±0.75 88.76±0.01 89.83±0.39
FT 10 84.55±0.30 88.74±0.32 89.11±0.11 89.52±0.12 90.74±0.06
FT 100 86.28±0.26 90.50±0.29 90.83±0.08 91.15±0.01 91.89±0.12

Ours 10 84.84±0.33 89.53±0.13 89.44±0.01 91.35±0.12 92.01±0.28
Ours 100 87.24±0.51 90.86±0.05 91.29±0.26 92.11±0.15 92.65±0.10

Table F.6: Test accuracy for different evaluation methods on different datasets using
foundation model CLIP (backbone ViT-L). We do not use data augmentation for
LP. We evaluate FT without data augmentation, with 10 augmentation and with
100 augmentation to each training images. For Ours, we use 10, 100 augmentation.

Larger Foundation Models

We verify our method’s effectiveness in real-world scenarios. When users use
foundation models, they cannot access the model and can only call the official API,
(e.g. GPT-3, DALL·E (Ramesh et al., 2022)). The pricing for GPT-3 to get feature
embedding is $0.20 / 1k tokens. If users would like to use a foundation model on
their downstream task, the most efficient way is to get feature embedding of their

479

Target data Method Aug 1% label data 5% label data 10% label data 20% label data 100% label data

CIFAR-10

LP 1 91.44±0.01 93.51±0.01 94.11±0.01 94.22±0.01 95.82±0.01
FT 1 89.93±0.38 94.21±0.35 95.15±0.06 95.80±0.06 96.12±0.11
FT 10 90.82±0.19 93.24±0.08 94.59±0.08 95.48±0.01 96.17±0.12
FT 100 90.84±0.03 93.05±0.02 94.23±0.08 95.37±0.01 97.01±0.07

Ours 10 90.73±0.18 94.28±0.03 95.43±0.15 95.83±0.14 96.71±0.10
Ours 100 91.04±0.06 94.00±0.06 95.29±0.01 95.72±0.05 96.86±0.06

SVHN

LP 1 39.40±0.02 50.50±0.02 54.61±0.02 57.66±0.01 61.92±0.01
FT 1 38.82±0.10 48.15±0.37 51.03±0.14 52.07±0.09 56.19±0.33
FT 10 45.00±0.34 52.61±0.24 54.45±0.12 57.05±0.11 65.36±0.33
FT 100 45.70±0.13 54.51±0.23 57.76±0.01 61.13±0.39 69.10±0.39

Ours 10 46.53±0.23 55.59±0.03 57.32±0.05 59.20±0.09 66.29±0.20
Ours 100 46.27±0.09 55.70±0.07 59.45±0.04 61.97±0.13 70.22±0.01

GTSRB

LP 1 48.52±0.03 66.68±0.02 71.69±0.01 72.27±0.02 75.37±0.01
FT 1 52.54±0.67 72.19±0.33 73.75±0.71 73.30±0.46 75.16±0.01
FT 10 58.68±0.01 75.21±0.23 75.87±0.06 76.75±0.28 76.45±0.29
FT 100 61.65±0.16 75.22±0.77 76.49±0.31 77.67±0.63 78.05±0.30

Ours 10 59.28±0.04 75.35±0.31 77.38±0.09 80.52±0.12 81.28±0.10
Ours 100 63.61±0.92 76.70±0.17 77.85±0.23 80.13±0.01 80.92±0.19

Table F.7: Test accuracy for different evaluation methods on different datasets using
foundation model MoCo v3 (backbone ViT-B). We do not use data augmentation
for LP. We evaluate FT without data augmentation, with 10 augmentations and with
100 augmentations to each training image. For Ours, we use 10, 100 augmentation.

Target data Method 1% label data 5% label data 10% label data 20% label data 100% label data

IMDB
LP 79.72±0.06 83.08±0.20 81.48±0.89 84.87±0.03 86.49±0.16
FT 82.54±2.88 87.78±0.42 87.96±1.27 89.49±1.02 92.31±0.26

Ours 84.48±1.62 90.12±0.41 90.41±0.49 90.79±1.58 92.85±0.03

AGNews
LP 85.52±0.31 86.78±0.62 86.75±0.66 87.62±0.24 87.76±0.66
FT 88.74±0.34 90.76±0.70 91.22±0.07 92.36±0.14 93.57±0.23

Ours 89.20±0.72 91.22±0.06 91.33±1.33 92.45±0.01 93.94±0.02

Table F.8: Test accuracy for different evaluation methods on different datasets using
foundation model SimCSE (backbone BERT). We do not use data augmentation
for LP. We evaluate FT and Ours with the same data augmentation as SimCSE.

data from the API and train a small model, called adapter (Hu et al., 2022; Sung
et al., 2022), on these embedding rather than on raw input data.

We evaluate CLIP (with ViT-L as the representation backbone), MoCo v3 (ViT-B
backbone), and SimCSE (Gao et al., 2021b) (BERT backbone). They are trained
on (image, text), (image, image), and (text, text) contrastive pairs, respectively, so
cover a good spectrum of methods.

For CLIP and MoCo v3, we fix the backbone for all evaluation methods. For

480

LP, we add a linear FC layer on top of the backbone. For FT and Ours, we insert
a two-layer ReLU neural network (1024 dimensions for the hidden layer) as an
adapter between the backbone and the linear classification layer. For Ours, we apply
SimCLR contrastive loss on the adapted feature (output of adapter) and set λ = 1.0.
We use the same training strategy as Section 7.3.1 for LP and as Table F.5 for FT
and Ours. In line with the actual situation, we control the number of augmentation
number used in FT and Ours (more data augmentation leads to higher prices in
practice).

We conduct experiments on NLP tasks as well. SimCSE proposes a contrastive
learning method for sentence embeddings, which uses the dropout feature from
BERT as data augmentation. The max sequence embedding length is 512. For
SimCSE, all three evaluation methods use a linear classifier. For all evaluation
methods, we use AdamW (Loshchilov and Hutter, 2018) with weight decay = 0.01
and train 3 epochs with batch size 16. For LP, we fix the backbone and set the
learning rate as 5e-3. For FT and Ours, we train the backbone and linear classification
layer simultaneously using unique data augmentation in each training step and set
the learning rate as 5e-5. For Ours, we apply SimCSE contrastive loss on the feature
(output of the backbone) and set λ = 1.0.

As in Appendix F.3.2, we report LP, FT, and Ours on 1%, 5%, 10%, 20%, 100% of
the labeled data from the downstream task in Table F.6, Table F.7 and Table F.8 for
CLIP, MoCo v3, and SimCSE respectively. For CLIP and MoCo v3 in Table F.6 and
Table F.7, we consider different data augmentation numbers, e.g. 10, 100. For Sim-
CSE, we use the standard data augmentation, i.e. generating unique augmentation
for each gradient step.

These tables again show our method can consistently improve the downstream
prediction performance in all three real-world scenarios, and quite significantly in
some cases (e.g., MoCo v3 on GTSRB). This shows that the method is also useful for
large foundation models, including the case when the foundation models cannot
be fine-tuned and only the extracted embeddings can be adapted.

481

The Effect of Contrastive Regularization on Linear Probing

We show that contrastive regularization can also improve over linear probing. Note
that the contrastive regularization loss term is only relevant to the backbone; see
the definition in Equation (9). While linear probing fixes the backbone. Thus, we
cannot do contrastive regularization and linear probing at the same time. To show
its effect, we first apply contrastive regularization to update the backbone, and after
that use linear probing.

The results in Table F.9 show that contrastive regularization leads to better
prediction accuracy. Furthermore, the improvement is more significant on diverse
pre-training data, consistent with our analysis.

Pre-training dataset
Method CINIC-10 +SVHN +GTSRB +ImageNet32

LP 88.41 85.18 82.07 75.64
Contrastive regularization then Linear probing 88.38 86.91 85.95 82.43

Table F.9: Test accuracy on CIFAR-10 with different evaluation methods on MoCo
v2 with ResNet18 backbone. From left to right: incrementally add datasets for
pre-training.

The Effect of Contrastive Regularization on Closing the Gap

We show that contrastive regularization can reduce the target task performance
gap between pre-training on the specific dataset (the same or similar as the target
task) and that on diverse datasets.

We pre-train with MoCo v3 (backbone ViT-S) on ImageNet-Bird or the whole
ImageNet and then perform linear probing (LP) on the target task of ImageNet-
Bird with 1k labeled samples. The results in Table F.10 show that pre-training
on the diverse data leads to worse performance. Then we pre-train on ImageNet
followed by contrastive regularization on ImageNet-Bird and then perform linear
probing (LP) on the target task. This leads to improved performance than without
contrastive regularization, closing the gap between pre-training on diverse and
specific data. Similar results are observed in Table F.11 when ImageNet-Vehicles

482

are used. This confirms the benefits of contrastive regularization for highlighting
task-specific features.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Bird ImageNet ImageNet then Contrastive Reguarlization on ImageNet-Bird

ImageNet-Bird (1k label) 81.42 69.39 73.25

Table F.10: LP test accuracy on ImageNet-Bird and ImageNet with MoCo v3 (ViT-S)
pre-trained on ImageNet-Bird and ImageNet.

LP Accuracy Pre-training dataset
Target dataset ImageNet-Vehicle ImageNet ImageNet then Contrastive Reguarlization on ImageNet-Vehicle

ImageNet-Vehicle (1k label) 70.93 67.90 71.34

Table F.11: LP test accuracy on ImageNet-Vehicle and ImageNet with MoCo v3
(ViT-S) pre-trained on ImageNet-Vehicle and ImageNet.

F.3.5 Additional Results Verifying Existence of the Trade-off

483

0.175 0.200 0.225 0.250 0.275 0.300 0.325
Averaged Test Accuracy

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Trade-off: Target Task vs. Avg (moco eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(a) MoCo v2; CIFAR-10

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Averaged Test Accuracy

0.65

0.70

0.75

0.80

0.85

0.90

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y 1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1
2

3

4

Trade-off: Target Task vs. Avg (nnclr eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(b) NNCLR; CIFAR-10

0.20 0.25 0.30 0.35 0.40
Averaged Test Accuracy

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2

3 4

1

2

3 4

1

2

3 4

1

2

3

4

Trade-off: Target Task vs. Avg (simsiam eval on cifar10)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(c) SimSiam; CIFAR-10

0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28
Averaged Test Accuracy

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1 2 3

4

1
2

3

4

1
2

3

4

1
2 3

4

1
2

3

4

Trade-off: Target Task vs. Avg (moco eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(d) MoCo v2; MNIST

0.16 0.18 0.20 0.22 0.24 0.26
Averaged Test Accuracy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y 12 3

4

12 3

4

12 3

4

12 3

4

12 3

4

Trade-off: Target Task vs. Avg (nnclr eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(e) NNCLR; MNIST

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
Averaged Test Accuracy

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2

3

4

1
2

3

4

1
2

3

4

12

3

4

Trade-off: Target Task vs. Avg (simsiam eval on mnist)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(f) SimSiam; MNIST

0.05 0.10 0.15 0.20 0.25 0.30
Averaged Test Accuracy

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

3

4

1

2 3

4

1 2
3

4

1 2
3

4

1 2 3

4

Trade-off: Target Task vs. Avg (moco eval on fer2013)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(g) MoCo v2; Fer2013

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Averaged Test Accuracy

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1

2

34

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Trade-off: Target Task vs. Avg (nnclr eval on fer2013)
1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(h) NNCLR; Fer2013

0.10 0.15 0.20 0.25 0.30
Averaged Test Accuracy

0.30

0.35

0.40

0.45

0.50

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

1
2

3

4

1
2 3

4

1
2

3

4

1 2
3

4

1
23

4

Trade-off: Target Task vs. Avg (simsiam eval on fer2013)

1% labeled data
5% labeled data
10% labeled data
20% labeled data
100% labeled data

(i) SimSiam; Fer2013

Figure F.2: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. “1, 2, 3, 4" means incre-
mentally adding datasets for pre-training. The x-axis is the average test accuracy
of Linear Probing on all 4 datasets. The y-axis is test accuracy on the target task.
Pre-training data: (a)(b)(c) CINIC-10, SVHN, GTSRB, and ImageNet32. Target
task: CIFAR-10. (d)(e)(f) EMNIST-Digits&Letters, Fashon-MNIST, GTSRB, Im-
ageNet32. Target: MNIST. (g)(h)(i) FaceScrub, CIFAR-10, SVHN, ImageNet32.
Target: Fer2013.

484

CINIC10 SVHN GTSRB Image
Net32

Union

CI
NI

C1
0

SV
HN

GT
SR

B
Im

ag
e

Ne
t3

2
Un

io
n

1 0.26 0.096 0.62 0.62

1 0.11 0.24 0.33

1 0.084 0.11

1 0.67

1
0.0

0.2

0.4

0.6

0.8

1.0

(a) CIFAR-10; Independent

EMNSIT Fashion
MNIST

GTSRB Image
Net32

Union

EM
NS

IT
Fa

sh
io

n
M

NI
ST

GT
SR

B
Im

ag
e

Ne
t3

2
Un

io
n

1 0.33 0.1 0.56 0.64

1 0.067 0.29 0.4

1 0.13 0.095

1 0.5

1
0.0

0.2

0.4

0.6

0.8

1.0

(b) MNIST; Independent

Face
Scrub

CIFAR10 SVHN Image
Net32

Union

Fa
ce

Sc
ru

b
CI

FA
R1

0
SV

HN
Im

ag
e

Ne
t3

2
Un

io
n

1 0.058 0.07 0.15 0.39

1 0.11 0.23 0.11

1 0.19 0.14

1 0.3

1
0.0

0.2

0.4

0.6

0.8

1.0

(c) Fer2013; Independent

CINIC10 +SVHN +GTSRB +Image
Net32

CI
NI

C1
0

+S
VH

N
+G

TS
RB

+I
m

ag
e

Ne
t3

2

1 0.76 0.75 0.62

1 0.8 0.65

1 0.7

1

0.0

0.2

0.4

0.6

0.8

1.0

(d) CIFAR-10; Incremental

EMNSIT +Fashion
MNIST

+GTSRB +Image
Net32

EM
NS

IT
+F

as
hi

on
M

NI
ST

+G
TS

RB
+I

m
ag

e
Ne

t3
2

1 0.79 0.77 0.64

1 0.8 0.69

1 0.71

1

0.0

0.2

0.4

0.6

0.8

1.0

(e) MNIST; Incremental

Face
Scrub

+CIFAR10 +SVHN +Image
Net32

Fa
ce

Sc
ru

b
+C

IFA
R1

0
+S

VH
N

+I
m

ag
e

Ne
t3

2

1 0.49 0.47 0.39

1 0.64 0.56

1 0.63

1

0.0

0.2

0.4

0.6

0.8

1.0

(f) Fer2013; Incremental

Figure F.3: Linear CKA similarity score among downstream task features from
MoCo v2 pretrained on three sets of datasets. For “Independent", each representa-
tion model in the first four columns/rows is pre-trained on a single dataset. “Union"
indicates the model pre-trained on the union among four disjoint datasets. “Incre-
mental" means from left column to right, from top row to bottom, we incrementally
add datasets for pre-training.

485

wd
0.00005

wd
0.0005

wd
0.005

wd
0.

00
00

5
wd

0.
00

05
wd

0.
00

5

1 0.65 0.64

1 0.68

1

0.0

0.2

0.4

0.6

0.8

1.0

Figure F.4: Linear CKA similarity among CIFAR10 features from MoCo v2 pre-
trained on CINIC10. Each representation in the first three columns/rows is pre-
trained with a different weight decay value.

5010
0

20
0

50
0

10
00

Number of ImageNet32 classes

0.80

0.82

0.84

0.86

0.88

0.90

0.92

A
c
c
u
ra
c
y

Trade-off on CIFAR-10 for MoCo v2 (Ablation for Class Diversity)

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(a) MoCo v2

5010
0

20
0

50
0

10
00

Number of ImageNet32 classes

0.86

0.88

0.90

0.92

0.94

0.96

A
c
c
u
ra
c
y

Trade-off on CIFAR-10 for SimSiam (Ablation for Class Diversity)

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(b) SimSiam

Figure F.5: Pre-train MoCo v2 and SimSiam on CIFAR-10 + ImageNet32(200k) with
varying number of classes of ImageNet32 from 50 to 1000 (x-axis) under a fixed
size of pre-training data. The y-axis is LP test accuracy on CIFAR-10.

486

90
00
0

16
32
57

27
07
57

77
07
57

Number of unlabeled data

0.70

0.75

0.80

0.85

A
c
c
u
ra
c
y

CI
NI
C1
0

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for MoCo v2 pretrained on 100% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(a) MoCo v2; 100% CINIC-10

45
00
0

11
82
57

22
57
57

72
57
57

Number of unlabeled data

0.65

0.70

0.75

0.80

0.85

A
c
c
u
ra
c
y

CI
NI
C1
0 (
50
%)

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for MoCo v2 pretrained on 50% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(b) MoCo v2; 50% CINIC-10

18
00
0

91
25
7

19
87
57

69
87
57

Number of unlabeled data

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

A
c
c
u
ra
c
y

CI
NI
C1
0 (
20
%)

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for MoCo v2 pretrained on 20% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(c) MoCo v2; 20% CINIC-10

90
00
0

16
32
57

27
07
57

77
07
57

Number of unlabeled data

0.80

0.82

0.84

0.86

0.88

0.90

0.92

A
c
c
u
ra
c
y

CI
NI
C1
0

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for SimSiam pretrained on 100% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(d) SimSiam; 100% CINIC-10

45
00
0

11
82
57

22
57
57

72
57
57

Number of unlabeled data

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
c
c
u
ra
c
y

CI
NI
C1
0 (
50
%)

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for SimSiam pretrained on 50% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(e) SimSiam; 50% CINIC-10

18
00
0

91
25
7

19
87
57

69
87
57

Number of unlabeled data

0.65

0.70

0.75

0.80

0.85

0.90

A
c
c
u
ra
c
y

CI
NI
C1
0 (
20
%)

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for SimSiam pretrained on 20% CINIC-10

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

(f) SimSiam; 20% CINIC-10

Figure F.6: Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and
SimSiam with varying target relevant (CINIC-10) pre-training data percentage
(100%, 50%, 20%).

