

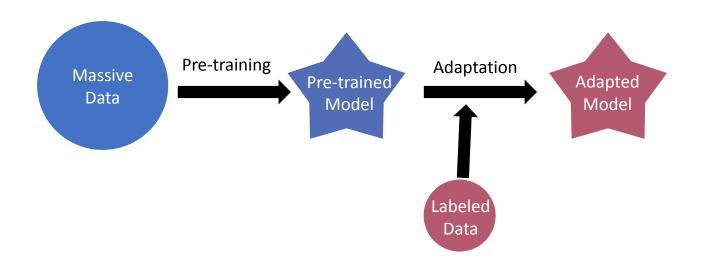
Improving Foundation Models for Few-Shot Learning via Multitask Finetuning

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, Yingyu Liang UW-Madison

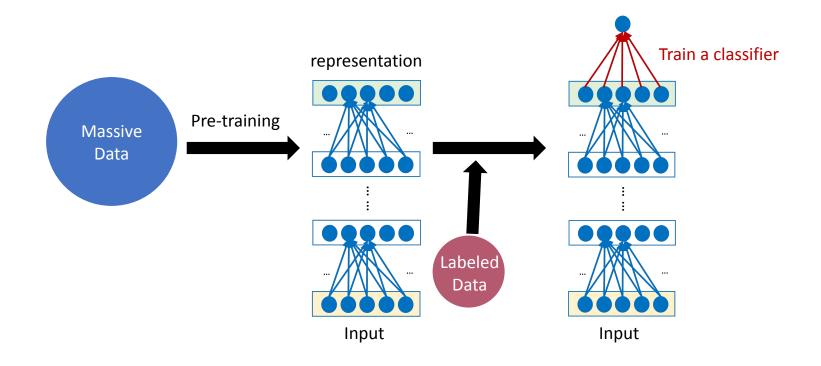
New Paradigm: Pretraining + Adaptation

Paradigm shift: supervised learning ⇒ pre-training + adaptation

Paradigm shift: supervised learning --> pre-training + adaptation



Paradigm shift: supervised learning → pre-training + adaptation



Paradigm shift: supervised learning → pre-training + adaptation

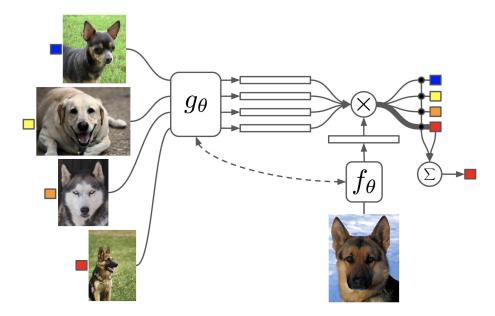


Figure 1: Matching Networks architecture

Adaptation of a pre-trained image encoder

Figures from: Matching Networks for One Shot Learning, 2017.

Paradigm shift: supervised learning → pre-training + adaptation

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. //

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

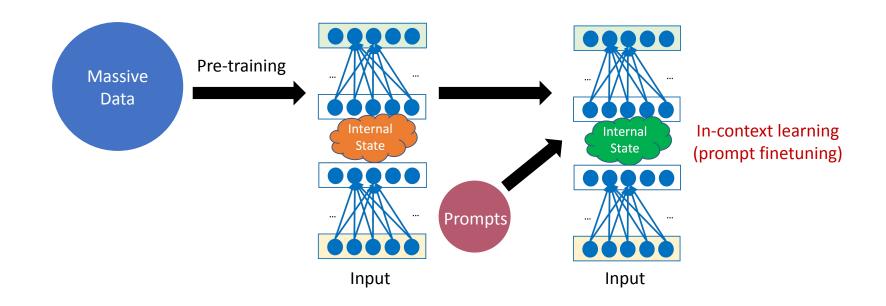
Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // _____

Adaptation of a pre-trained language decoder

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.

