Differential Privacy of Cross-Attention with Provable Guarantee
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Retrieval-Augmented Generation (RAG)
Source from “Building RAG-based LLM Applications for Production™ in Anyscale

[CONTEXT]
<small snippets from PDF, documents, and website>
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Source from “The LLM wants to talk” in Medium
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Source from “Differential privacy” in Wikipedia k /
How can we use differential privacy to protect the security of cross-attention in Large Generative Models?

Main Results

/T heorem 1 (DP Cross-Attention) \

Consider the cross-attention mechanism where queries, keys, and values are defined as in the standard framework. There exists an algorithm that

uses polynomial kernel approximations to efficiently compute cross-attention by treating it as a weighted distance problem between query and key
embeddings, weighted by the value embeddings. With high probability, the algorithm ensures differential privacy for the cross-attention process, is

robust to repeated adaptive queries, and achieves small relative and additive errors. Furthermore, the additive error decreases as the number of

input tokens grows, eventually diminishing to zero.
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