50
00
0

12
32
57

23
07
57

73
07
57

Number of unlabeled data

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
c
c
u
ra
c
y

CI
FA
R1
0

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for MoCo v2

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

50
00
0

12
32
57

23
07
57

73
07
57

Number of unlabeled data

0.82

0.84

0.86

0.88

0.90

0.92

A
c
c
u
ra
c
y

CI
FA
R1
0

+S
VH

N

+G
TS
RB

+I
m
ag
eN
et
(5
00
k)

Trade-off on CIFAR-10 for SimSiam

1% labeled data

5% labeled data

10% labeled data

20% labeled data

100% labeled data

Figure F.7: Trade-off on CIFAR-10 LP test accuracy (y-axis) for MoCo v2 and
SimSiam pre-trianed on datasets including CIFAR-10.

487

(a) Linear Probing (b) Finetune (c) Ours

Figure F.8: The t-SNE visualization (Van der Maaten and Hinton, 2008) for CIFAR-
10 training data normalized features from different evaluation methods, where the
model is pre-trained on (CSGI) defined in Fig. 7.3. FT and Ours are trained on the
20% CIFAR-10 training dataset. Different colors correspond to different classes.

488

105

Number of unlabeled data

0.07

0.08

0.09

0.10

0.11

0.12

0.13

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) MoCo v2; CIFAR-10

105

Number of unlabeled data

0.06

0.07

0.08

0.09

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(b) NNCLR; CIFAR-10

105

Number of unlabeled data

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(c) SimSiam; CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data

0.04

0.06

0.08

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(d) MoCo v2; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y

average test accuracy on all tasks
test accuracy on the target task

0.6

0.7

0.8

0.9

1.0

1.1

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(e) NNCLR; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(f) SimSiam; MNIST

105

Number of unlabeled data

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013

105

Number of unlabeled data

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

F FC FCS FCSI

(h) NNCLR; Fer2013

105

Number of unlabeled data

0.00

0.02

0.04

0.06

0.08

0.10
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y

average test accuracy on all tasks
test accuracy on the target task

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(i) SimSiam; Fer2013

Figure F.9: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally
add datasets for pre-training. Pre-training data: (a)(b)(c) CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I). For example, “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing
on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f) EMNIST-
Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013.
All evaluations are trained with 1% labeled data.

489

105

Number of unlabeled data
0.11

0.12

0.13

0.14

0.15

0.16

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) MoCo v2; CIFAR-10

105

Number of unlabeled data

0.07

0.08

0.09

0.10

0.11

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(b) NNCLR; CIFAR-10

105

Number of unlabeled data

0.10

0.12

0.14

0.16

0.18

0.20

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(c) SimSiam; CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.84

0.86

0.88

0.90

0.92

0.94

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(d) MoCo v2; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.05

0.06

0.07

0.08

0.09

0.10
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(e) NNCLR; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(f) SimSiam; MNIST

105

Number of unlabeled data

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.36

0.37

0.38

0.39

0.40

0.41

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013

105

Number of unlabeled data

0.00

0.02

0.04

0.06

0.08

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.25

0.30

0.35

0.40

0.45

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(h) NNCLR; Fer2013

105

Number of unlabeled data
0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y

average test accuracy on all tasks
test accuracy on the target task

0.30

0.35

0.40

0.45

0.50

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(i) SimSiam; Fer2013

Figure F.10: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally
add datasets for pre-training. Pre-training data: (a)(b)(c) CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I). For example, “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing
on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f) EMNIST-
Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013.
All evaluations are trained with 5% labeled data.

490

105

Number of unlabeled data

0.13

0.14

0.15

0.16

0.17

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) MoCo v2; CIFAR-10

105

Number of unlabeled data
0.07

0.08

0.09

0.10

0.11

0.12

0.13

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(b) NNCLR; CIFAR-10

105

Number of unlabeled data

0.12

0.14

0.16

0.18

0.20

0.22

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.84

0.86

0.88

0.90

0.92

0.94

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(c) SimSiam; CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.86

0.88

0.90

0.92

0.94

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(d) MoCo v2; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.05

0.06

0.07

0.08

0.09

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(e) NNCLR; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

0.14

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(f) SimSiam; MNIST

105

Number of unlabeled data

0.05

0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.38

0.39

0.40

0.41

0.42

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013

105

Number of unlabeled data

0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.25

0.30

0.35

0.40

0.45

0.50
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

F FC FCS FCSI

(h) NNCLR; Fer2013

105

Number of unlabeled data

0.00

0.05

0.10

0.15

0.20

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y
average test accuracy on all tasks
test accuracy on the target task

0.30

0.35

0.40

0.45

0.50

0.55

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(i) SimSiam; Fer2013

Figure F.11: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally
add datasets for pre-training. Pre-training data: (a)(b)(c) CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I). For example, “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing
on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f) EMNIST-
Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013.
All evaluations are trained with 10% labeled data.

491

105

Number of unlabeled data

0.15

0.16

0.17

0.18

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) MoCo v2; CIFAR-10

105

Number of unlabeled data

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(b) NNCLR; CIFAR-10

105

Number of unlabeled data

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.84

0.86

0.88

0.90

0.92

0.94

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(c) SimSiam; CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(d) MoCo v2; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.07

0.08

0.09

0.10

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(e) NNCLR; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

0.14

0.16

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(f) SimSiam; MNIST

105

Number of unlabeled data

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.39

0.40

0.41

0.42

0.43

0.44

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013

105

Number of unlabeled data

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.30

0.35

0.40

0.45

0.50
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

F FC FCS FCSI

(h) NNCLR; Fer2013

105

Number of unlabeled data

0.00

0.05

0.10

0.15

0.20
Av

er
ag

ed
 Te

st
 A

cc
ur

ac
y
average test accuracy on all tasks
test accuracy on the target task

0.30

0.35

0.40

0.45

0.50

0.55

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(i) SimSiam; Fer2013

Figure F.12: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally
add datasets for pre-training. Pre-training data: (a)(b)(c) CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I). For example, “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing
on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f) EMNIST-
Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013.
All evaluations are trained with 20% labeled data.

492

105

Number of unlabeled data

0.175

0.180

0.185

0.190

0.195

0.200

0.205

0.210

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(a) MoCo v2; CIFAR-10

105

Number of unlabeled data
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.75

0.80

0.85

0.90

0.95

1.00

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(b) NNCLR; CIFAR-10

105

Number of unlabeled data

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.86

0.88

0.90

0.92

0.94

0.96

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

C CS CSG CSGI

(c) SimSiam; CIFAR-10

1064 × 105 6 × 105

Number of unlabeled data

0.06

0.08

0.10

0.12

0.14

0.16

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(d) MoCo v2; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.07

0.08

0.09

0.10

0.11

0.12

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.80

0.85

0.90

0.95

1.00

1.05

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(e) NNCLR; MNIST

1064 × 105 6 × 105

Number of unlabeled data

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.90

0.92

0.94

0.96

0.98

1.00

1.02

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

E EF EFG EFGI

(f) SimSiam; MNIST

105

Number of unlabeled data

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(g) MoCo v2; Fer2013

105

Number of unlabeled data
0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y

average test accuracy on all tasks
test accuracy on the target task

0.35

0.40

0.45

0.50

0.55
Ta

rg
et

 Ta
sk

 Te
st

 A
cc

ur
ac

y

F FC FCS FCSI

(h) NNCLR; Fer2013

105

Number of unlabeled data

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
ed

 Te
st

 A
cc

ur
ac

y
average test accuracy on all tasks
test accuracy on the target task

0.35

0.40

0.45

0.50

0.55

0.60

Ta
rg

et
 Ta

sk
 Te

st
 A

cc
ur

ac
y

F FC FCS FCSI

(i) SimSiam; Fer2013

Figure F.13: Trade-off of universality and label efficiency for MoCo v2, NNCLR,
SimSiam on downstream tasks CIFAR-10, MNIST, Fer2013. x-axis: incrementally
add datasets for pre-training. Pre-training data: (a)(b)(c) CINIC-10 (C), SVHN
(S), GTSRB (G), and ImageNet32 (I). For example, “CS” on the x-axis means CINIC-
10+SVHN. Target task: CIFAR-10. Red line: average test accuracy of Linear Probing
on all 4 datasets. Blue line: test accuracy on the target task. (d)(e)(f) EMNIST-
Digits&Letters (E), Fashon-MNIST (F), GTSRB (G), ImageNet32 (I). Target: MNIST.
(g)(h)(i) FaceScrub (F), CIFAR-10 (C), SVHN (S), ImageNet32 (I). Target: Fer2013.
All evaluations are trained with 100% labeled data.

493

g appendix for chapter 9

G.1 More Preliminary
In this section, we introduce some key definitions of language modeling modules.
We begin with the input embedding function and the output embedding function.
They are functions that bridge between the input token space and the real vector
space.

Definition G.1 (Input embedding function and input tokens). The input embedding
function E : Vn → Rn×d maps the input tokens to hidden features using the vocabulary
dictionary Dvoc ∈ R|V|×d. Let T ∈ Vn be input tokens. Then, we have E(T) ∈ Rn×d and
E(T)i = D

voc
Ti
∈ Rd for any i ∈ [n].

Definition G.2 (Output embedding function). The output embedding function G :

Rd → R|V| maps hidden features to the probability logits of the vocabulary dictionary.

We introduce Softmax, which allows self-attention to learn the probability dis-
tribution rather than function anymore.

Definition G.3 (Softmax). Let z ∈ Rn. We define Softmax : Rn → Rn satisfying

Softmax(z) := exp(z)/⟨exp(z), 1n⟩.

G.2 Detailed Comparison with Other Methods
GemFilter reduces both running time and GPU memory usage in both the prompt
computation and iterative generation phases, whereas SnapKV (Li et al., 2024g)
and H2O (Zhang et al., 2023e) focus only on the iterative generation phase. During
the prompt computation phase, standard attention computes and stores the entire
KV cache for all layers in GPU memory, which is used during the generation phase.
SnapKV and H2O, on the other hand, compute the entire KV cache for all layers but
only store a portion of it in GPU memory (e.g., k = 1024). They use the selected

494

KV cache for memory-efficient generation. SnapKV selects important clustered
positions of the KV cache from an ‘observation’ window located at the end of the
prompt, while H2O greedily drops tokens based on cumulative attention scores to
retain only a small portion of the KV cache. In contrast, GemFilter avoids computing
the KV cache for all layers during the prompt computation phase.

Compared to SnapKV and H2O, there are two additional differences. First,
SnapKV and H2O maintain separate index sets for each layer and attention head,
resulting inm·h index sets in total. This leads to different behaviors across attention
heads, making their intermediate mechanisms more difficult to interpret. On the
other hand, GemFilter uses a single index set, J, allowing for easier interpretability
by enabling the printing of the selected sequence for human review before the
second run (see a real example in Figure 9.1). Another distinction lies in how
positional embeddings are handled. In SnapKV and H2O, the maximum positional
embedding distance is n + t, as the same positional embedding is used in both
the prompt computation and iterative generation phases. However, in GemFilter’s
second run, the maximum positional embedding distance is reduced to k + t

because the input token length is reduced from n to k, and the RoPE function1 is
re-computed. This reduction makes GemFilter more efficient, as the model can
better handle shorter input sequences, as demonstrated in Figure 9.4 (a).

G.3 Proof of Time Complexity
Theorem G.4 (Complexity analysis. Restatement of Theorem 9.3). Let n be the
input sequence (prompt) length and d the hidden feature dimensions. In our Algorithm 2,
GemFilter uses the r-th layer as a filter to select k input tokens. Let SnapKV and H2O also
use k as their cache size. Assume the LLM hasm attention layers, each with h attention
heads, and each transformer layer’s parameters consume w GPU memory. Assuming that
we generate t tokens with the Gen function and n ⩾ max{d,k, t}, the following table
summarizes the complexity for standard attention, SnapKV and H2O, and GemFilter:

1RoPE is the rotary positional embedding (Su et al., 2024), encoding the positional information
of tokens.

495

Complexity Standard attention SnapKV and H2O GemFilter

Time
Prompt Comp. Θ(mhn2d) Θ(mhn2d) Θ(rhn2d)

Iter. generation Θ(mh(nt+ t2)d) Θ(mh(kt+ t2)d) Θ(mh(k2 + t2)d)

GPU mem.
Prompt Comp. mw+ 2mhnd mw+ 2hnd+ 2mhkd rw+ 2hnd
Iter. generation mw+ 2mh(n+ t)d mw+ 2mh(k+ t)d mw+ 2mh(k+ t)d

Proof of Theorem 9.3. We prove each method separately.
Proof of standard attention:
During prompting computation, it takesΘ(mhn2d) time complexity, as there are

m transformer layers, each layer has h attention head, and each head takes Θ(n2d)

to calculate the attention (Attni in Definition 9.2) and Θ(nd) for other operations
(gi in Definition 9.2).

During iterative generation, it takes Θ(mh(nt+ t2)d) time complexity.
During prompting computation,mw GPU memory consumption is taken for

the model weights and 2mhnd GPU memory consumption for the KV cache.
During iterative generation, it takes mw GPU memory consumption for the

model weights and 2mh(n + t)d GPU memory consumption for the KV cache.
Proof of SnapKV and H2O:

During prompting computation, it takes Θ(mhn2d) time complexity, which is
the same as standard attention.

During iterative generation, it takes Θ(mh(kt + t2)d) time complexity, as it
reduces the KV cache size from n to k.

During prompting computation, mw GPU memory is consumed for the model
weights, 2hnd for the selection of the key-value matrix for each layer, and 2mhkd
for the selected KV cache.

During iterative generation, mw GPU memory is consumed for the model
weights and 2mh(k+ t)d GPU memory is consumed for the KV cache.

Proof of our Algorithm 2 GemFilter:
During prompting computation, GemFilter takes Θ(rhn2d) time complexity,

which is faster than other methods.

496

During iterative generation, it takes Θ(mh(k2 + kt+ t2)d) = Θ(mh(k2 + t2)d)

time complexity, as it reduces the KV cache size from n to k.
During prompting computation, rw+ 2hnd GPU memory is consumed for the

model weights and the selection of the key value matrix for each layer.
During iterative generation, mw+ 2mh(k+ t)d GPU memory is consumed for

the KV cache and model weights.
Thus, we finish the proof.

G.4 More Details about Experiments

G.4.1 PyTorch Code

We provide the PyTorch code of Algorithm 2 GemFilter below, where our method
only needs a few lines of adaptation based on standard attention2.

1 # find the selected input for the specific attention layer
2 def find_context (self , query_states , key_states , k):
3 # repeat kv for group query attention
4 key_states = repeat_kv (key_states , self. num_key_value_groups)
5 # only use the last query token for the top k selection
6 top_k_indices = top_index (key_states , query_states [:, :, -1:,

:], k)
7 # sort the index into the correct order
8 return torch.sort(top_k_indices , dim =-1). indecies
9

10 def top_index (keys , queries , k, kernel =5):
11 # calculate the inner product
12 in_pro = torch. matmul (queries , keys. transpose (-1, -2))
13 # cumulate the score over all attention heads in one attention

layer
14 in_pro = torch.sum(in_pro , dim =1, keepdim =True)
15 # use 1D pooling for clustering , similar as SnapKV
16 in_pro = F. avg_pool1d (in_pro , kernel =kernel , padding = kernel //2,

stride =1)

2https://github.com/huggingface/transformers/blob/v4.43-release/src/transformers/models/mistral/modeling_mistral.py

497

17 return torch.topk(in_pro , k, dim =-1). indices

G.4.2 Implementation Details

All the Needle in a Haystack and LongBench experiments run on A100-40GB GPUs.
All the experiments of running time and memory complexity are evaluated on
H100-80GB GPUs. We use HuggingFace v4.43 PyTorch implementation. There
is no randomness or training in all baseline methods or our method. For the
SnapKV/H2O, we use 32 recent size/observation window, which is the optimal
choice suggested by Li et al. (2024g); Xu et al. (2024c). However, GemFilter does
not have an observation window. We use a maximum pooling kernel size (line 16
of the PyTorch code below) of 5 for SnapKV and our method. For generation, we
use standard generation (greedy generation)3, where num_beams=1, do_sample =
False.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing LLaMA 3.1 8B Instruct GemFilter-1024 (layer-14)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) GemFilter-1024 (layer-14). LLaMA 3.1 average score: 0.870.

Figure G.1: Needle in a Haystack performance comparison of different filter layers
with LLaMA 3.1 8B Instruct model. The x-axis represents the length of the input
tokens, while the y-axis shows the position depth percentage of the ‘needle’ infor-
mation (e.g., 0% indicates the beginning, and 100% indicates the end). A higher
score reflects better performance, meaning more effective retrieval of the ‘needle’
information.

3https://huggingface.co/docs/transformers/v4.43.2/en/main_classes/text_generation

498

G.4.3 More Needle in a Haystack

We provide more results of Section 9.4.1 here. In Figure G.2, GemFilter outperforms
All KV (standard attention) and SnapKV by a large margin with Phi 3.5 Mini 3.8B
Instruct. In Figure G.1, we use layer 14 of LLama 3.1 as the input filter layer, which
is an empirical support of the ablation study in Section 9.4.3, as it can also obtain
good performance on the Needle in a Haystack benchmark.

G.4.4 Ablation Study on Row Selection

To understand the intuition behind selecting tokens with the most attention specifi-
cally from the last query, we study using different rows rather than the last row in
the attention matrix for indices selection, as shown in Figure 9.2.