Paradigm shift: supervised learning → pre-training + adaptation

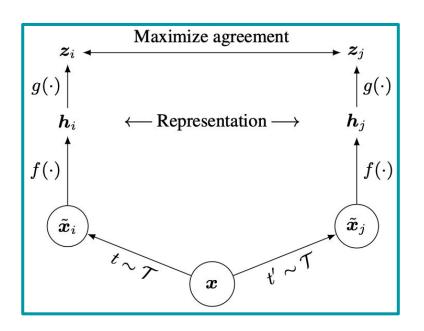


What does pre-training look like?

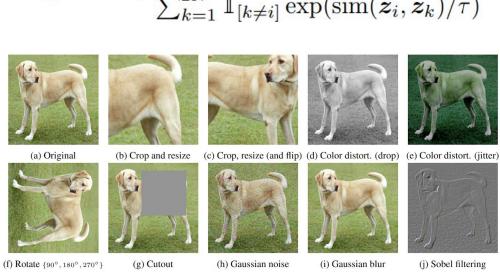
Supervised learning

- Self-supervised learning:
 - Next sentence prediction (BERT)
 - Masked language prediction (BERT, RoBERTa)
 - Auto-regressive language modeling (GPT series)
 - Contrastive learning (SimCLR, SimCSE, CLIP)

Intro - Contrastive Learning



$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$



SimCLR - (Image, Image)
No need labels

Image Data Augmentation

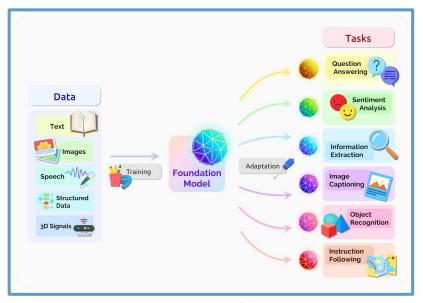
Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Intro - Foundation Model

The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.

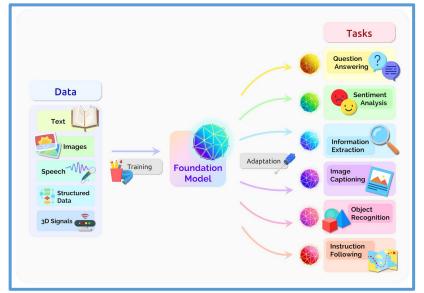
Intro - Foundation Model



Universality

Figures from: On the opportunities and risks of foundation models, 2021.

Intro - Foundation Model





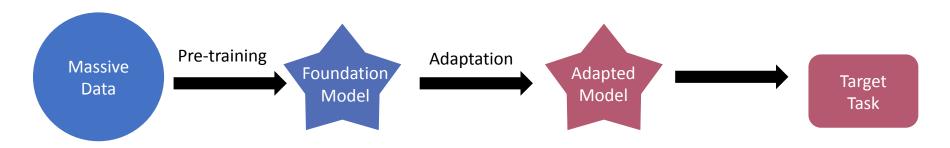
Universality

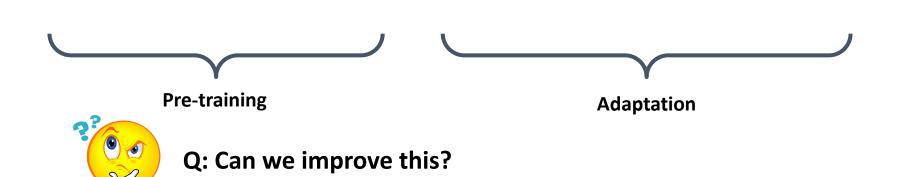
Figures from: On the opportunities and risks of foundation models, 2021.

