Towards Few-Shot Adaptation of Foundation Models via Multitask Finetuning Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, Yingyu Liang

Motivation

Few-Shot Learning: Pretraining + Fine Tuning

Problem Setup

- Suppose target task is \mathcal{T}_0
- Let $\phi^* \in \Phi$ denote the model with the lowest target task loss
- Denote error on target task $\mathcal{E}(\phi) = \mathcal{L}_{sup} (\mathcal{T}_0, \phi) \mathcal{L}_{sup} (\mathcal{T}_0, \phi^*)$

Pretrained Method MoCo v3, DINO v2, supervised pretraining ViT-S, ViT-B, ResNet50 **Dataset** minilmageNet, tieredImageNet, DomainNet, Meta-dataset

Practical Solution

Pretrained	Selection	INet	Omglot	Acraft	CUB	QDraw	Fungi	Flower	Sign	COCO
CLIP	Random	56.29	65.45	31.31	59.22	36.74	31.03	75.17	33.21	30.16
	No Con.	60.89	72.18	31.50	66.73	40.68	35.17	81.03	37.67	34.28
	No Div.	56.85	73.02	32.53	65.33	40.99	33.10	80.54	34.76	31.24
	Selected	60.89	74.33	33.12	69.07	41.44	36.71	80.28	38.08	34.52
DINOv2	Random	83.05	62.05	36.75	93.75	39.40	52.68	98.57	31.54	47.35
	No Con.	83.21	76.05	36.32	93.96	50.76	53.01	98.58	34.22	47.11
	No Div.	82.82	79.23	36.33	93.96	55.18	52.98	98.59	35.67	44.89
	Selected	83.21	81.74	37.01	94.10	55.39	53.37	98.65	36.46	48.08
MoCo v3	Random	59.66	60.72	18.57	39.80	40.39	32.79	58.42	33.38	32.98
	No Con.	59.80	60.79	18.75	40.41	40.98	32.80	59.55	34.01	33.41
	No Div.	59.57	63.00	18.65	40.36	41.04	32.80	58.67	34.03	33.67
	Selected	59.80	63.17	18.80	40.74	41.49	33.02	59.64	34.31	33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.: Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.

We provide the theoretical justification and practical solution of multitask finetuning for adapting pretrained foundation models to downstream tasks with limited labels.

Key Intuition

- types of target tasks effectively.

pretrained		method	miniIm	ageNet	tieredIn	nageNet	DomainNet	
	backbone		1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MoCo v3	ViT-B	Adaptation	75.33 (0.30)	92.78 (0.10)	62.17 (0.36)	83.42 (0.23)	24.84 (0.25)	44.32 (0.29)
		Standard FT	75.38 (0.30)	92.80 (0.10)	62.28 (0.36)	83.49 (0.23)	25.10 (0.25)	44.76 (0.27)
		Ours	80.62 (0.26)	93.89 (0.09)	68.32 (0.35)	85.49 (0.22)	32.88 (0.29)	54.17 (0.30)
	ResNet50	Adaptation	68.80 (0.30)	88.23 (0.13)	55.15 (0.34)	76.00 (0.26)	27.34 (0.27)	47.50 (0.28)
		Standard FT	68.85 (0.30)	88.23 (0.13)	55.23 (0.34)	76.07 (0.26)	27.43 (0.27)	47.65 (0.28)
		Ours	71.16 (0.29)	89.31 (0.12)	58.51 (0.35)	78.41 (0.25)	33.53 (0.30)	55.82 (0.29)
DINO v2	ViT-S	Adaptation	85.90 (0.22)	95.58 (0.08)	74.54 (0.32)	89.20 (0.19)	52.28 (0.39)	72.98 (0.28)
		Standard FT	86.75 (0.22)	95.76 (0.08)	74.84 (0.32)	89.30 (0.19)	54.48 (0.39)	74.50 (0.28)
		Ours	88.70 (0.22)	96.08 (0.08)	77.78 (0.32)	90.23 (0.18)	61.57 (0.40)	77.97 (0.27)
	ViT-B	Adaptation	90.61 (0.19)	97.20 (0.06)	82.33 (0.30)	92.90 (0.16)	61.65 (0.41)	79.34 (0.25)
		Standard FT	91.07 (0.19)	97.32 (0.06)	82.40 (0.30)	93.07 (0.16)	61.84 (0.39)	79.63 (0.25)
		Ours	92.77 (0.18)	97.68 (0.06)	84.74 (0.30)	93.65 (0.16)	68.22 (0.40)	82.62 (0.24)
Supervised	ViT-B	Adaptation	94.06 (0.15)	97.88 (0.05)	83.82 (0.29)	93.65 (0.13)	28.70 (0.29)	49.70 (0.28)
pretraining		Standard FT	95.28 (0.13)	98.33 (0.04)	86.44 (0.27)	94.91 (0.12)	30.93 (0.31)	52.14 (0.29)
on ImageNet		Ours	96.91 (0.11)	98.76 (0.04)	89.97 (0.25)	95.84 (0.11)	48.02 (0.38)	67.25 (0.29)
	ResNet50	Adaptation	81.74 (0.24)	94.08 (0.09)	65.98 (0.34)	84.14 (0.21)	27.32 (0.27)	46.67 (0.28)
		Standard FT	84.10 (0.22)	94.81 (0.09)	74.48 (0.33)	88.35 (0.19)	34.10 (0.31)	55.08 (0.29)
		Ours	87.61 (0.20)	95.92 (0.07)	77.74 (0.32)	89.77 (0.17)	39.09 (0.34)	60.60 (0.29)

Take-Home Message

1. Pre-training uses unlabeled and noisy data for general purpose learning, where the model learns general structure rather than task-specific knowledge. Its performance on a specific task may not be perfect. 2. Despite the target data is limited, we have a clear understanding of the target task and its associated data. • We actively select extra data from a relevant source that covers target data characteristic features. • We then design specialized tasks for multitask finetuning to equip the model to address the specific