In Figure G.3, we introduce two methods: (a) selecting the middle rows of the
attention matrix and (2) selecting rows with the largest ℓ2 norm. As we can see,
both methods fail in the Needle in a Haystack task. It shows that selecting the last
query token is essential in our method.

G.4.5 Ablation Study on Runs

Note that the performance improvement of GemFilter may stem from two factors:
(1) the selection of important tokens, and (2) the re-computation of these tokens,
which might mitigate issues like “lost-in-the-middle”. To understand whether both
factors made contributions, we provide an ablation study to isolate the contribution
of each factor.

In Figure G.4, we introduce GemFilter-One-Run, which does not have the second
run as GemFilter. In detail, after getting the indices, which is exactly the same as
GemFilter, it directly uses this index set to evict the KV cache for all attention heads
and attention layers and continuously conducts the iterative generation phase.

499

Difference from GemFilter and SnapKV

It is different from GemFilter as (1) it requires computing full attention matrices for
all layers for the KV cache eviction, so it does not save prompt computation phase
complexity; (2) it does not have the second run so that the RoPE positional distance
is not updated as GemFilter, where its distance between ‘needle’ and query can be
very large.

It is different from SnapKV as all attention heads and attention layers share the
same index set, while SnapKV has different index sets for different attention heads
and different attention layers.

Results

As we can see in Figure G.4, the GemFilter-One-Run has a comparable performance
with GemFilter, while it is worse when the distance between the query and the
‘needle’ is large. This is expected as the RoPE positional distance does not update
in GemFilter-One-Run. On the other hand, the GemFilter-One-Run takes a larger
running time complexity and a larger memory consumption than GemFilter as
it requires computing full attention matrices for all layers, while GemFilter only
needs to compute the first few layers.

G.4.6 Index Selection

In Figure G.5, we visualize the top-k, k = 100, indices over length n = 46, 530
of each attention layer in GemFilter and SnapKV when using the Mistral Nemo
12B Instruct model and evaluating on Needle in a Haystack. The GemFilter uses
layer-19 as its filter layer. Recall that GemFilter selects the top-k indices based on
the summation of all attention heads, so each attention layer only has one index
set. The SnapKV selects top-k indices for each attention head, so each attention
layer only has h = 32 index sets, where h is the number of attention heads in each
attention layer. Thus, for GemFilter and SnapKV, we plot 1 and 32 index sets for
each attention layer, respectively.

500

In Figure G.5, the red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle
information. The output of GemFilter is “The best thing to do in San Francisco is eat a
sandwich and sit in Dolores Park on a sunny day.” which is totally correct. The output
of SnapKV is “The best thing to do in San Francisco is eat a sandwich.” which is partially
correct.

We can see that GemFilter is only focused on the needle information and recent
information, while SnapKV focuses on a wide range of tokens, which may distract
its attention. We can also conclude that GemFilter and SnapKV have very different
selection mechanisms.

G.4.7 LLaMA 3.1 Chat Template

In Table G.1, we report the performance of different methods on the LongBench
QA task using LLaMA 3.1 8B Instruct and its official LLaMA Chat template4. In the
following, we show the PyTorch code of the way we use the LLaMA Chat template.

1 messages = [
2 {"role": " system ", " content ": ""},
3 {"role": "user", " content ": prompt }]
4

5 input = tokenizer . apply_chat_template (messages ,
add_generation_prompt =True , return_tensors ="pt", return_dict =True
).to(device)

In Table G.1, we can see that, after applying the template, all methods gain a
large improvement in performance compared to Table 9.1. Also, we can see that
GemFilter has a performance comparable to that of other state-of-the-art methods.
It is interesting to understand the difference between the attention mechanisms
with and without using a chat template. We leave it as our future work.

4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct

501

Table G.1: Performance comparison on LongBench across various methods when
using LLaMA 3.1 8B Instruct and its official LLaMA Chat template. A larger number
means better performance. The best score is boldfaced.

Method

Single-Document QA Multi-Document QA

AverageNrtvQA Qasper MF-en HotpotQA 2WikiMQA Musique
All KV 25.08 44.06 55.08 47.86 49.19 27.46 41.46
MInference 29.61 43.89 54.76 51.72 49.55 28.17 42.95
SnapKV-1024 29.01 41.67 56.22 56.81 49.32 31.56 44.10
GemFilter-1024 22.8 40.78 48.05 54.33 50.03 30.03 41.00

G.4.8 More Results of Index Selection

In this section, we provide more results of index selection on LLaMA 3.1 8B Instruct
and Phi 3.5 Mini 3.8B Instruct, where the setting is similar as Figure G.5.

502

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct All KV
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) All KV. Phi 3.5 average score: 0.851.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct SnapKV-1024
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) SnapKV-1024. Phi 3.5 average score: 0.864.

10
00

75
13

14
02

6
20

53
8
27

05
1
33

56
4
40

07
7
46

59
0
53

10
3
59

61
5
66

12
8
72

64
1
79

15
4
85

66
7
92

17
9
98

69
2

10
52

05

11
17

18

11
82

31

12
47

44

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Phi 3.5 Mini 3.8B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) GemFilter-1024 (layer-19). Phi 3.5 average score:
0.910.

Figure G.2: Needle in a Haystack performance comparison of different methods
using the Phi 3.5 Mini 3.8B Instruct model. The x-axis represents the length of the
input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A
higher score reflects better performance, meaning more effective retrieval of the
‘needle’ information. GemFilter significantly outperforms both standard attention
(full KV cache) and SnapKV.

503

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct Middle-Row-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) Middle-Row-1024 (layer-19). Mistral Nemo aver-
age score: 0.198.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct Largest-Row-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) Largest-Row-1024 (layer-19). Mistral Nemo aver-
age score: 0.125.

Figure G.3: Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model. The x-axis represents the length of the
input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A
higher score reflects better performance, meaning more effective retrieval of the
‘needle’ information. (a) is using the middle row to select top k indices and (b) is
using the row with largest ℓ2 norm to select top k indices.

504

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(a) GemFilter-1024 (layer-19). Mistral Nemo average
score: 0.838.

10
00

42
56

75
13

10
76

9
14

02
6
17

28
2
20

53
8
23

79
5
27

05
1
30

30
8
33

56
4
36

82
1
40

07
7
43

33
3
46

59
0
49

84
6
53

10
3
56

35
9
59

61
5

Token Limit

0.0
11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0

100.0

De
pt

h
Pe

rc
en

t

Pressure Testing Mistral Nemo 12B Instruct GemFilter-One-Run-1024 (layer-19)
Fact Retrieval Across Context Lengths ("Needle In A HayStack")

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(b) GemFilter-One-Run-1024 (layer-19). Mistral Nemo
average score: 0.827.

Figure G.4: Needle in a Haystack performance comparison of different methods
using the Mistral Nemo 12B Instruct model. The x-axis represents the length of the
input tokens, while the y-axis shows the position depth percentage of the ‘needle’
information (e.g., 0% indicates the beginning, and 100% indicates the end). A
higher score reflects better performance, meaning more effective retrieval of the
‘needle’ information. (a) is our method GemFilter and (b) is the degenerate version
GemFilter-One-Run for ablation study.

505

Figure G.5: Needle in a Haystack visualization of the top-k indices of each attention
layer in GemFilter and SnapKV when using the Mistral Nemo 12B Instruct model.
The GemFilter uses layer-19 (the same as other experiments) as its filter layer. Both
GemFilter and SnapKV use k = 100, i.e., the number of selected tokens. The x-axis
is the layer index, 40 layers in total. The y-axis is the input index, where the input
token length is n = 46, 530. We use 50% as the position depth percentage of the
‘needle’ information. The red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle
information. The output of GemFilter is “The best thing to do in San Francisco is eat a
sandwich and sit in Dolores Park on a sunny day.” which is totally correct. The output
of SnapKV is “The best thing to do in San Francisco is eat a sandwich.” which is partially
correct.

506

Figure G.6: Needle in a Haystack visualization of the top-k indices of each attention
layer in GemFilter and SnapKV when using the LLaMA 3.1 8B Instruct model. The
GemFilter uses layer-13 (the same as other experiments) as its filter layer. Both
GemFilter and SnapKV use k = 1024, i.e., the number of selected tokens. The x-axis
is the layer index, 32 layers in total. The y-axis is the input index, where the input
token length is n = 108, 172. We use 50% as the position depth percentage of the
‘needle’ information. The red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle
information. The output of GemFilter is “Eat a sandwich and sit in Dolores Park on a
sunny day.” which is totally correct. The output of SnapKV is “Eat a sandwich at a
deli in the Mission District.” which is partially correct.

507

Figure G.7: Needle in a Haystack visualization of the top-k indices of each attention
layer in GemFilter and SnapKV when using the Phi 3.5 Mini 3.8B Instruct model.
The GemFilter uses layer-19 (the same as other experiments) as its filter layer. Both
GemFilter and SnapKV use k = 1024, i.e., the number of selected tokens. The x-axis
is the layer index, 32 layers in total. The y-axis is the input index, where the input
token length is n = 122, 647. We use 50% as the position depth percentage of the
‘needle’ information. The red dots mean the selected tokens for the corresponding
layer and input tokens. The blue rectangle represents the position of the needle
information. The output of GemFilter is “Sit in Dolores Park on a sunny day and eat
a sandwich.” which is totally correct. The output of SnapKV is “Eat a sandwich.”
which is partially correct.

508

references

Abbe, Emmanuel, Enric Boix Adsera, and Theodor Misiakiewicz. 2022a. The
merged-staircase property: a necessary and nearly sufficient condition for sgd
learning of sparse functions on two-layer neural networks. In Conference on learning
theory, 4782–4887. PMLR.

Abbe, Emmanuel, Samy Bengio, Elisabetta Cornacchia, Jon Kleinberg, Aryo Lotfi,
Maithra Raghu, and Chiyuan Zhang. 2022b. Learning to reason with neural
networks: Generalization, unseen data and boolean measures. In Advances in
neural information processing systems, ed. Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho.

Abdel-Hamid, Ossama, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald
Penn, and Dong Yu. 2014. Convolutional neural networks for speech recognition.
IEEE ACM Trans. Audio Speech Lang. Process. 22(10):1533–1545.

Abdin, Marah, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed
Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat
Behl, et al. 2024. Phi-3 technical report: A highly capable language model locally
on your phone. arXiv preprint arXiv:2404.14219.

Achiam, Josh, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Agrawal, Sweta, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan
Ghazvininejad. 2022. In-context examples selection for machine translation. arXiv
preprint arXiv:2212.02437.

Ahn, Kwangjun, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. 2024a. Trans-
formers learn to implement preconditioned gradient descent for in-context learn-
ing. Advances in Neural Information Processing Systems 36.

509

Ahn, Kwangjun, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Su-
vrit Sra. 2024b. Linear attention is (maybe) all you need (to understand transformer
optimization). In The twelfth international conference on learning representations.

AI, Meta. 2024. Introducing meta llama 3: The most capable openly available llm
to date. https://ai.meta.com/blog/meta-llama-3/.

Akiyama, Shunta, and Taiji Suzuki. 2021. On learnability via gradient method for
two-layer relu neural networks in teacher-student setting. In International conference
on machine learning, 152–162. PMLR.

———. 2023. Excess risk of two-layer reLU neural networks in teacher-student
settings and its superiority to kernel methods. In The eleventh international conference
on learning representations.

Akyürek, Ekin, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou.
2022. What learning algorithm is in-context learning? investigations with linear
models. arXiv preprint arXiv:2211.15661.

Akyurek, Ekin, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou.
2023. What learning algorithm is in-context learning? investigations with linear
models. In The eleventh international conference on learning representations.

Alayrac, Jean-Baptiste, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana
Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al.
2022. Flamingo: a visual language model for few-shot learning. arXiv preprint
arXiv:2204.14198.

Allen-Zhu, Zeyuan, and Yuanzhi Li. 2019. What can resnet learn efficiently, going
beyond kernels? In Advances in neural information processing systems.

———. 2020a. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413.

———. 2020b. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816.

510

———. 2022. Feature purification: How adversarial training performs robust deep
learning. In 2021 ieee 62nd annual symposium on foundations of computer science (focs),
977–988. IEEE.

———. 2023. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673.

Allen-Zhu, Zeyuan, Yuanzhi Li, and Yingyu Liang. 2019a. Learning and gen-
eralization in overparameterized neural networks, going beyond two layers. In
Advances in neural information processing systems.

Allen-Zhu, Zeyuan, Yuanzhi Li, and Zhao Song. 2019b. A convergence theory
for deep learning via over-parameterization. In International conference on machine
learning.

Alman, Josh, and Zhao Song. 2023. Fast attention requires bounded entries.
Advances in Neural Information Processing Systems 36.

———. 2024. How to capture higher-order correlations? generalizing matrix
softmax attention to kronecker computation. In The twelfth international conference
on learning representations.

Amodei, Dario, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai,
Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Jingdong Chen, Mike
Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse H. Engel, Linxi Fan,
Christopher Fougner, Awni Y. Hannun, Billy Jun, Tony Han, Patrick LeGresley,
Xiangang Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan Prenger,
Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sen-
gupta, Chong Wang, Yi Wang, Zhiqian Wang, Bo Xiao, Yan Xie, Dani Yogatama,
Jun Zhan, and Zhenyao Zhu. 2016. Deep speech 2 : End-to-end speech recogni-
tion in english and mandarin. In Proceedings of the 33nd international conference
on machine learning, ICML 2016, new york city, ny, usa, june 19-24, 2016, ed. Maria-
Florina Balcan and Kilian Q. Weinberger, vol. 48 of JMLR Workshop and Conference
Proceedings, 173–182. JMLR.org.

511

An, Shengnan, Zeqi Lin, Qiang Fu, Bei Chen, Nanning Zheng, Jian-Guang Lou,
and Dongmei Zhang. 2023. How do in-context examples affect compositional
generalization? arXiv preprint arXiv:2305.04835.

Anthropic. 2024. The claude 3 model family: Opus, sonnet, haiku.

Anthropic. 2024. Claude 3.5 sonnet.

Arjovsky, Martin, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. 2019.
Invariant risk minimization. arXiv preprint arXiv:1907.02893.

Arora, Sanjeev, Nadav Cohen, Noah Golowich, and Wei Hu. 2018. A convergence
analysis of gradient descent for deep linear neural networks. In International
conference on learning representations.

Arora, Sanjeev, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. 2019a. Fine-
grained analysis of optimization and generalization for overparameterized two-
layer neural networks. In International conference on machine learning, 322–332.
PMLR.

Arora, Sanjeev, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and
Ruosong Wang. 2019b. On exact computation with an infinitely wide neural net.
arXiv preprint arXiv:1904.11955.

Arora, Sanjeev, and Anirudh Goyal. 2023. A theory for emergence of complex
skills in language models. arXiv preprint arXiv:2307.15936.

Artur Back, de Luca, and Kimon Fountoulakis. 2024. Simulation of graph algo-
rithms with looped transformers. arXiv preprint arXiv:2402.01107.

Ba, Jimmy, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg
Yang. 2022. High-dimensional asymptotics of feature learning: How one gradient
step improves the representation. arXiv preprint arXiv:2205.01445.

512

Bahng, Hyojin, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon
Oh. 2020. Learning de-biased representations with biased representations. In
International conference on machine learning, 528–539. PMLR.

Bai, Yu, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. 2024a. Transformers
as statisticians: Provable in-context learning with in-context algorithm selection.
Advances in neural information processing systems 36.

Bai, Yu, and Jason D Lee. 2019. Beyond linearization: On quadratic and higher-
order approximation of wide neural networks. In International conference on learning
representations.

Bai, Yushi, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,
Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench: A
bilingual, multitask benchmark for long context understanding. arXiv preprint
arXiv:2308.14508.

Bai, Yushi, Jiajie Zhang, Xin Lv, Linzhi Zheng, Siqi Zhu, Lei Hou, Yuxiao Dong,
Jie Tang, and Juanzi Li. 2024b. Longwriter: Unleashing 10,000+ word generation
from long context llms. arXiv preprint arXiv:2408.07055.

Baker, Nicholas, Hongjing Lu, Gennady Erlikhman, and Philip J. Kellman. 2018.
Deep convolutional networks do not classify based on global object shape. PLOS
Computational Biology 14(12):1–43.

Balestriero, Randall, and Yann LeCun. 2022. Contrastive and non-contrastive
self-supervised learning recover global and local spectral embedding methods.
arXiv preprint arXiv:2205.11508.

Barak, Boaz, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and
Cyril Zhang. 2022. Hidden progress in deep learning: Sgd learns parities near
the computational limit. Advances in Neural Information Processing Systems 35:
21750–21764.

513

Barbu, Andrei, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Josh Tenenbaum, and Boris Katz. 2019. Objectnet: A large-scale bias-
controlled dataset for pushing the limits of object recognition models. Advances in
neural information processing systems 32:9453–9463.

Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler. 2020. Benign
overfitting in linear regression. Proceedings of the National Academy of Sciences
117(48):30063–30070.

Beery, Sara, Grant Van Horn, and Pietro Perona. 2018. Recognition in terra incog-
nita. In Proceedings of the european conference on computer vision (eccv), 456–473.

Belinkov, Yonatan. 2022. Probing classifiers: Promises, shortcomings, and ad-
vances. Computational Linguistics 48(1):207–219.

Belkin, Mikhail, Daniel Hsu, Siyuan Ma, and Soumik Mandal. 2019. Reconcil-
ing modern machine-learning practice and the classical bias–variance trade-off.
Proceedings of the National Academy of Sciences 116(32):15849–15854.

Bhojanapalli, Srinadh, Chulhee Yun, Ankit Singh Rawat, Sashank Reddi, and
Sanjiv Kumar. 2020. Low-rank bottleneck in multi-head attention models. In
International conference on machine learning. PMLR.