Label Efficiency

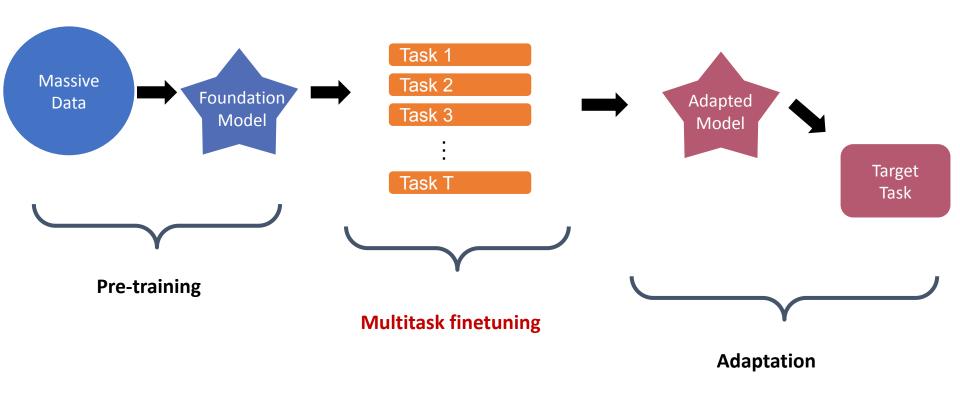
Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWana, 2020

Paradigm: Pre-training + Adaptation





Pre-training + Finetuning + Adaptation



Training cats birds Train dataset #2: "flower-bike" otters flowers

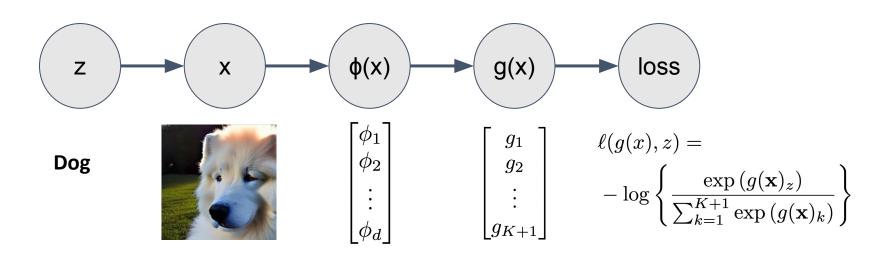
Testing

An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.

Problem Setup - Hidden representation data model

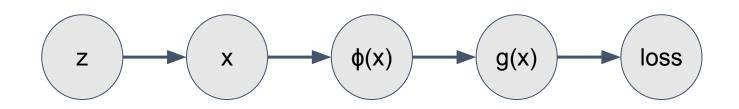
- ullet Latent class $z \in \mathcal{C}$ over distribution $z \sim \eta$
- ullet Task $\mathcal{T}=(z_1,\ldots,z_{K+1})\subseteq\mathcal{C}$, instance $x\sim\mathcal{D}(z)$
- ullet $\phi \in \Phi$ hypothesis class of representation functions, e.g, ResNet, ViT
- $g(x) = W\phi(x)$ as prediction logits of latent class



Problem Setup - Objective for a downstream task?

- ullet Latent class $z \in \mathcal{C}$ over distribution $z \sim \eta$
- ullet Task $\mathcal{T}=\{z_1,z_2\}$ $\subset \mathcal{C}$, instance $x\sim \mathcal{D}(z)$
- ullet $\phi \in \Phi$ hypothesis class of representation functions, e.g, ResNet, ViT
- $g(x) = W\phi(x)$ as prediction logits of latent class
- supervised loss w.r.t a task:

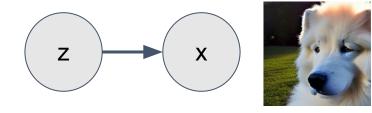
$$\mathcal{L}_{sup}(\mathcal{T}, \phi) := \min_{W} \underset{z \sim \mathcal{T}}{\mathbb{E}} \quad \underset{x \sim \mathcal{D}(z)}{\mathbb{E}} \left[\ell \left(W \phi(x), z \right) \right]$$



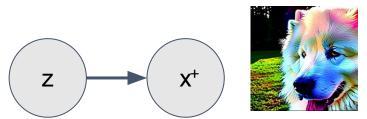
Problem Setup - Contrastive pre-training

