

Tensor Attention Training:

Provably Efficient Learning of Higher-order Transformers

Yingyu Liang, Zhenmei Shi, Zhao Song, Yufa Zhou

Background

Motivation

Tensor Attention, defined as Softmax $(Q(K_1 \oslash K_2)^\top)(V_1 \oslash V_2)$, is a higher-order generalization of matrix attention that can capture high-order/multi-view information intrinsically. Meanwhile, it faces a cubic computational complexity bottleneck. Therefore, in this work, we pose the following question:

Can we achieve almost linear time for gradient computation in Tensor Attention Training?

Problem Setup

Suppose $A_1, A_2, A_3, A_4, A_5, E \in \mathbb{R}^{n \times d}$ and $Y_1, Y_2 \in \mathbb{R}^{d \times d}$ are given. Let $D(X) = \text{diag}(\exp(A_1 X (A_2 \otimes A_3)^\top / d) \mathbf{1}_{n^2}) \in \mathbb{R}^{n \times n}$ and $Y = Y_1 \oslash Y_2 \in \mathbb{R}^{d^2 \times d}$. We formulate the attention optimization

problem as:
 $\min_{X \in \mathbb{R}^{d \times d^2}} \text{Loss}(X) := 0.5 \|D(X)^{-1} \exp(A_1 X (A_2 \otimes A_3)^{\top}/d) (A_4 \otimes A_5)Y - E\|_F^2.$

Definition 1 (Tensor attention optimization) \qquad **Definition 2** (Approximate Tensor Attention Loss Gradient Computation (ATAttLGC (n, d, B, ϵ)) Suppose $A_1,A_2,A_3,A_4,A_5,E\,\in\,\mathbb{R}^{n\times d}$ and $X_1,X_2,X_3,Y_1,Y_2\,\in\,\mathbb{R}^{d\times d}$ Let $X=X_1\cdot (X_2\oslash X_3)^\top\in\mathbb{R}^{d\times d^2}$. Let $\epsilon, B > 0$ Assume that $\max\{\|A_1X_1\|_{\infty}, \|A_2X_2\|_{\infty}, \|A_3X_3\|_{\infty}, \|A_4Y_1\|_{\infty}, \|A_5Y_2\|_{\infty}\}\leq B$. Let us assume that any numbers in the previous matrices are in the $\log(n)$ bits model. Then, our target is to output a matrix $\widetilde{g} \in \mathbb{R}^{d \times d^2}$ to approximate the gradient of the loss function in **Definition 1**, satisfying
 $\|\widetilde{g} - \frac{\text{dLoss}(X)}{dX}\|_{\infty} \leq \epsilon.$

Main Results

Theorem 1 (Fast gradient computation)

Assume that any numbers in the matrices are in the $log(n)$ bits model. Then, there exist an algorithm that runs in almost linear time $n^{1+o(1)}$ to solve

$$
\mathsf{ATAttLGC}(n,d=O(\log n), B=o(\sqrt[3]{\log n}), \epsilon=1/\operatorname{poly}(n)).
$$

Theorem 2 (Hardness)

Assume Strong Exponential Time Hypothesis (SETH). Let $\gamma : \mathbb{N} \to \mathbb{N}$ be any function with $\gamma(n) = o(\log n)$ and $\gamma(n) = \omega(1)$. For any constant $\delta > 0$, when $E = 0$, $\mathsf{Y} = \mathsf{I}_d$, $\mathsf{X} = \lambda \mathsf{I}_d$ for some scalar $\lambda \in [0,1]$, it is impossible in $O(n^{3-\delta})$ time to solve

ATAttLGC(n, $d = \Theta(\log n)$, $B = \Theta(\sqrt[3]{\gamma(n) \cdot \log n})$, $\epsilon = O(1/(\log n)^4)$).