Bietti, Alberto, Joan Bruna, Clayton Sanford, and Min Jae Song. 2022. Learning
single-index models with shallow neural networks. arXiv preprint arXiv:2210.15651.

Bietti, Alberto, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon
Bottou. 2023. Birth of a transformer: A memory viewpoint. In Thirty-seventh
conference on neural information processing systems.

Blanchard, Gilles, Aniket Anand Deshmukh, Ürun Dogan, Gyemin Lee, and
Clayton Scott. 2021. Domain generalization by marginal transfer learning. The
Journal of Machine Learning Research 22(1):46–100.

Blei, David M, Andrew Y Ng, and Michael I Jordan. 2003. Latent dirichlet allocation.
the Journal of machine Learning research 3:993–1022.

514

Blum, Avrim, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and
Steven Rudich. 1994. Weakly learning dnf and characterizing statistical query learn-
ing using fourier analysis. In Proceedings of the twenty-sixth annual acm symposium
on theory of computing, 253–262.

Blum, Avrim, and Ronald L Rivest. 1989. Training a 3-node neural network is
np-complete. In Advances in neural information processing systems, 494–501.

Bommasani, Rishi, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. 2021. On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258.

Bourgain, Jean. 2014. An improved estimate in the restricted isometry problem.
In Geometric aspects of functional analysis, 65–70. Springer.

Boyd, Stephen P, and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

Bronstein, Ido, Alon Brutzkus, and Amir Globerson. 2022. On the inductive bias of
neural networks for learning read-once dnfs. In Uncertainty in artificial intelligence,
255–265. PMLR.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems.

Bubeck, Sébastien, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al.
2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712.

515

Bui, Manh-Ha, Toan Tran, Anh Tran, and Dinh Phung. 2021. Exploiting domain-
specific features to enhance domain generalization. Advances in Neural Information
Processing Systems 34:21189–21201.

Cammarata, Nick, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov,
and Chris Olah. 2020. Curve detectors. Distill 5(6):e00024–003.

Candes, Emmanuel, and Benjamin Recht. 2012. Exact matrix completion via convex
optimization. Communications of the ACM 55(6):111–119.

Candès, Emmanuel J, Xiaodong Li, Yi Ma, and John Wright. 2011. Robust principal
component analysis? Journal of the ACM (JACM) 58(3):1–37.

Candes, Emmanuel J, and Justin Romberg. 2006. Quantitative robust uncertainty
principles and optimally sparse decompositions. Foundations of Computational
Mathematics 6(2):227–254.

Cao, Yuan, Zixiang Chen, Misha Belkin, and Quanquan Gu. 2022. Benign over-
fitting in two-layer convolutional neural networks. In Advances in neural informa-
tion processing systems, ed. Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho.

Cao, Yuan, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. 2020.
Towards understanding the spectral bias of deep learning. 1912.01198.

Cao, Yuan, and Quanquan Gu. 2019. Generalization bounds of stochastic gradi-
ent descent for wide and deep neural networks. Advances in Neural Information
Processing Systems 32:10836–10846.

Caron, Mathilde, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. 2018.
Deep clustering for unsupervised learning of visual features. In European conference
on computer vision.

Cha, Junbum, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park,
Yunsung Lee, and Sungrae Park. 2021. Swad: Domain generalization by seeking
flat minima. Advances in Neural Information Processing Systems 34:22405–22418.

516

Cha, Junbum, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. 2022. Domain
generalization by mutual-information regularization with pre-trained models. In
Computer vision–eccv 2022: 17th european conference, tel aviv, israel, october 23–27,
2022, proceedings, part xxiii, 440–457. Springer.

Chandrasekaran, Venkat, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky.
2011. Rank-sparsity incoherence for matrix decomposition. SIAM Journal on
Optimization 21(2):572–596.

Changpinyo, Soravit, Piyush Sharma, Nan Ding, and Radu Soricut. 2021. Con-
ceptual 12m: Pushing web-scale image-text pre-training to recognize long-tail
visual concepts. In Proceedings of the ieee/cvf conference on computer vision and pattern
recognition, 3558–3568.

Chatterji, Niladri S, Philip M Long, and Peter L Bartlett. 2021. When does gradient
descent with logistic loss find interpolating two-layer networks? Journal of Machine
Learning Research 22(159):1–48.

Chen, Beidi, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré.
2021. Scatterbrain: Unifying sparse and low-rank attention. Advances in Neural
Information Processing Systems (NeurIPS) 34:17413–17426.

Chen, Bo, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song.
2024a. Circuit complexity bounds for rope-based transformer architecture. arXiv
preprint arXiv:2411.07602.

Chen, Bo, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024b. Bypassing
the exponential dependency: Looped transformers efficiently learn in-context by
multi-step gradient descent. arXiv preprint arXiv:2410.11268.

Chen, Bo, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. 2024c. Hsr-
enhanced sparse attention acceleration. arXiv preprint arXiv:2410.10165.

Chen, Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille. 2018. Deeplab: Semantic image segmentation with deep convolu-

517

tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell. 40(4):834–848.

Chen, Minshuo, Yu Bai, Jason D Lee, Tuo Zhao, Huan Wang, Caiming Xiong, and
Richard Socher. 2020a. Towards understanding hierarchical learning: Benefits of
neural representations. arXiv preprint arXiv:2006.13436.

Chen, Minshuo, Haoming Jiang, Wenjing Liao, and Tuo Zhao. 2019a. Efficient
approximation of deep relu networks for functions on low dimensional manifolds.
Advances in neural information processing systems 32:8174–8184.

———. 2019b. Nonparametric regression on low-dimensional manifolds using
deep relu networks: Function approximation and statistical recovery. arXiv preprint
arXiv:1908.01842.

Chen, Sitan, Jerry Li, and Zhao Song. 2020b. Learning mixtures of linear regres-
sions in subexponential time via fourier moments. In Proceedings of the 52nd annual
acm sigact symposium on theory of computing, 587–600.

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020c. A
simple framework for contrastive learning of visual representations. In International
conference on machine learning.

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020d.
A simple framework for contrastive learning of visual representations. In Proceed-
ings of the 37th international conference on machine learning, ICML 2020, 13-18 july
2020, virtual event, vol. 119 of Proceedings of Machine Learning Research, 1597–1607.
PMLR.

Chen, Xiang, Zhao Song, Baocheng Sun, Junze Yin, and Danyang Zhuo. 2023.
Query complexity of active learning for function family with nearly orthogonal
basis. arXiv preprint arXiv:2306.03356.

518

Chen, Xinlei, and Kaiming He. 2021. Exploring simple siamese representation
learning. In IEEE conference on computer vision and pattern recognition, CVPR 2021,
virtual, june 19-25, 2021, 15750–15758. Computer Vision Foundation / IEEE.

Chen, Xue, Daniel M Kane, Eric Price, and Zhao Song. 2016. Fourier-sparse
interpolation without a frequency gap. In 2016 ieee 57th annual symposium on
foundations of computer science (focs), 741–750. IEEE.

Chen, Yifang, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024d. The
computational limits of state-space models and mamba via the lens of circuit
complexity. arXiv preprint arXiv:2412.06148.

Chen, Zhengdao, Eric Vanden-Eijnden, and Joan Bruna. 2022. On feature learning
in neural networks with global convergence guarantees. In International conference
on learning representations.

Cheng, Xiang, Yuxin Chen, and Suvrit Sra. 2023. Transformers implement func-
tional gradient descent to learn non-linear functions in context. arXiv preprint
arXiv:2312.06528.

Chi, Po-Han, Pei-Hung Chung, Tsung-Han Wu, Chun-Cheng Hsieh, Yen-Hao
Chen, Shang-Wen Li, and Hung-yi Lee. 2021. Audio albert: A lite bert for self-
supervised learning of audio representation. In 2021 ieee spoken language technology
workshop (slt), 344–350. IEEE.

Chizat, Lenaic, and Francis Bach. 2018a. A note on lazy training in supervised
differentiable programming. arXiv preprint arXiv:1812.07956.

———. 2018b. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information
processing systems 31.

———. 2020. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, 1305–1338. PMLR.

519

Chizat, Lenaic, Edouard Oyallon, and Francis Bach. 2019. On lazy training in
differentiable programming. In Advances in neural information processing systems.

Chorowski, Jan, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. 2015. Attention-based models for speech recognition. In Advances
in neural information processing systems 28: Annual conference on neural information
processing systems 2015, december 7-12, 2015, montreal, quebec, canada, ed. Corinna
Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
577–585.

Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311.

Chughtai, Bilal, Lawrence Chan, and Neel Nanda. 2023. A toy model of universal-
ity: Reverse engineering how networks learn group operations. In International
conference on machine learning, 6243–6267. PMLR.

Chung, Hyung Won, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling
instruction-finetuned language models. arXiv preprint arXiv:2210.11416.

Cohen, Gregory, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
Emnist: Extending mnist to handwritten letters. In 2017 international joint conference
on neural networks (ijcnn), 2921–2926. IEEE.

Cole, Elijah, Xuan Yang, Kimberly Wilber, Oisin Mac Aodha, and Serge Belongie.
2022. When does contrastive visual representation learning work? In Proceedings
of the ieee/cvf conference on computer vision and pattern recognition, 14755–14764.

Conneau, Alexis, and Douwe Kiela. 2018. SentEval: An evaluation toolkit for uni-
versal sentence representations. In Proceedings of the eleventh international conference
on language resources and evaluation (LREC 2018). European Language Resources
Association (ELRA).

520

Dai, Damai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. 2022. Why
can gpt learn in-context? language models secretly perform gradient descent as
meta optimizers. arXiv preprint arXiv:2212.10559.

Damian, Alexandru, Jason Lee, and Mahdi Soltanolkotabi. 2022. Neural networks
can learn representations with gradient descent. In Conference on learning theory.
PMLR.

Daniely, Amit, and Eran Malach. 2020. Learning parities with neural networks.
Advances in Neural Information Processing Systems 33:20356–20365.

Dao, Tri. 2023. Flashattention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691.

Dao, Tri, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances in
Neural Information Processing Systems 35:16344–16359.

Darlow, Luke N, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. 2018.
Cinic-10 is not imagenet or cifar-10. arXiv preprint arXiv:1810.03505.

Dass, Jyotikrishna, Shang Wu, Huihong Shi, Chaojian Li, Zhifan Ye, Zhongfeng
Wang, and Yingyan Lin. 2023. Vitality: Unifying low-rank and sparse approxima-
tion for vision transformer acceleration with a linear taylor attention. In 2023 ieee
international symposium on high-performance computer architecture (hpca). IEEE.

Dehghani, Mostafa, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz
Kaiser. 2018. Universal transformers. arXiv preprint arXiv:1807.03819.

Demirel, Mehmet F, Shengchao Liu, Siddhant Garg, Zhenmei Shi, and Yingyu
Liang. 2022. Attentive walk-aggregating graph neural networks. Transactions on
Machine Learning Research.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 ieee conference on computer vision
and pattern recognition, 248–255. Ieee.

521

Deng, Li. 2012. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine 29(6):141–142.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 conference of the north American chapter of the association for com-
putational linguistics: Human language technologies. Association for Computational
Linguistics.

Diakonikolas, Ilias, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi
Soltanolkotabi. 2020. Approximation schemes for relu regression. In Conference on
learning theory.

Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. 2015. Unsupervised visual
representation learning by context prediction. In 2015 IEEE international conference
on computer vision, ICCV 2015, santiago, chile, december 7-13, 2015, 1422–1430. IEEE
Computer Society.

Dolan, William B., and Chris Brockett. 2005. Automatically constructing a cor-
pus of sentential paraphrases. In Proceedings of the third international workshop on
paraphrasing (IWP2005).

Dong, Qingxiu, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun,
Jingjing Xu, and Zhifang Sui. 2022. A survey on in-context learning. arXiv preprint
arXiv:2301.00234.

Dong, Weisheng, Guangming Shi, Xin Li, Yi Ma, and Feng Huang. 2014. Com-
pressive sensing via nonlocal low-rank regularization. IEEE transactions on image
processing 23(8):3618–3632.

Doshi, Darshil, Tianyu He, Aritra Das, and Andrey Gromov. 2024. Grokking
modular polynomials. arXiv preprint arXiv:2406.03495.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

522

Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. In International conference on learning representations.

Dou, Qi, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. 2019.
Domain generalization via model-agnostic learning of semantic features. Advances
in Neural Information Processing Systems 32.

Dou, Xialiang, and Tengyuan Liang. 2020. Training neural networks as learn-
ing data-adaptive kernels: Provable representation and approximation benefits.
Journal of the American Statistical Association 1–14.

Du, Simon, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. 2019. Gradient
descent finds global minima of deep neural networks. In International conference
on machine learning.

Du, Simon S, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. 2018. Gradient descent
provably optimizes over-parameterized neural networks. In International conference
on learning representations.

Dubois, Yann, Yangjun Ruan, and Chris J Maddison. 2022. Optimal representations
for covariate shifts. In International conference on learning representations.

Dwibedi, Debidatta, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and An-
drew Zisserman. 2021. With a little help from my friends: Nearest-neighbor
contrastive learning of visual representations. In Proceedings of the ieee/cvf interna-
tional conference on computer vision, 9588–9597.

Elhage, Nelson, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan,
Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen,
et al. 2022. Toy models of superposition. arXiv preprint arXiv:2209.10652.

Elhage, Nelson, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. 2021. A
mathematical framework for transformer circuits. Transformer Circuits Thread 1.

523

Ericsson, Linus, Henry Gouk, and Timothy M. Hospedales. 2021. How well do
self-supervised models transfer? In IEEE conference on computer vision and pattern
recognition, CVPR 2021, virtual, june 19-25, 2021, 5414–5423. Computer Vision
Foundation / IEEE.

Fan, Ky. 1951. Maximum properties and inequalities for the eigenvalues of com-
pletely continuous operators. Proceedings of the National Academy of Sciences 37(11):
760–766.

Fan, Xinyan, Zheng Liu, Jianxun Lian, Wayne Xin Zhao, Xing Xie, and Ji-Rong
Wen. 2021. Lighter and better: low-rank decomposed self-attention networks
for next-item recommendation. In Proceedings of the 44th international acm sigir
conference on research and development in information retrieval.

Fang, Chen, Ye Xu, and Daniel N Rockmore. 2013. Unbiased metric learning:
On the utilization of multiple datasets and web images for softening bias. In
Proceedings of the ieee international conference on computer vision, 1657–1664.

Fang, Cong, Hanze Dong, and Tong Zhang. 2019. Over parameterized two-level
neural networks can learn near optimal feature representations. 1910.11508.

———. 2021. Mathematical models of overparameterized neural networks. Pro-
ceedings of the IEEE 109(5):683–703.

Feng, Yu, and Yuhai Tu. 2021. Phases of learning dynamics in artificial neural
networks: in the absence or presence of mislabeled data. Machine Learning: Science
and Technology.

Foret, Pierre, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. 2021.
Sharpness-aware minimization for efficiently improving generalization. In In-
ternational conference on learning representations.

Frankle, Jonathan, and Michael Carbin. 2018. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In International conference on learning representa-
tions.

524

Frankle, Jonathan, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin.
2019. Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611.

Frei, Spencer, Yuan Cao, and Quanquan Gu. 2020. Agnostic learning of a single
neuron with gradient descent. In Advances in neural information processing systems.

———. 2021. Provable generalization of sgd-trained neural networks of any width
in the presence of adversarial label noise. arXiv preprint arXiv:2101.01152.

Frei, Spencer, Niladri S Chatterji, and Peter Bartlett. 2022a. Benign overfitting
without linearity: Neural network classifiers trained by gradient descent for noisy
linear data. In Conference on learning theory, 2668–2703. PMLR.

Frei, Spencer, Niladri S Chatterji, and Peter L Bartlett. 2022b. Random feature
amplification: Feature learning and generalization in neural networks. arXiv
preprint arXiv:2202.07626.

Frei, Spencer, and Quanquan Gu. 2021. Proxy convexity: A unified framework for
the analysis of neural networks trained by gradient descent. Advances in Neural
Information Processing Systems 34.

Frei, Spencer, Gal Vardi, Peter L Bartlett, and Nathan Srebro. 2023a. Benign
overfitting in linear classifiers and leaky relu networks from kkt conditions for
margin maximization. arXiv preprint arXiv:2303.01462.

———. 2023b. The double-edged sword of implicit bias: Generalization vs. ro-
bustness in relu networks. arXiv preprint arXiv:2303.01456.

Frei, Spencer, Gal Vardi, Peter L Bartlett, Nathan Srebro, and Wei Hu. 2022c.
Implicit bias in leaky relu networks trained on high-dimensional data. arXiv
preprint arXiv:2210.07082.

Fu, Yao, Hao Peng, Tushar Khot, and Mirella Lapata. 2023. Improving language
model negotiation with self-play and in-context learning from ai feedback. arXiv
preprint arXiv:2305.10142.

525

Ganin, Yaroslav, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The Journal of Machine Learning
Research 17(1):2096–2030.

Gao, Peng, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou,
Wei Zhang, Pan Lu, Conghui He, Xiangyu Yue, et al. 2023. Llama-adapter v2:
Parameter-efficient visual instruction model. arXiv preprint arXiv:2304.15010.

Gao, Peng, Chiori Hori, Shijie Geng, Takaaki Hori, and Jonathan Le Roux. 2020.
Multi-pass transformer for machine translation. arXiv preprint arXiv:2009.11382.

Gao, Tianyu, Adam Fisch, and Danqi Chen. 2021a. Making pre-trained language
models better few-shot learners. In Proceedings of the 59th annual meeting of the
association for computational linguistics and the 11th international joint conference on
natural language processing.

Gao, Tianyu, Xingcheng Yao, and Danqi Chen. 2021b. Simcse: Simple contrastive
learning of sentence embeddings. In Proceedings of the 2021 conference on empirical
methods in natural language processing, 6894–6910.