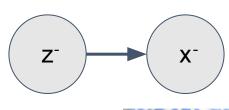
- $(z,z^-) \sim \eta^2$, $x,x^+ \sim \mathcal{D}(z), x^- \sim \mathcal{D}(z^-)$, $\tau := \Pr_{(z,z^-) \sim \eta^2} \{z=z^-\}$
- Contrastive loss:

$$\mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})}+e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$$



positive pair





negative pair

Data Model

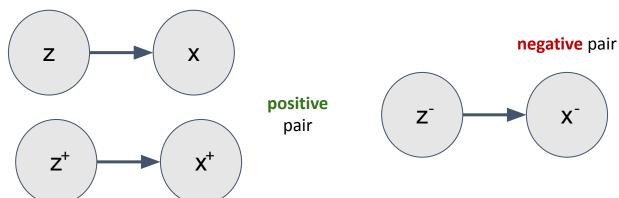
Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

Problem Setup - Contrastive pre-training

- $(z, z^{-}) \sim \eta^{2}$, $x, x^{+} \sim \mathcal{D}(z)$, $x^{-} \sim \mathcal{D}(z^{-})$
- Contrastive loss:

$$\mathcal{L}_{un}(\phi) := \mathbb{E}\left[\ell_u\left(\phi(x)^\top \left(\phi(x^+) - \phi(x^-)\right)\right)\right]
\widehat{\mathcal{L}}_{un}(\phi) := \frac{1}{N} \sum_{i=1}^N \left[\ell_u\left(\phi(x_i)^\top \left(\phi(x_i^+) - \phi(x_i^-)\right)\right)\right]$$

ullet In particular: $\ell_u(v) = \log(1 + \exp(-v))$ will recover the loss in previous slide



Data Model

Problem Setup - Multitask Finetuning

- Suppose in pre-training we have $\widehat{\mathcal{L}}_{un}(\hat{\phi}) \leq \epsilon_0$
- Suppose we construct M tasks, each with m sample
- We further multitask finetune to get a new ϕ' by:

$$\min_{W_i \in \mathbb{R}^d, \phi \in \Phi} \quad \frac{1}{M} \sum_{i=1}^M \frac{1}{m} \sum_{j=1}^m \ell(W_i \cdot \phi(x_j^i), z_j^i), \quad \text{s.t.} \quad \widehat{\mathcal{L}}_{un}(\phi) \le \epsilon_0$$

Intuition: Comparing to direct training, this reduce hypothesis space from Φ to $\Phi(\epsilon_0)=\left\{\phi\in\Phi:\hat{\mathcal{L}}_{un}(\phi)\leq\epsilon_0\right\}$

- ullet Suppose target task is $\,\mathcal{T}_0$
- ullet Suppose there is ϕ^* such that supervised loss are small across all tasks
- We want to bound $\mathcal{L}_{sup}\left(\mathcal{T}_{0},\phi\right)-\mathcal{L}_{sup}\left(\mathcal{T}_{0},\phi^{*}\right)$

Theorem 1 (Contrastive pre-training loss(baseline))

Suppose in pre-training we have $\hat{\mathcal{L}}_{un}(\hat{\phi}) \leq \epsilon_0$, then:

$$\mathcal{L}_{\sup}\left(\mathcal{T}_{0},\hat{\phi}\right) - \mathcal{L}_{\sup}\left(\mathcal{T}_{0},\phi^{*}\right) \leq \mathcal{O}\left(\left(2\epsilon_{0} - \tau\right) - \mathcal{L}_{\sup}\left(\phi^{*}\right)\right)$$

- ullet Suppose target task is $\,\mathcal{T}_0$
- We want to bound $\mathcal{L}_{sup}\left(\mathcal{T}_{0},\phi\right)-\mathcal{L}_{sup}\left(\mathcal{T}_{0},\phi^{*}\right)$

Theorem 2 (Multitask finetuning loss(Ours))

Suppose we solve multitask finetuning optimization with empirical loss smaller than $\epsilon_1=2\alpha\epsilon_0$ and got ϕ' . If:

$$M \ge \Omega\left(\frac{1}{\epsilon_1}\left[\mathcal{R}_M\left(\Phi\left(\epsilon_0\right)\right) + \frac{1}{\epsilon_1}\log\left(\frac{1}{\delta}\right)\right]\right), \quad Mm \ge \Omega\left(\frac{1}{\epsilon_1}\left[\mathcal{R}_{Mm}\left(\Phi\left(\epsilon_0\right)\right) + \frac{1}{\epsilon_1}\log\left(\frac{1}{\delta}\right)\right]\right)$$