Gao, Yeqi, Zhao Song, and Baocheng Sun. 2022. An O(k logn) time fourier set
query algorithm. arXiv preprint arXiv:2208.09634.

Garg, Shivam, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. 2022. What
can transformers learn in-context? a case study of simple function classes. Advances
in Neural Information Processing Systems.

Garg, Siddhant, and Yingyu Liang. 2020. Functional regularization for representa-
tion learning: A unified theoretical perspective. arXiv preprint arXiv:2008.02447.

Garrigos, Guillaume, and Robert M Gower. 2023. Handbook of convergence
theorems for (stochastic) gradient methods. arXiv preprint arXiv:2301.11235.

Gatmiry, Khashayar, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv
Kumar. 2024. Can looped transformers learn to implement multi-step gradient

526

descent for in-context learning? In Forty-first international conference on machine
learning.

Ge, Suyu, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao.
2023. Model tells you what to discard: Adaptive kv cache compression for llms.
arXiv preprint arXiv:2310.01801.

Geiger, Mario, Leonardo Petrini, and Matthieu Wyart. 2021. Landscape and
training regimes in deep learning. Physics Reports 924:1–18.

Geiger, Mario, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. 2020. Disen-
tangling feature and lazy training in deep neural networks. Journal of Statistical
Mechanics: Theory and Experiment 2020(11):113301.

Geirhos, Robert, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. 2019. Imagenet-trained CNNs are biased to-
wards texture; increasing shape bias improves accuracy and robustness. In Inter-
national conference on learning representations.

Geva, Mor, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer
feed-forward layers are key-value memories. In Proceedings of the 2021 conference
on empirical methods in natural language processing, 5484–5495.

Ghorbani, Behrooz, Song Mei, Theodor Misiakiewicz, and Andrea Montanari.
2019. Limitations of lazy training of two-layers neural networks. arXiv preprint
arXiv:1906.08899.

———. 2020. When do neural networks outperform kernel methods? In Advances
in neural information processing systems.

Giannou, Angeliki, Liu Yang, Tianhao Wang, Dimitris Papailiopoulos, and Jason D
Lee. 2024. How well can transformers emulate in-context newton’s method? arXiv
preprint arXiv:2403.03183.

527

Gidel, Gauthier, Francis Bach, and Simon Lacoste-Julien. 2019. Implicit regulariza-
tion of discrete gradient dynamics in linear neural networks. Advances in Neural
Information Processing Systems 32.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Computer
vision and pattern recognition.

Goldt, Sebastian, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka
Zdeborová. 2019. Dynamics of stochastic gradient descent for two-layer neural
networks in the teacher-student setup. Advances in neural information processing
systems 32.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems, 2672–2680.

Goodfellow, Ian J, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi
Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun
Lee, et al. 2013. Challenges in representation learning: A report on three machine
learning contests. In International conference on neural information processing, 117–124.
Springer.

Grill, Jean-Bastien, Florian Strub, Florent Altché, Corentin Tallec, Pierre H.
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan
Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos,
and Michal Valko. 2020. Bootstrap your own latent - A new approach to self-
supervised learning. In Advances in neural information processing systems 33: Annual
conference on neural information processing systems 2020, neurips 2020, december 6-12,
2020, virtual.

Gromov, Andrey. 2023. Grokking modular arithmetic. arXiv preprint
arXiv:2301.02679.

528

Gu, Jiuxiang, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. 2024.
Differential privacy mechanisms in neural tangent kernel regression. arXiv preprint
arXiv:2407.13621.

Gu, Shuhang, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. 2014. Weighted
nuclear norm minimization with application to image denoising. In Proceedings of
the ieee conference on computer vision and pattern recognition, 2862–2869.

Gulrajani, Ishaan, and David Lopez-Paz. 2021. In search of lost domain general-
ization. In International conference on learning representations.

Gunasekar, Suriya, Jason Lee, Daniel Soudry, and Nathan Srebro. 2018a. Charac-
terizing implicit bias in terms of optimization geometry. In International conference
on machine learning, 1832–1841. PMLR.

Gunasekar, Suriya, Jason D Lee, Daniel Soudry, and Nati Srebro. 2018b. Implicit
bias of gradient descent on linear convolutional networks. Advances in Neural
Information Processing Systems 31.

Guo, Tianyu, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and
Yu Bai. 2024. How do transformers learn in-context beyond simple functions? a
case study on learning with representations. In The twelfth international conference
on learning representations.

Hanin, Boris, and Mihai Nica. 2019. Finite depth and width corrections to the
neural tangent kernel. In International conference on learning representations.

Hanna, Michael, Ollie Liu, and Alexandre Variengien. 2023. How does gpt-2 com-
pute greater-than?: Interpreting mathematical abilities in a pre-trained language
model. Advances in Neural Information Processing Systems 36.

Hannun, Awni Y., Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. 2014. Deep speech: Scaling up end-to-end speech recognition.
CoRR abs/1412.5567. 1412.5567.

529

HaoChen, Jeff Z, Colin Wei, Adrien Gaidon, and Tengyu Ma. 2021. Provable guar-
antees for self-supervised deep learning with spectral contrastive loss. Advances
in Neural Information Processing Systems 34.

Haviv, Ishay, and Oded Regev. 2017. The restricted isometry property of subsam-
pled fourier matrices. In Geometric aspects of functional analysis, 163–179. Springer.

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick.
2022. Masked autoencoders are scalable vision learners. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition, 16000–16009.

He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020a. Mo-
mentum contrast for unsupervised visual representation learning. In Computer
vision and pattern recognition.

He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020b.
Momentum contrast for unsupervised visual representation learning. In 2020
IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, seattle,
wa, usa, june 13-19, 2020, 9726–9735. Computer Vision Foundation / IEEE.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the ieee conference on computer vision
and pattern recognition, 770–778.

Hendrycks, Dan, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. arXiv preprint arXiv:2103.03874.

Hotelling, Harold. 1933. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology 24(6):417.

Howard, Jeremy, and Sebastian Ruder. 2018. Universal language model fine-tuning
for text classification. In Proceedings of the 56th annual meeting of the association for
computational linguistics, ACL 2018, melbourne, australia, july 15-20, 2018, volume

530

1: Long papers, ed. Iryna Gurevych and Yusuke Miyao, 328–339. Association for
Computational Linguistics.

Hu, Edward J, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International conference on learning representations.

Hu, Jerry Yao-Chieh, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian
Li, Wei-Po Wang, and Han Liu. 2024a. Outlier-efficient hopfield layers for large
transformer-based models. In Forty-first international conference on machine learning
(icml).

Hu, Jerry Yao-Chieh, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. 2024b.
Nonparametric modern hopfield models. arXiv preprint arXiv:2404.03900.

Hu, Jerry Yao-Chieh, Thomas Lin, Zhao Song, and Han Liu. 2024c. On computa-
tional limits of modern hopfield models: A fine-grained complexity analysis. In
Forty-first international conference on machine learning (icml).

Hu, Jerry Yao-Chieh, Dennis Wu, and Han Liu. 2024d. Provably optimal memory
capacity for modern hopfield models: Tight analysis for transformer-compatible
dense associative memories. In Advances in neural information processing systems
(neurips), vol. 37.

Hu, Jerry Yao-Chieh, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and
Han Liu. 2023. On sparse modern hopfield model. In Thirty-seventh conference on
neural information processing systems (neurips).

Huang, Jiaoyang, and Horng-Tzer Yau. 2020. Dynamics of deep neural networks
and neural tangent hierarchy. In International conference on machine learning, 4542–
4551. PMLR.

Huang, Yu, Yuan Cheng, and Yingbin Liang. 2023. In-context convergence of
transformers. arXiv preprint arXiv:2310.05249.

531

Huang, Zeyi, Haohan Wang, Eric P Xing, and Dong Huang. 2020. Self-challenging
improves cross-domain generalization. In European conference on computer vision,
124–140. Springer.

Indyk, Piotr, and Michael Kapralov. 2014. Sample-optimal Fourier sampling in
any constant dimension. In Ieee 55th annual symposium onfoundations of computer
science (focs), 514–523. IEEE.

Indyk, Piotr, Michael Kapralov, and Eric Price. 2014. (nearly) sample-optimal
sparse fourier transform. In Proceedings of the twenty-fifth annual acm-siam symposium
on discrete algorithms (soda), 480–499. SIAM.

Iyer, Srinivasan, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel
Simig, Ping Yu, Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al.
2022. Opt-iml: Scaling language model instruction meta learning through the lens
of generalization. arXiv preprint arXiv:2212.12017.

Jacot, Arthur. 2023. Implicit bias of large depth networks: a notion of rank for non-
linear functions. In The eleventh international conference on learning representations.

Jacot, Arthur, Franck Gabriel, and Clément Hongler. 2018. Neural tangent ker-
nel: Convergence and generalization in neural networks. In Advances in neural
information processing systems.

Jelassi, Samy, Michael Sander, and Yuanzhi Li. 2022. Vision transformers provably
learn spatial structure. Advances in Neural Information Processing Systems.

Ji, Ziwei, and Matus Telgarsky. 2019a. The implicit bias of gradient descent on
nonseparable data. In Conference on learning theory, 1772–1798. PMLR.

———. 2019b. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. In International conference
on learning representations.

———. 2020. Directional convergence and alignment in deep learning. Advances
in Neural Information Processing Systems 33:17176–17186.

532

Jiang, Albert Q., Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. 2023a. Mistral 7b. 2310.06825.

Jiang, Huiqiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo,
Surin Ahn, Zhenhua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. 2024a.
Minference 1.0: Accelerating pre-filling for long-context llms via dynamic sparse
attention. arXiv preprint arXiv:2407.02490.

Jiang, Huiqiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2024b. LongLLMLingua: Accelerating and enhancing LLMs in
long context scenarios via prompt compression. In Proceedings of the 62nd annual
meeting of the association for computational linguistics (volume 1: Long papers), ed.
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, 1658–1677. Bangkok, Thailand:
Association for Computational Linguistics.

Jiang, Huiqiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023b.
LLMLingua: Compressing prompts for accelerated inference of large language
models. In Proceedings of the 2023 conference on empirical methods in natural language
processing, ed. Houda Bouamor, Juan Pino, and Kalika Bali, 13358–13376. Singapore:
Association for Computational Linguistics.

Jiang, Ziyan, Xueguang Ma, and Wenhu Chen. 2024c. Longrag: Enhanc-
ing retrieval-augmented generation with long-context llms. arXiv preprint
arXiv:2406.15319.

Jin, Yaonan, Daogao Liu, and Zhao Song. 2023. Super-resolution and robust sparse
continuous fourier transform in any constant dimension: Nearly linear time and
sample complexity. In Acm-siam symposium on discrete algorithms (soda).

533

Jing, Longlong, and Yingli Tian. 2020. Self-supervised visual feature learning with
deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Kalibhat, Neha Mukund, Kanika Narang, Hamed Firooz, Maziar Sanjabi, and
Soheil Feizi. 2022. Towards better understanding of self-supervised representations.
In Icml 2022: Workshop on spurious correlations, invariance and stability.

Kamath, Pritish, Omar Montasser, and Nathan Srebro. 2020. Approximate is
good enough: Probabilistic variants of dimensional and margin complexity. In
Conference on learning theory.

Kamradt, Greg. 2024. Needle in a haystack - pressure testing llms.

Kapralov, Michael. 2016. Sparse Fourier transform in any constant dimension with
nearly-optimal sample complexity in sublinear time. In Symposium on theory of
computing conference (stoc).

———. 2017. Sample efficient estimation and recovery in sparse FFT via isolation
on average. In 58th annual ieee symposium on foundations of computer science (focs).

Karimi, Hamed, Julie Nutini, and Mark Schmidt. 2016. Linear convergence of
gradient and proximal-gradient methods under the polyak-łojasiewicz condition.
In Joint european conference on machine learning and knowledge discovery in databases,
795–811. Springer.

Ke, Yekun, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024a. Ad-
vancing the understanding of fixed point iterations in deep neural networks: A
detailed analytical study. arXiv preprint arXiv:2410.11279.

Ke, Yekun, Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. 2024b.
Curse of attention: A kernel-based perspective for why transformers fail to gener-
alize on time series forecasting and beyond. arXiv preprint arXiv:2412.06061.

Kearns, Michael. 1998. Efficient noise-tolerant learning from statistical queries.
Journal of the ACM.

534

Khattab, Omar, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang,
Christopher Potts, and Matei Zaharia. 2022. Demonstrate-search-predict: Com-
posing retrieval and language models for knowledge-intensive nlp. arXiv preprint
arXiv:2212.14024.

Kim, Daehee, Youngjun Yoo, Seunghyun Park, Jinkyu Kim, and Jaekoo Lee. 2021.
Selfreg: Self-supervised contrastive regularization for domain generalization. In
Proceedings of the ieee/cvf international conference on computer vision, 9619–9628.

Kirichenko, Polina, Pavel Izmailov, and Andrew Gordon Wilson. 2023. Last layer
re-training is sufficient for robustness to spurious correlations. In The eleventh
international conference on learning representations.

Ko, Ching-Yun, Jeet Mohapatra, Sijia Liu, Pin-Yu Chen, Luca Daniel, and Lily Weng.
2022. Revisiting contrastive learning through the lens of neighborhood component
analysis: an integrated framework. In International conference on machine learning,
11387–11412. PMLR.

Koehler, Frederic, and Andrej Risteski. 2018. The comparative power of relu
networks and polynomial kernels in the presence of sparse latent structure. In
International conference on learning representations.

Koh, Pang Wei, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, 5637–5664. PMLR.

Kohler, Jonas Moritz, and Aurelien Lucchi. 2017. Sub-sampled cubic regularization
for non-convex optimization. In International conference on machine learning, 1895–
1904. PMLR.

Kolesnikov, Alexander, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. 2020. Big transfer (bit): General visual represen-
tation learning. In Computer vision - ECCV 2020 - 16th european conference, glasgow,

535

uk, august 23-28, 2020, proceedings, part V, vol. 12350 of Lecture Notes in Computer
Science, 491–507. Springer.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42(8):30–37.

Korlakai Vinayak, Ramya, Samet Oymak, and Babak Hassibi. 2014. Graph clus-
tering with missing data: Convex algorithms and analysis. Advances in Neural
Information Processing Systems 27.

Kornblith, Simon, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. 2019.
Similarity of neural network representations revisited. In International conference
on machine learning, 3519–3529. PMLR.

Kotar, Klemen, Gabriel Ilharco, Ludwig Schmidt, Kiana Ehsani, and Roozbeh
Mottaghi. 2021. Contrasting contrastive self-supervised representation learning
pipelines. In 2021 IEEE/CVF international conference on computer vision, ICCV 2021,
montreal, qc, canada, october 10-17, 2021, 9929–9939. IEEE.

Krizhevsky, Alex. 2012. Learning multiple layers of features from tiny images.
University of Toronto.

Krizhevsky, Alex, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. arXiv.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Advances in neural information
processing systems, 1097–1105.

Krueger, David, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan
Binas, Dinghuai Zhang, Remi Le Priol, and Aaron Courville. 2021. Out-of-
distribution generalization via risk extrapolation (rex). In International conference
on machine learning, 5815–5826. PMLR.

Kumar, Abhishek, and Hal Daume III. 2012. Learning task grouping and overlap
in multi-task learning. arXiv preprint arXiv:1206.6417.

536

Kumar, Tanishq, Blake Bordelon, Samuel J Gershman, and Cengiz Pehlevan. 2023.
Grokking as the transition from lazy to rich training dynamics. arXiv preprint
arXiv:2310.06110.

Le, Ya, and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS 231N.

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proceedings of the IEEE 86(11):
2278–2324.

Lee, Doyup, Sungwoong Kim, Ildoo Kim, Yeongjae Cheon, Minsu Cho, and Wook-
Shin Han. 2022. Contrastive regularization for semi-supervised learning. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition, 3911–
3920.

Lee, Jaehoon, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pen-
nington, and Jascha Sohl-Dickstein. 2018. Deep neural networks as gaussian
processes. In International conference on learning representations.

Lee, Jaehoon, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao,
Roman Novak, and Jascha Sohl-Dickstein. 2020. Finite versus infinite neural
networks: an empirical study. Advances in Neural Information Processing Systems 33:
15156–15172.

Lee, Jaehoon, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak,
Jascha Sohl-Dickstein, and Jeffrey Pennington. 2019a. Wide neural networks of
any depth evolve as linear models under gradient descent. Advances in neural
information processing systems.

Lee, Jason D, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. 2021. Predicting what
you already know helps: Provable self-supervised learning. Advances in Neural
Information Processing Systems 34:309–323.

537

Lee, Yin Tat, Zhao Song, and Qiuyi Zhang. 2019b. Solving empirical risk mini-
mization in the current matrix multiplication time. In Conference on learning theory,
2140–2157. PMLR.

Lester, Brian, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for
parameter-efficient prompt tuning. In Proceedings of the 2021 conference on empirical
methods in natural language processing. Association for Computational Linguistics.

Lewkowycz, Aitor, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. 2022. Solving quantitative reasoning problems with language
models. Advances in Neural Information Processing Systems 35:3843–3857.

Li, Bo, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang,
and Ziwei Liu. 2023a. Sparse mixture-of-experts are domain generalizable learners.
In The eleventh international conference on learning representations.

Li, Chenyang, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024a. Exploring the
frontiers of softmax: Provable optimization, applications in diffusion model, and
beyond. manuscript.

Li, Chenyang, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. 2024b.
Fourier circuits in neural networks: Unlocking the potential of large language
models in mathematical reasoning and modular arithmetic. arXiv preprint
arXiv:2402.09469.

Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. 2018a. Learning
to generalize: Meta-learning for domain generalization. In Proceedings of the aaai
conference on artificial intelligence.

Li, Da, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. 2017. Deeper,
broader and artier domain generalization. In Proceedings of the ieee international
conference on computer vision, 5542–5550.

538

Li, Haoliang, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. 2018b. Domain
generalization with adversarial feature learning. In Proceedings of the ieee conference
on computer vision and pattern recognition, 5400–5409.

Li, Hongkang, Meng Wang, Sijia Liu, and Pin-Yu Chen. 2023b. A theoretical
understanding of shallow vision transformers: Learning, generalization, and
sample complexity. In The eleventh international conference on learning representations.

Li, Hongkang, Meng Wang, Songtao Lu, Hui Wan, Xiaodong Cui, and Pin-Yu
Chen. 2023c. Transformers as multi-task feature selectors: Generalization analysis
of in-context learning. In Neurips 2023 workshop on mathematics of modern machine
learning.

Li, Jingyao, Han Shi, Xin Jiang, Zhenguo Li, Hong Xu, and Jiaya Jia. 2024c. Quickl-
lama: Query-aware inference acceleration for large language models. arXiv preprint
arXiv:2406.07528.

Li, Xiang Lisa, and Percy Liang. 2021. Prefix-tuning: Optimizing continuous
prompts for generation. In Proceedings of the 59th annual meeting of the association for
computational linguistics and the 11th international joint conference on natural language
processing. Association for Computational Linguistics.

Li, Xiaodong, Yudong Chen, and Jiaming Xu. 2021. Convex relaxation methods
for community detection. Statistical Science 36(1):2–15.

Li, Xiaoyu, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024d. On
the expressive power of modern hopfield networks. arXiv preprint arXiv:2412.05562.

Li, Xiaoyu, Yingyu Liang, Zhenmei Shi, and Zhao Song. 2024e. A tighter complex-
ity analysis of sparsegpt. arXiv preprint arXiv:2408.12151.

Li, Xiaoyu, Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. 2024f. Fine-
grained attention i/o complexity: Comprehensive analysis for backward passes.
arXiv preprint arXiv:2410.09397.

539

Li, Ya, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang,
and Dacheng Tao. 2018c. Deep domain generalization via conditional invariant
adversarial networks. In Proceedings of the european conference on computer vision
(eccv), 624–639.

Li, Yingcong, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet
Oymak. 2023d. Transformers as algorithms: Generalization and stability in in-
context learning. In Proceedings of the 40th international conference on machine learning.
Proceedings of Machine Learning Research, PMLR.

Li, Yingcong, Kartik Sreenivasan, Angeliki Giannou, Dimitris Papailiopoulos, and
Samet Oymak. 2023e. Dissecting chain-of-thought: Compositionality through
in-context filtering and learning. In Thirty-seventh conference on neural information
processing systems.

Li, Yuanzhi, and Yingyu Liang. 2018. Learning overparameterized neural networks
via stochastic gradient descent on structured data. In Advances in neural information
processing systems.

Li, Yuanzhi, Tengyu Ma, and Hongyang R Zhang. 2020. Learning over-
parametrized two-layer neural networks beyond ntk. In Conference on learning
theory.

Li, Yuanzhi, Colin Wei, and Tengyu Ma. 2019. Towards explaining the regulariza-
tion effect of initial large learning rate in training neural networks. Advances in
Neural Information Processing Systems.

Li, Yuchen, Yuanzhi Li, and Andrej Risteski. 2023f. How do transformers learn
topic structure: Towards a mechanistic understanding. In Proceedings of the 40th
international conference on machine learning. Proceedings of Machine Learning Re-
search, PMLR.

Li, Yucheng, Bo Dong, Chenghua Lin, and Frank Guerin. 2023g. Compressing
context to enhance inference efficiency of large language models. arXiv preprint
arXiv:2310.06201.

540

Li, Yuhong, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli,
Hanchen Ye, Tianle Cai, Patrick Lewis, and Deming Chen. 2024g. Snapkv: Llm
knows what you are looking for before generation. arXiv preprint arXiv:2404.14469.

Liang, Yingyu, Heshan Liu, Zhenmei Shi, Zhao Song, and Junze Yin. 2024a. Conv-
basis: A new paradigm for efficient attention inference and gradient computation
in transformers. arXiv preprint arXiv:2405.05219.

Liang, Yingyu, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. 2024b.
Beyond linear approximations: A novel pruning approach for attention matrix.

Liang, Yingyu, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. 2024c.
Looped relu mlps may be all you need as practical programmable computers.
arXiv preprint arXiv:2410.09375.

———. 2024d. Multi-layer transformers gradient can be approximated in almost
linear time. arXiv preprint arXiv:2408.13233.

Liang, Yingyu, Zhenmei Shi, Zhao Song, and Chiwun Yang. 2024e. Toward infinite-
long prefix in transformer. arXiv preprint arXiv:2406.14036.

Liang, Yingyu, Zhenmei Shi, Zhao Song, and Yufa Zhou. 2024f. Differential privacy
of cross-attention with provable guarantee. arXiv preprint arXiv:2407.14717.

———. 2024g. Tensor attention training: Provably efficient learning of higher-order
transformers. arXiv preprint arXiv:2405.16411.

———. 2024h. Unraveling the smoothness properties of diffusion models: A
gaussian mixture perspective. arXiv preprint arXiv:2405.16418.

Liu, Evan Z, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh,
Shiori Sagawa, Percy Liang, and Chelsea Finn. 2021a. Just train twice: Improving
group robustness without training group information. In International conference
on machine learning, 6781–6792. PMLR.

541

Liu, Hong, Jeff Z HaoChen, Adrien Gaidon, and Tengyu Ma. 2021b. Self-supervised
learning is more robust to dataset imbalance. In Neurips 2021 workshop on distribu-
tion shifts: Connecting methods and applications.

Liu, Ziming, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and
Mike Williams. 2022. Towards understanding grokking: An effective theory of
representation learning. Advances in Neural Information Processing Systems 35:
34651–34663.

Loshchilov, Ilya, and Frank Hutter. 2018. Decoupled weight decay regularization.
In International conference on learning representations.

Lu, Canyi, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng Yan.
2019. Tensor robust principal component analysis with a new tensor nuclear norm.
IEEE transactions on pattern analysis and machine intelligence 42(4):925–938.

Luo, Chuanchen, Chunfeng Song, and Zhaoxiang Zhang. 2020. Generalizing
person re-identification by camera-aware invariance learning and cross-domain
mixup. In European conference on computer vision.

Luo, Renqian, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and
Tie-Yan Liu. 2022. Biogpt: generative pre-trained transformer for biomedical text
generation and mining. Briefings in Bioinformatics 23(6).

Luo, Tao, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. 2021. Phase diagram for
two-layer relu neural networks at infinite-width limit. Journal of Machine Learning
Research 22(71):1–47.

Luo, Zeping, Shiyou Wu, Cindy Weng, Mo Zhou, and Rong Ge. 2023. Understand-
ing the robustness of self-supervised learning through topic modeling. In The
eleventh international conference on learning representations.

Lyu, Kaifeng, Jikai Jin, Zhiyuan Li, Simon S Du, Jason D Lee, and Wei Hu. 2024.
Dichotomy of early and late phase implicit biases can provably induce grokking.
In The twelfth international conference on learning representations.

542

Lyu, Kaifeng, and Jian Li. 2019. Gradient descent maximizes the margin of homo-
geneous neural networks. In International conference on learning representations.

Lyu, Kaifeng, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. 2021. Gradient
descent on two-layer nets: Margin maximization and simplicity bias. Advances in
Neural Information Processing Systems 34:12978–12991.

Ma, Kaili, Haochen Yang, Han Yang, Tatiana Jin, Pengfei Chen, Yongqiang Chen,
Barakeel Fanseu Kamhoua, and James Cheng. 2021. Improving graph representa-
tion learning by contrastive regularization. arXiv preprint arXiv:2101.11525.

Maas, Andrew L., Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the association for computational linguistics:
Human language technologies, 142–150. Portland, Oregon, USA: Association for
Computational Linguistics.

Van der Maaten, Laurens, and Geoffrey Hinton. 2008. Visualizing data using t-sne.
Journal of machine learning research 9(11).

Mahankali, Arvind, Tatsunori B Hashimoto, and Tengyu Ma. 2023. One step of
gradient descent is provably the optimal in-context learner with one layer of linear
self-attention. arXiv preprint arXiv:2307.03576.

Malach, Eran, Pritish Kamath, Emmanuel Abbe, and Nathan Srebro. 2021. Quan-
tifying the benefit of using differentiable learning over tangent kernels. arXiv
preprint arXiv:2103.01210.

Malladi, Sadhika, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi
Chen, and Sanjeev Arora. 2023. Fine-tuning language models with just forward
passes. Advances in Neural Information Processing Systems.

Manning, Christopher D, Kevin Clark, John Hewitt, Urvashi Khandelwal, and
Omer Levy. 2020. Emergent linguistic structure in artificial neural networks trained

543

by self-supervision. Proceedings of the National Academy of Sciences 117(48):30046–
30054.

Matthews, Alexander G de G, Mark Rowland, Jiri Hron, Richard E Turner, and
Zoubin Ghahramani. 2018. Gaussian process behaviour in wide deep neural
networks. In International conference on learning representations.

Mei, Song, Theodor Misiakiewicz, and Andrea Montanari. 2019. Mean-field
theory of two-layers neural networks: dimension-free bounds and kernel limit. In
Conference on learning theory, 2388–2464. PMLR.

Mei, Song, Andrea Montanari, and Phan-Minh Nguyen. 2018. A mean field view
of the landscape of two-layer neural networks. Proceedings of the National Academy
of Sciences 115(33):E7665–E7671.

Meng, Kevin, David Bau, Alex Andonian, and Yonatan Belinkov. 2022a. Locating
and editing factual associations in gpt. Advances in Neural Information Processing
Systems 35:17359–17372.

Meng, Rang, Xianfeng Li, Weijie Chen, Shicai Yang, Jie Song, Xinchao Wang, Lei
Zhang, Mingli Song, Di Xie, and Shiliang Pu. 2022b. Attention diversification for
domain generalization. In Computer vision–eccv 2022: 17th european conference, tel
aviv, israel, october 23–27, 2022, proceedings, part xxxiv, 322–340. Springer.

Merrill, William, Nikolaos Tsilivis, and Aman Shukla. 2023. A tale of two cir-
cuits: Grokking as competition of sparse and dense subnetworks. arXiv preprint
arXiv:2303.11873.

Michalowicz, JV, JM Nichols, F Bucholtz, and CC Olson. 2009. An isserlis’ theorem
for mixed gaussian variables: Application to the auto-bispectral density. Journal of
Statistical Physics.

Millidge, Beren. 2022. Grokking’grokking’.

Min, Sewon, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2021.
Metaicl: Learning to learn in context. arXiv preprint arXiv:2110.15943.

544

Min, Sewon, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Proceedings of the 2022 conference on
empirical methods in natural language processing.

Ming, Yifei, Hang Yin, and Yixuan Li. 2022. On the impact of spurious correlation
for out-of-distribution detection. In The aaai conference on artificial intelligence (aaai).

Mishra, Swaroop, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. 2022.
Cross-task generalization via natural language crowdsourcing instructions. In
Proceedings of the 60th annual meeting of the association for computational linguistics.

Moroshko, Edward, Blake E Woodworth, Suriya Gunasekar, Jason D Lee, Nati
Srebro, and Daniel Soudry. 2020. Implicit bias in deep linear classification: Initial-
ization scale vs training accuracy. Advances in Neural Information Processing Systems
33.

Morwani, Depen, Benjamin L Edelman, Costin-Andrei Oncescu, Rosie Zhao, and
Sham Kakade. 2024. Feature emergence via margin maximization: case studies in
algebraic tasks. In The twelfth international conference on learning representations.

Mousavi-Hosseini, Alireza, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and
Murat A Erdogdu. 2022. Neural networks efficiently learn low-dimensional repre-
sentations with sgd. arXiv preprint arXiv:2209.14863.

Murty, Shikhar, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning.
2023. Grokking of hierarchical structure in vanilla transformers. arXiv preprint
arXiv:2305.18741.

Nacson, Mor Shpigel, Suriya Gunasekar, Jason Lee, Nathan Srebro, and Daniel
Soudry. 2019a. Lexicographic and depth-sensitive margins in homogeneous and
non-homogeneous deep models. In International conference on machine learning,
4683–4692. PMLR.

545

Nacson, Mor Shpigel, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona
Savarese, Nathan Srebro, and Daniel Soudry. 2019b. Convergence of gradient
descent on separable data. In The 22nd international conference on artificial intelligence
and statistics, 3420–3428. PMLR.

Nacson, Mor Shpigel, Nathan Srebro, and Daniel Soudry. 2019c. Stochastic gradient
descent on separable data: Exact convergence with a fixed learning rate. In The
22nd international conference on artificial intelligence and statistics, 3051–3059. PMLR.

Nagarajan, Vaishnavh, and J Zico Kolter. 2019. Uniform convergence may be
unable to explain generalization in deep learning. Advances in Neural Information
Processing Systems 32.

Nakkiran, Preetum, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever. 2020. Deep double descent: Where bigger models and more data
hurt. In International conference on learning representations.

Nakkiran, Preetum, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L
Edelman, Fred Zhang, and Boaz Barak. 2019. Sgd on neural networks learns
functions of increasing complexity. arXiv preprint arXiv:1905.11604.

Nakos, Vasileios, Zhao Song, and Zhengyu Wang. 2019. (nearly) sample-optimal
sparse fourier transform in any dimension; ripless and filterless. In 2019 ieee 60th
annual symposium on foundations of computer science (focs), 1568–1577. IEEE.

Nam, Hyeonseob, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo.
2021. Reducing domain gap by reducing style bias. In Proceedings of the ieee/cvf
conference on computer vision and pattern recognition, 8690–8699.

Nanda, Neel, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt.
2023a. Progress measures for grokking via mechanistic interpretability. In The
eleventh international conference on learning representations.

546

Nanda, Neel, Andrew Lee, and Martin Wattenberg. 2023b. Emergent linear rep-
resentations in world models of self-supervised sequence models. arXiv preprint
arXiv:2309.00941.

Netzer, Yuval, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. Advances in Neural Information Processing Systems.

Newell, Alejandro, and Jia Deng. 2020. How useful is self-supervised pretraining
for visual tasks? In 2020 IEEE/CVF conference on computer vision and pattern
recognition, CVPR 2020, seattle, wa, usa, june 13-19, 2020, 7343–7352. Computer
Vision Foundation / IEEE.

Neyshabur, Behnam. 2017. Implicit regularization in deep learning. arXiv preprint
arXiv:1709.01953.

Ng, Hong-Wei, and Stefan Winkler. 2014. A data-driven approach to cleaning
large face datasets. In 2014 ieee international conference on image processing (icip),
343–347. IEEE.

Novak, Roman, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Daniel A Abolafia,
Jeffrey Pennington, and Jascha Sohl-Dickstein. 2019. Bayesian convolutional neural
networks with many channels are gaussian processes. In International conference
on learning representations.

Nye, Maxwell, Anders Johan Andreassen, Gur AriGuy, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David
Luan, et al. 2021. Show your work: Scratchpads for intermediate computation
with language models. arXiv preprint arXiv:2112.00114.

O’Donnell, Ryan. 2014. Analysis of boolean functions. Cambridge University Press.

Olah, Chris, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and
Shan Carter. 2020. Zoom in: An introduction to circuits. Distill 5(3):e00024–001.

547

Olshausen, B., and D. Field. 1997. Sparse coding with an overcomplete basis set:
A strategy employed by v1? Vision Research 37:3311–3325.

Olsson, Catherine, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma,
Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv preprint arXiv:2209.11895.

van den Oord, Aäron, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. CoRR abs/1807.03748. 1807.03748.

OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt. Accessed:
2023-09-10.

Ouyang, Long, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems.

Oymak, Samet, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. 2019. Gen-
eralization guarantees for neural networks via harnessing the low-rank structure
of the jacobian. arXiv preprint arXiv:1906.05392.

Oymak, Samet, and Mahdi Soltanolkotabi. 2019. Overparameterized nonlinear
learning: Gradient descent takes the shortest path? In International conference on
machine learning, 4951–4960. PMLR.

———. 2020. Toward moderate overparameterization: Global convergence guar-
antees for training shallow neural networks. IEEE Journal on Selected Areas in
Information Theory 1(1):84–105.

Pan, Jane, Tianyu Gao, Howard Chen, and Danqi Chen. 2023. What in-context
learning ’learns’ in-context: Disentangling task recognition and task learning. In
Findings of association for computational linguistics (acl).

Pan, Zhuoshi, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang,
Qingwei Lin, Victor Ruhle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,

548

and Dongmei Zhang. 2024. LLMLingua-2: Data distillation for efficient and
faithful task-agnostic prompt compression. In Findings of the association for compu-
tational linguistics acl 2024, ed. Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
963–981. Bangkok, Thailand and virtual meeting: Association for Computational
Linguistics.

Panigrahi, Abhishek, Sadhika Malladi, Mengzhou Xia, and Sanjeev Arora. 2023.
Trainable transformer in transformer. arXiv preprint arXiv:2307.01189.

Papyan, Vardan, XY Han, and David L Donoho. 2020. Prevalence of neural collapse
during the terminal phase of deep learning training. Proceedings of the National
Academy of Sciences 117(40):24652–24663.

Parascandolo, Giambattista, Alexander Neitz, ANTONIO ORVIETO, Luigi Gresele,
and Bernhard Schölkopf. 2020. Learning explanations that are hard to vary. In
International conference on learning representations.

Pearson, Karl. 1901. LIII. On lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2(11):559–572.

Peng, Xingchao, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang.
2019. Moment matching for multi-source domain adaptation. In Proceedings of the
ieee/cvf international conference on computer vision, 1406–1415.

Peters, Matthew E, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representa-
tions. arXiv preprint arXiv:1802.05365.

Pourreza, Mohammadreza, and Davood Rafiei. 2023. Din-sql: Decomposed in-
context learning of text-to-sql with self-correction. arXiv preprint arXiv:2304.11015.

Power, Alethea, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
2022. Grokking: Generalization beyond overfitting on small algorithmic datasets.
arXiv preprint arXiv:2201.02177.

549

Prato, Gabriele, Ella Charlaix, and Mehdi Rezagholizadeh. 2020. Fully quantized
transformer for machine translation. In Findings of the association for computational
linguistics: Emnlp 2020, 1–14.

Quirke, Philip, and Fazl Barez. 2023. Understanding addition in transformers. In
The twelfth international conference on learning representations.

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learning transferable visual models
from natural language supervision. In Proceedings of the 38th international conference
on machine learning, ICML 2021, 18-24 july 2021, virtual event, vol. 139 of Proceedings
of Machine Learning Research, 8748–8763. PMLR.

Radhakrishnan, Adityanarayanan, Daniel Beaglehole, Parthe Pandit, and Mikhail
Belkin. 2023. Mechanism of feature learning in deep fully connected networks
and kernel machines that recursively learn features. 2212.13881.

Rahimi, Ali, and Benjamin Recht. 2008. Random features for large-scale kernel
machines. In Advances in neural information processing systems.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad:
100, 000+ questions for machine comprehension of text. In Proceedings of the
2016 conference on empirical methods in natural language processing, EMNLP 2016,
austin, texas, usa, november 1-4, 2016, ed. Jian Su, Xavier Carreras, and Kevin Duh,
2383–2392. The Association for Computational Linguistics.

Rame, Alexandre, Corentin Dancette, and Matthieu Cord. 2022. Fishr: Invariant
gradient variances for out-of-distribution generalization. In International conference
on machine learning, 18347–18377. PMLR.

Ramesh, Aditya, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125.

550

Raventos, Allan, Mansheej Paul, Feng Chen, and Surya Ganguli. 2023. Pretraining
task diversity and the emergence of non-bayesian in-context learning for regression.
In Thirty-seventh conference on neural information processing systems.

Recht, Benjamin, Maryam Fazel, and Pablo A Parrilo. 2010. Guaranteed minimum-
rank solutions of linear matrix equations via nuclear norm minimization. SIAM
review 52(3):471–501.

Reddy, Gautam. 2024. The mechanistic basis of data dependence and abrupt
learning in an in-context classification task. In The twelfth international conference
on learning representations.

Refinetti, Maria, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborov. 2021.
Classifying high-dimensional gaussian mixtures: Where kernel methods fail and
neural networks succeed. In International conference on machine learning, 8936–8947.
PMLR.

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. In Advances in
neural information processing systems, 91–99.

Ren, Yunwei, Mo Zhou, and Rong Ge. 2023. Depth separation with multilayer
mean-field networks. In The eleventh international conference on learning representa-
tions.

Ridnik, Tal, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. 2021.
Imagenet-21k pretraining for the masses. In Thirty-fifth conference on neural in-
formation processing systems datasets and benchmarks track (round 1).

Rosenfeld, Elan, Pradeep Ravikumar, and Andrej Risteski. 2021. The risks of
invariant risk minimization. In International conference on learning representations,
vol. 9.

———. 2022. Domain-adjusted regression or: Erm may already learn features
sufficient for out-of-distribution generalization. arXiv preprint arXiv:2202.06856.

551

Rubin, Noa, Inbar Seroussi, and Zohar Ringel. 2023. Droplets of good represen-
tations: Grokking as a first order phase transition in two layer networks. arXiv
preprint arXiv:2310.03789.

Sagawa, Shiori, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. 2019.
Distributionally robust neural networks for group shifts: On the importance of
regularization for worst-case generalization. International Conference on Learning
Representations, ICLR.

Sanford, Clayton, Daniel Hsu, and Matus Telgarsky. 2023. Representational
strengths and limitations of transformers. In Thirty-seventh conference on neural
information processing systems.

Saunshi, Nikunj, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, San-
jeev Arora, Sham Kakade, and Akshay Krishnamurthy. 2022. Understanding
contrastive learning requires incorporating inductive biases. In Proceedings of
the 39th international conference on machine learning, ed. Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, vol. 162 of
Proceedings of Machine Learning Research, 19250–19286. PMLR.

Saunshi, Nikunj, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and
Hrishikesh Khandeparkar. 2019. A theoretical analysis of contrastive unsupervised
representation learning. In International conference on machine learning, 5628–5637.

Saxena, Eshika, Alberto Alfarano, Emily Wenger, and Kristin Lauter. 2024. Teaching
transformers modular arithmetic at scale. arXiv preprint arXiv:2410.03569.

Saxton, David, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. 2018.
Analysing mathematical reasoning abilities of neural models. In International
conference on learning representations.

Schlag, Imanol, Kazuki Irie, and Jürgen Schmidhuber. 2021. Linear transformers
are secretly fast weight programmers. In International conference on machine learning.
PMLR.

552

Schulman, John, Barret Zoph, Christina Kim, Jacob Hilton, Jacob Menick, Jiayi
Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny, et al.
2022. Chatgpt: Optimizing language models for dialogue. OpenAI blog 2(4).

Shah, Harshay, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth
Netrapalli. 2020. The pitfalls of simplicity bias in neural networks. In Neurips.

Shah, Jay, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and
Tri Dao. 2024. Flashattention-3: Fast and accurate attention with asynchrony and
low-precision. arXiv preprint arXiv:2407.08608.

Shalev-Shwartz, Shai, Ohad Shamir, and Shaked Shammah. 2017. Failures of
gradient-based deep learning. In International conference on machine learning, 3067–
3075. PMLR.

Sharma, Piyush, Nan Ding, Sebastian Goodman, and Radu Soricut. 2018. Con-
ceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic
image captioning. In Proceedings of the 56th annual meeting of the association for
computational linguistics (volume 1: Long papers), 2556–2565.

Shen, Kendrick, Robbie M Jones, Ananya Kumar, Sang Michael Xie, Jeff Z HaoChen,
Tengyu Ma, and Percy Liang. 2022. Connect, not collapse: Explaining contrastive
learning for unsupervised domain adaptation. In International conference on machine
learning, 19847–19878. PMLR.

Shi, Freda, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H
Chi, Nathanael Schärli, and Denny Zhou. 2023a. Large language models can be
easily distracted by irrelevant context. In International conference on machine learning.
PMLR.

Shi, Yuge, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun, Nicolas Usunier,
and Gabriel Synnaeve. 2022a. Gradient matching for domain generalization. In
International conference on learning representations.

553

Shi, Zhenmei, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang,
and Somesh Jha. 2023b. The trade-off between universality and label efficiency of
representations from contrastive learning. In The eleventh international conference
on learning representations.

Shi, Zhenmei, Yifei Ming, Ying Fan, Frederic Sala, and Yingyu Liang. 2023c. Do-
main generalization via nuclear norm regularization. In Conference on parsimony
and learning (proceedings track).

Shi, Zhenmei, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. 2024a.
Discovering the gems in early layers: Accelerating long-context llms with 1000x
input token reduction. arXiv preprint arXiv:2409.17422.

Shi, Zhenmei, Fuhao Shi, Wei-Sheng Lai, Chia-Kai Liang, and Yingyu Liang. 2022b.
Deep online fused video stabilization. In Proceedings of the ieee/cvf winter conference
on applications of computer vision, 1250–1258.

Shi, Zhenmei, Junyi Wei, and Yingyu Liang. 2022c. A theoretical analysis on
feature learning in neural networks: Emergence from inputs and advantage over
fixed features. In International conference on learning representations.

———. 2023d. Provable guarantees for neural networks via gradient feature
learning. Advances in Neural Information Processing Systems 36.

Shi, Zhenmei, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. 2024b. Why larger lan-
guage models do in-context learning differently? arXiv preprint arXiv:2405.19592.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of go with deep neural networks
and tree search. nature 529(7587):484.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy P. Lillicrap, Karen Simonyan, and Demis Hassabis. 2017. Mastering chess

554

and shogi by self-play with a general reinforcement learning algorithm. CoRR
abs/1712.01815. 1712.01815.

Sirignano, Justin, and Konstantinos Spiliopoulos. 2020. Mean field analysis of
neural networks: A central limit theorem. Stochastic Processes and their Applications
130(3):1820–1852.

Song, Zhao. 2019. Matrix theory: Optimization, concentration and algorithms.
Ph.D. thesis, The University of Texas at Austin.

Song, Zhao, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. 2022. Sparse
fourier transform over lattices: A unified approach to signal reconstruction. arXiv
preprint arXiv:2205.00658.

———. 2023a. Quartic samples suffice for fourier interpolation. In 2023 ieee 64th
annual symposium on foundations of computer science (focs), 1414–1425. IEEE.

Song, Zhao, Mingquan Ye, Junze Yin, and Lichen Zhang. 2023b. A nearly-optimal
bound for fast regression with ℓ∞, guarantee. In ICML, vol. 202 of Proceedings of
Machine Learning Research, 32463–32482. PMLR.

Song, Zhao, Mingquan Ye, and Lichen Zhang. 2023c. Streaming semidefinite
programs: o(

√
n) passes, small space and fast runtime. 2309.05135.

Soudry, Daniel, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan
Srebro. 2018. The implicit bias of gradient descent on separable data. The Journal
of Machine Learning Research 19(1):2822–2878.

Stallkamp, Johannes, Marc Schlipsing, Jan Salmen, and Christian Igel. 2012. Man vs.
computer: Benchmarking machine learning algorithms for traffic sign recognition.
Neural Networks 32:323–332.

Stander, Dashiell, Qinan Yu, Honglu Fan, and Stella Biderman. 2023. Grokking
group multiplication with cosets. arXiv preprint arXiv:2312.06581.

555

Stöger, Dominik, and Mahdi Soltanolkotabi. 2021. Small random initialization is
akin to spectral learning: Optimization and generalization guarantees for over-
parameterized low-rank matrix reconstruction. Advances in Neural Information
Processing Systems 34:23831–23843.

Su, Jianlin, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng
Liu. 2024. Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing 568:127063.

Sun, Baochen, and Kate Saenko. 2016. Deep coral: Correlation alignment for deep
domain adaptation. In European conference on computer vision, 443–450. Springer.

Sun, Tianxiang, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. 2022.
Black-box tuning for language-model-as-a-service. In International conference on
machine learning. PMLR.

Sun, Yiyou, Zhenmei Shi, and Yixuan Li. 2023a. A graph-theoretic framework
for understanding open-world semi-supervised learning. Advances in Neural
Information Processing Systems 36.

Sun, Yiyou, Zhenmei Shi, Yingyu Liang, and Yixuan Li. 2023b. When and how
does known class help discover unknown ones? provable understanding through
spectral analysis. In International conference on machine learning, 33014–33043. PMLR.

Sung, Yi-Lin, Jaemin Cho, and Mohit Bansal. 2022. Vl-adapter: Parameter-efficient
transfer learning for vision-and-language tasks. In Proceedings of the ieee/cvf confer-
ence on computer vision and pattern recognition, 5227–5237.

Team, Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Team, Gemma, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhu-
patiraju, Shreya Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette

556

Love, et al. 2024. Gemma: Open models based on gemini research and technology.
arXiv preprint arXiv:2403.08295.

Telgarsky, Matus. 2022. Feature selection with gradient descent on two-layer
networks in low-rotation regimes. arXiv preprint arXiv:2208.02789.

Thilak, Vimal, Etai Littwin, Shuangfei Zhai, Omid Saremi, Roni Paiss, and Joshua
Susskind. 2022. The slingshot mechanism: An empirical study of adaptive opti-
mizers and the grokking phenomenon. arXiv preprint arXiv:2206.04817.

Tian, Yuandong. 2022. Deep contrastive learning is provably (almost) principal
component analysis. arXiv preprint arXiv:2201.12680.

Tian, Yuandong, Yiping Wang, Beidi Chen, and Simon Du. 2023a. Scan and snap:
Understanding training dynamics and token composition in 1-layer transformer.
Advances in Neural Information Processing Systems.

Tian, Yuandong, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. 2023b.
Joma: Demystifying multilayer transformers via joint dynamics of mlp and atten-
tion. arXiv preprint arXiv:2310.00535.

Tigges, Curt, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. 2023.
Linear representations of sentiment in large language models. arXiv preprint
arXiv:2310.15154.

Torralba, Antonio. 2003. Contextual priming for object detection. International
journal of computer vision 53(2):169–191.

Tosh, Christopher, Akshay Krishnamurthy, and Daniel Hsu. 2021. Contrastive
learning, multi-view redundancy, and linear models. In Algorithmic learning theory,
1179–1206. PMLR.

Touvron, Hugo, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

557

Touvron, Hugo, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale,
et al. 2023b. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Tsai, Yao-Hung Hubert, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe
Morency. 2020. Self-supervised learning from a multi-view perspective. In Inter-
national conference on learning representations.

Tsigler, Alexander, and Peter L Bartlett. 2023. Benign overfitting in ridge regression.
Journal of Machine Learning Research 24(123):1–76.

Van Gansbeke, Wouter, Simon Vandenhende, Stamatios Georgoulis, and Luc V
Gool. 2021. Revisiting contrastive methods for unsupervised learning of visual
representations. Advances in Neural Information Processing Systems 34:16238–16250.

Vapnik, Vladimir N. 1999. An overview of statistical learning theory. IEEE transac-
tions on neural networks 10(5):988–999.

Vardi, Gal. 2023. On the implicit bias in deep-learning algorithms. Communications
of the ACM 66(6):86–93.

Varma, Vikrant, Rohin Shah, Zachary Kenton, János Kramár, and Ramana
Kumar. 2023. Explaining grokking through circuit efficiency. arXiv preprint
arXiv:2309.02390.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. Advances in neural information processing systems 30.

Veiga, Rodrigo, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka
Zdeborová. 2022. Phase diagram of stochastic gradient descent in high-
dimensional two-layer neural networks. arXiv preprint arXiv:2202.00293.

Venkateswara, Hemanth, Jose Eusebio, Shayok Chakraborty, and Sethuraman
Panchanathan. 2017. Deep hashing network for unsupervised domain adaptation.

558

In Proceedings of the ieee conference on computer vision and pattern recognition, 5018–
5027.

Vinje, William E, and Jack L Gallant. 2000. Sparse coding and decorrelation in
primary visual cortex during natural vision. Science 287(5456):1273–1276.

Von Oswald, Johannes, Eyvind Niklasson, Ettore Randazzo, João Sacramento,
Alexander Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. 2023. Trans-
formers learn in-context by gradient descent. In International conference on machine
learning. PMLR.

Wan, Zhongwei, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue
Wang, and Li Yuan. 2024. Look-m: Look-once optimization in kv cache for efficient
multimodal long-context inference. arXiv preprint arXiv:2406.18139.

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018 EMNLP workshop BlackboxNLP:
Analyzing and interpreting neural networks for NLP. Association for Computational
Linguistics.

Wang, Jiayu, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Yixuan Li, and
Neel Joshi. 2024. Is a picture worth a thousand words? delving into spatial
reasoning for vision language models. Advances in Neural Information Processing
Systems 36.

Wang, Tongzhou, and Phillip Isola. 2020. Understanding contrastive representation
learning through alignment and uniformity on the hypersphere. In International
conference on machine learning, 9929–9939. PMLR.

Wang, Yifei, Jonathan Lacotte, and Mert Pilanci. 2020a. The hidden convex opti-
mization landscape of two-layer relu neural networks: an exact characterization
of the optimal solutions. arXiv e-prints arXiv–2006.

559

Wang, Yizhong, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amir-
reza Mirzaei, Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana
Arunkumar, David Stap, et al. 2022. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ nlp tasks. In Proceedings of the 2022 conference on
empirical methods in natural language processing, 5085–5109.

Wang, Yufei, Haoliang Li, and Alex C Kot. 2020b. Heterogeneous domain gen-
eralization via domain mixup. In Icassp 2020-2020 ieee international conference on
acoustics, speech and signal processing (icassp), 3622–3626. IEEE.

Wei, Colin, Jason D Lee, Qiang Liu, and Tengyu Ma. 2019. Regularization matters:
Generalization and optimization of neural nets vs their induced kernel. Advances
in Neural Information Processing Systems 32.

Wei, Jason, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian
Lester, Nan Du, Andrew M. Dai, and Quoc V Le. 2022a. Finetuned language
models are zero-shot learners. In International conference on learning representations.

Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tat-
sunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. 2022b.
Emergent abilities of large language models. Transactions on Machine Learning Re-
search.

Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud,
Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. 2022c. Emer-
gent abilities of large language models. arXiv preprint arXiv:2206.07682.

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022d. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems.

Wei, Jerry, Le Hou, Andrew Kyle Lampinen, Xiangning Chen, Da Huang, Yi Tay,
Xinyun Chen, Yifeng Lu, Denny Zhou, Tengyu Ma, et al. 2023a. Symbol tuning

560

improves in-context learning in language models. In The 2023 conference on empirical
methods in natural language processing.

Wei, Jerry, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen,
Hanxiao Liu, Da Huang, Denny Zhou, et al. 2023b. Larger language models do
in-context learning differently. arXiv preprint arXiv:2303.03846.

Wen, Zixin, and Yuanzhi Li. 2021. Toward understanding the feature learning
process of self-supervised contrastive learning. In International conference on machine
learning, 11112–11122. PMLR.

Wibisono, Kevin Christian, and Yixin Wang. 2023. On the role of unstructured
training data in transformers’ in-context learning capabilities. In Neurips 2023
workshop on mathematics of modern machine learning.

Wick, Gian-Carlo. 1950. The evaluation of the collision matrix. Physical review.

Williams, Adina, Nikita Nangia, and Samuel R. Bowman. 2018. A broad-coverage
challenge corpus for sentence understanding through inference. In Proceedings
of the 2018 conference of the north american chapter of the association for computational
linguistics: Human language technologies, NAACL-HLT 2018, new orleans, louisiana,
usa, june 1-6, 2018, volume 1 (long papers), ed. Marilyn A. Walker, Heng Ji, and
Amanda Stent, 1112–1122. Association for Computational Linguistics.

Woodworth, Blake, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro
Savarese, Itay Golan, Daniel Soudry, and Nathan Srebro. 2020. Kernel and rich
regimes in overparametrized models. In Conference on learning theory.

Wu, Dennis, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. 2024a. Uniform
memory retrieval with larger capacity for modern hopfield models. In Forty-first
international conference on machine learning (icml).

Wu, Dennis, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. 2024b.
STanhop: Sparse tandem hopfield model for memory-enhanced time series pre-
diction. In The twelfth international conference on learning representations (iclr).

561

Wu, Jingfeng, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and
Peter L Bartlett. 2024c. How many pretraining tasks are needed for in-context
learning of linear regression? In The twelfth international conference on learning
representations.

Xiao, Guangxuan, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis.
2023. Efficient streaming language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Xiao, Han, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747.

Xiao, Kai Yuanqing, Logan Engstrom, Andrew Ilyas, and Aleksander Madry.
2021. Noise or signal: The role of image backgrounds in object recognition. In
International conference on learning representations.

Xie, Sang Michael, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An
explanation of in-context learning as implicit bayesian inference. In International
conference on learning representations.

Xu, Chenwei, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani,
Hsi-Sheng Goan, and Han Liu. 2024a. Bishop: Bi-directional cellular learning
for tabular data with generalized sparse modern hopfield model. In Forty-first
international conference on machine learning (icml).

Xu, Peng, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu,
Sandeep Subramanian, Evelina Bakhturina, Mohammad Shoeybi, and Bryan
Catanzaro. 2024b. Retrieval meets long context large language models. 2310.03025.

Xu, Yuhui, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita
Saha, Caiming Xiong, and Doyen Sahoo. 2024c. Think: Thinner key cache by query-
driven pruning. arXiv preprint arXiv:2407.21018.

562

Xu, Zhiwei, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. 2024d. Benign
overfitting and grokking in relu networks for xor cluster data. In The twelfth
international conference on learning representations.

Xu, Zhuoyan, Zhenmei Shi, and Yingyu Liang. 2024e. Do large language models
have compositional ability? an investigation into limitations and scalability. In Iclr
2024 workshop on mathematical and empirical understanding of foundation models.

Xu, Zhuoyan, Zhenmei Shi, Junyi Wei, Yin Li, and Yingyu Liang. 2023. Improving
foundation models for few-shot learning via multitask finetuning. In Iclr 2023
workshop on mathematical and empirical understanding of foundation models.

Xu, Zhuoyan, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang.
2024f. Towards few-shot adaptation of foundation models via multitask finetuning.
In The twelfth international conference on learning representations.

Yair, Noam, and Tomer Michaeli. 2018. Multi-scale weighted nuclear norm im-
age restoration. In Proceedings of the ieee conference on computer vision and pattern
recognition, 3165–3174.

Yan, Shen, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. 2020. Improve unsu-
pervised domain adaptation with mixup training. arXiv preprint arXiv:2001.00677.

Yang, Greg. 2019. Scaling limits of wide neural networks with weight sharing:
Gaussian process behavior, gradient independence, and neural tangent kernel
derivation. arXiv preprint arXiv:1902.04760.

Yang, Greg, and Edward J Hu. 2020. Feature learning in infinite-width neural
networks. arXiv preprint arXiv:2011.14522.

Yang, Jianwei, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce Liu, Lu Yuan, and
Jianfeng Gao. 2022. Unified contrastive learning in image-text-label space. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition, 19163–
19173.

563

Yang, Liu, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. 2023.
Looped transformers are better at learning learning algorithms. arXiv preprint
arXiv:2311.12424.

Yang, Xingyi, Xuehai He, Yuxiao Liang, Yue Yang, Shanghang Zhang, and Pengtao
Xie. 2020. Transfer learning or self-supervised learning? A tale of two pretraining
paradigms. CoRR abs/2007.04234. 2007.04234.

Yang, Zhaoyang, Zhenmei Shi, Xiaoyong Shen, and Yu-Wing Tai. 2019. Sf-net:
Structured feature network for continuous sign language recognition. arXiv preprint
arXiv:1908.01341.

Yao, Huaxiu, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea
Finn. 2022a. Improving out-of-distribution robustness via selective augmentation.
In Proceeding of the thirty-ninth international conference on machine learning.

Yao, Shunyu, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik R Narasimhan. 2023. Tree of thoughts: Deliberate problem solving
with large language models. In Thirty-seventh conference on neural information
processing systems.

Yao, Xufeng, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li,
and Bei Yu. 2022b. Pcl: Proxy-based contrastive learning for domain generalization.
In Proceedings of the ieee/cvf conference on computer vision and pattern recognition, 7097–
7107.

Yehudai, Gilad, and Shamir Ohad. 2020. Learning a single neuron with gradient
methods. In Conference on learning theory.

Yehudai, Gilad, and Ohad Shamir. 2019. On the power and limitations of ran-
dom features for understanding neural networks. Advances in Neural Information
Processing Systems.

564

Yousefzadeh, Roozbeh, and Xuenan Cao. 2023. Large language models’ un-
derstanding of math: Source criticism and extrapolation. arXiv preprint
arXiv:2311.07618.

Zbontar, Jure, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. 2021. Barlow
twins: Self-supervised learning via redundancy reduction. In Proceedings of the
38th international conference on machine learning, ICML 2021, 18-24 july 2021, virtual
event, vol. 139 of Proceedings of Machine Learning Research, 12310–12320. PMLR.

Zech, John R, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano,
and Eric Karl Oermann. 2018. Variable generalization performance of a deep
learning model to detect pneumonia in chest radiographs: a cross-sectional study.
PLoS medicine 15(11).

Zeiler, Matthew D, and Rob Fergus. 2014. Visualizing and understanding convo-
lutional networks. In European conference on computer vision.

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
2017. Understanding deep learning requires rethinking generalization. In Interna-
tional conference on learning representations.

Zhang, Chiyuan, Samy Bengio, and Yoram Singer. 2019. Are all layers created
equal? arXiv preprint arXiv:1902.01996.

Zhang, Hanlin, Yi-Fan Zhang, Yaodong Yu, Dhruv Madeka, Dean Foster, Eric
Xing, Hima Lakkaraju, and Sham Kakade. 2023a. A study on the calibration of
in-context learning. arXiv preprint arXiv:2312.04021.

Zhang, Hongyi, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. 2018.
mixup: Beyond empirical risk minimization. In International conference on learning
representations.

Zhang, Marvin, Henrik Marklund, Abhishek Gupta, Sergey Levine, and Chelsea
Finn. 2020. Adaptive risk minimization: A meta-learning approach for tackling
group shift. arXiv preprint arXiv:2007.02931 8:9.

565

Zhang, Michael, Nimit S. Sohoni, Hongyang R. Zhang, Chelsea Finn, and Christo-
pher Ré. 2022a. Correct-n-contrast: A contrastive approach for improving robust-
ness to spurious correlations. In International conference on machine learning.

Zhang, Renrui, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, Peng Gao, and Yu Qiao. 2023b. Llama-adapter: Efficient fine-tuning of
language models with zero-init attention. arXiv preprint arXiv:2303.16199.

Zhang, Ruiqi, Spencer Frei, and Peter L Bartlett. 2023c. Trained transformers learn
linear models in-context. arXiv preprint arXiv:2306.09927.

Zhang, Shizhuo Dylan, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia
Ringer. 2023d. Can transformers learn to solve problems recursively? arXiv
preprint arXiv:2305.14699.

Zhang, Xiang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level convolu-
tional networks for text classification. In Nips.

Zhang, Xingxuan, Linjun Zhou, Renzhe Xu, Peng Cui, Zheyan Shen, and Haoxin
Liu. 2022b. Towards unsupervised domain generalization. In Proceedings of the
ieee/cvf conference on computer vision and pattern recognition, 4910–4920.

Zhang, Zhenyu, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi
Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. 2023e. H2o:
Heavy-hitter oracle for efficient generative inference of large language models.
Advances in Neural Information Processing Systems 36.

Zhao, Zihao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
before use: Improving few-shot performance of language models. In International
conference on machine learning. PMLR.

Zheng, Huaixiu Steven, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H
Chi, Quoc V Le, and Denny Zhou. 2024. Step-back prompting enables reasoning
via abstraction in large language models. In The twelfth international conference on
learning representations.

566

Zhong, Ziqian, Ziming Liu, Max Tegmark, and Jacob Andreas. 2023. The clock and
the pizza: Two stories in mechanistic explanation of neural networks. Advances in
Neural Information Processing Systems 36.

Zhou, Chunting, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe
Ma, Avia Efrat, Ping Yu, LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke
Zettlemoyer, and Omer Levy. 2023a. LIMA: Less is more for alignment. In Thirty-
seventh conference on neural information processing systems.

Zhou, Hattie, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua
Susskind, Samy Bengio, and Preetum Nakkiran. 2023b. What algorithms can
transformers learn? a study in length generalization. In The 3rd workshop on
mathematical reasoning and ai at neurips’23.

Zhou, Hattie, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur,
and Hanie Sedghi. 2022. Teaching algorithmic reasoning via in-context learning.
arXiv preprint arXiv:2211.09066.

Zhou, Kaiyang, Yongxin Yang, Timothy Hospedales, and Tao Xiang. 2020. Learning
to generate novel domains for domain generalization. In Computer vision–eccv
2020: 16th european conference, glasgow, uk, august 23–28, 2020, proceedings, part xvi
16, 561–578. Springer.

Zhou, Kaiyang, Yongxin Yang, Yu Qiao, and Tao Xiang. 2021a. Domain general-
ization with mixstyle. In International conference on learning representations.

Zhou, Mo, Rong Ge, and Chi Jin. 2021b. A local convergence theory for mildly
over-parameterized two-layer neural network. In Colt.

Zhu, Zhuotun, Lingxi Xie, and Alan Yuille. 2017. Object recognition with and
without objects. In Proceedings of the twenty-sixth international joint conference on
artificial intelligence, IJCAI-17, 3609–3615.

567

Zimmermann, Roland S, Yash Sharma, Steffen Schneider, Matthias Bethge, and
Wieland Brendel. 2021. Contrastive learning inverts the data generating process.
In International conference on machine learning, 12979–12990. PMLR.

Zou, Difan, Yuan Cao, Dongruo Zhou, and Quanquan Gu. 2018. Stochastic gra-
dient descent optimizes over-parameterized deep relu networks. arXiv preprint
arXiv:1811.08888.

———. 2020. Gradient descent optimizes over-parameterized deep ReLU networks.
Machine Learning 109(3):467–492.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

31764627

2024

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	How does Feature Learning Emerge in the Training of the Neural Network Dynamic?
	What Forward Path will be led by Feature Learning?
	Summary of Contributions
	Thesis Outline

	A Theoretical Analysis on Feature Learning in Neural Networks: Emergence from Inputs and Advantage over Fixed Features
	Introduction
	Related Work
	Problem Setup
	Neural Network Learning

	Main Results
	Proof Sketches
	Provable Guarantees of Neural Networks
	Lower Bounds

	Experiments

	Provable Guarantees for Neural Networks via Gradient Feature Learning
	Introduction
	Related Work
	Gradient Feature Learning Framework
	Warm Up: A Simple Setting with Frozen First Layer
	Core Concepts in the Gradient Feature Learning Framework
	Provable Guarantee via Gradient Feature Learning

	Applications in Special Cases
	Mixtures of Gaussians
	Parity Functions

	Conclusion

	Fourier Circuits in Neural Networks and Transformers: A Case Study of Modular Arithmetic with Multiple Inputs
	Introduction
	Related Work
	Problem Setup
	Data and Network Setup
	Margins of the Neural Networks
	Connection between Training and the Maximum Margin Solutions

	Main Result
	Technique Overview

	Experiments
	Discussion
	Conclusion

	Why Larger Language Models Do In-context Learning Differently?
	Introduction
	Related Work
	Preliminary
	Linear Regression
	Low Rank Optimal Solution
	Behavior Difference

	Sparse Parity Classification
	Optimal Solution
	Behavior Difference

	Experiments
	Behavior Difference
	Ablation Study

	More Discussions about Noise
	Conclusion

	Domain Generalization via Nuclear Norm Regularization
	Introduction
	Method
	Preliminaries
	Method description

	Experiments
	Synthetic tasks
	Real-world tasks
	Ablations and discussions

	Theoretical Analysis
	Related Works
	Conclusions

	The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning
	Introduction
	Theoretical Analysis
	What Features are Learned by Contrastive Learning?
	Analyzing the Trade-Off: Linear Data

	Experiments
	Verifying the Existence of the Trade-off
	Inspecting the Trade-off: Feature Similarity
	Improving the Trade-off: Finetune with Contrastive Regularization

	Conclusion and Future Work

	Bypassing the Exponential Dependency: Looped Transformers Efficiently Learn In-context by Multi-step Gradient Descent
	Introduction
	Related Work
	Preliminary
	Notations
	In-context Learning
	Linear Looped Transformer
	Linear Regression with Gradient Descent

	Gradient Computation in Looped Transformer
	Error Convergence
	Convexity and Smoothness Analysis
	Main Result

	Experiments
	Conclusion

	Discovering the Gems in Early Layers: Accelerating Long-Context LLMs with 1000x Input Token Reduction
	Introduction
	Related Works
	Method
	Our Algorithm: GemFilter
	Running Time and Memory Complexity Analysis

	Experiments
	Needle in a Haystack
	LongBench
	Ablation Study: Filter Layer Choice
	More Ablation Study
	Running Time and GPU Memory Consumption

	Conclusion

	Conclusion and Future Work
	Thesis Overview
	Future Research Directions
	Concluding Remarks

	Appendix for Chapter 2
	Ethics Statement
	Reproducibility Statement
	More Technical Discussion on Related Work
	Complete Proofs for Provable Guarantees of Neural Networks
	Existence of A Good Network
	Initialization
	Some Auxiliary Lemmas
	Feature Emergence: First Gradient Step
	Feature Improvement: Second Gradient Step
	Classifier Learning Stage
	Proof of Theorem 2.1

	Lower Bound for Linear Models on Fixed Feature Mappings
	Lower Bound for Learning without Input Structure
	Complete Experimental Results
	Simulation
	More Simulation Result in Various Settings
	Experiments on More Data Generation Models
	Real Data: Feature Learning in Networks
	Real Data: The Effect of Input Structure

	Provable Guarantees for Neural Networks in A More General Setting
	Problem Setup
	Main Result
	Notations
	Existence of A Good Network
	Initialization
	Some Auxiliary Lemmas
	Feature Emergence: First Gradient Step
	Feature Improvement: Second Gradient Step
	Classifier Learning Stage and Main Theorem

	Appendix for Chapter 3
	Broader Impacts
	Limitations
	Further Implications
	Implicit Regularization/Simplicity Bias
	Lottery Ticket Hypothesis (LTH)

	Gradient Feature Learning Framework
	Simplified Gradient Feature Learning Framework
	Gradient Feature Learning Framework under Expected Risk
	Gradient Feature Learning Framework under Empirical Risk with Sample Complexity

	Applications in Special Cases
	Linear Data
	Mixture of Gaussians
	Mixture of Gaussians - XOR
	Parity Functions
	Uniform Parity Functions
	Uniform Parity Functions: Alternative Analysis
	Multiple Index Model with Low Degree Polynomial

	Auxiliary Lemmas

	Appendix for Chapter 4
	Limitations
	Societal Impact
	More Related Work
	More Notations and Definitions
	Tools from Previous Work
	Tools from Previous Work: Implying Single/Combined Neurons
	Tools from Previous Work: Maximum Margin for Multi-Class

	Class-weighted Max-margin Solution of Single Neuron
	Definitions
	Transfer to Discrete Fourier Space
	Get Solution Set
	Transfer to Discrete Fourier Space for General Version
	Get Solution Set for General Version

	Construct Max Margin Solution
	Sum-to-product Identities
	Constructions for
	Constructions for for General Version

	Check Fourier Frequencies
	All Frequencies are Used
	All Frequencies are Used for General Version

	Main Result
	Main result for
	Main Result for General Version

	More Empirical Details and Results
	Implement Details
	One-hidden Layer Neural Network
	One-layer Transformer

	Appendix for Chapter 5
	Limitations
	Deferred Proof for Linear Regression
	Proof of
	Behavior Difference
	Auxiliary Lemma

	Deferred Proof for Parity Classification
	Proof of
	Proof of
	Auxiliary Lemma

	Appendix for Chapter 6
	Proof of Theoretical Analysis
	Auxiliary lemmas
	Optimal solution of ERM- on ID task
	Optimal solution of ERM-rank on ID task
	OOD gap between two objective function

	More Experiments Details and Results

	Appendix for Chapter 7
	Proofs for Section 7.2.1
	Inductive Biases are Needed for Analyzing Prediction Success

	Proofs and More Analysis for Section 7.2.2
	Lemmas for a more general setting
	Proofs of Proposition 7.3 and Proposition 7.4
	Implication for the trade-off
	Improving the Trade-off by Contrastive Regularization

	More Experimental Details and Results
	Datasets
	Verifying the Existence of the Trade-off
	Inspecting the Trade-off
	Improving the Trade-off: Finetune with Contrastive Regularization
	Additional Results Verifying Existence of the Trade-off

	Appendix for Chapter 9
	More Preliminary
	Detailed Comparison with Other Methods
	Proof of Time Complexity
	More Details about Experiments
	PyTorch Code
	Implementation Details
	More Needle in a Haystack
	Ablation Study on Row Selection
	Ablation Study on Runs
	Index Selection
	LLaMA 3.1 Chat Template
	More Results of Index Selection

	References