Then with prob $1-\delta$,

$$\mathcal{L}_{\sup} \left(\mathcal{T}_0, \phi' \right) - \mathcal{L}_{\sup} \left(\mathcal{T}_0, \phi^* \right) \leq \mathcal{O} \left(\alpha \left(2\epsilon_0 - \tau \right) - \mathcal{L}_{\sup} \left(\phi^* \right) \right)$$

Remark

• Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce error on target task by $2(1-\alpha)\epsilon_0$ where finetuning sample complexity is $\Theta\left(\frac{1}{\alpha\epsilon_0}\right)$

• Comparing to traditional supervised learning, self-supervised pre-training reduce error by $O\left(\frac{1}{Mm}\left[\mathcal{R}_{Mm}(\Phi)-\mathcal{R}_{Mm}\left(\Phi(\epsilon_0)\right)\right]\right)$

Experiments: Few-shot Vision tasks

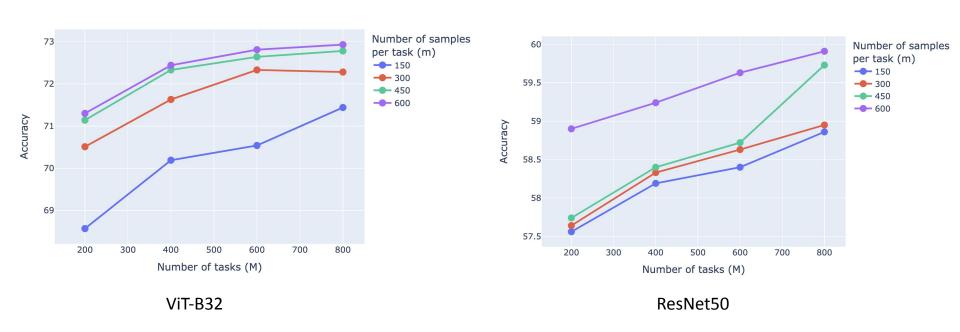
15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task

Backbone	Direct Adaptation	Finetuning
ViT-B32	59.55 ± 0.21	68.57 ± 0.37
ResNet50	51.76 ± 0.36	57.56 ± 0.36

Effects of multitask finetuning

Experiments: Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task



Accuracy with varying number of tasks and samples

Experiments: Few-shot Language task

Text classification for different text dataset, with prompt-base finetuning

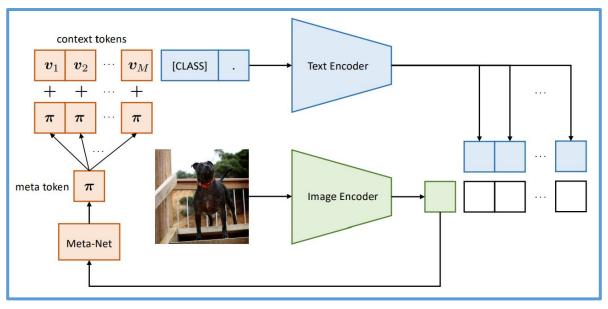
	SST-2 (acc)	SST-5 (acc)	MR (acc)	CR (acc)	MPQA (acc)	Subj (acc)	TREC (acc)	CoLA (Matt.)
Prompt-based zero-shot Multitask FT zero-shot	83.6 92.9	35.0 37.2	80.8 86.5	79.5 88.8	67.6 73.9	51.4 55.3	32.0 36.8	2.0 -0.065
Prompt-based FT [†] Multitask Prompt-based FT + task selection	92.7 (0.9) 92.0 (1.2) 92.6 (0.5)	47.4 (2.5) 48.5 (1.2) 47.1 (2.3)	87.0 (1.2) 86.9 (2.2) 87.2 (1.6)	90.3 (1.0) 90.5 (1.3) 91.6 (0.9)	84.7 (2.2) 86.0 (1.6) 85.2 (1.0)	91.2 (1.1) 89.9 (2.9) 90.7 (1.6)	84.8 (5.1) 83.6 (4.4) 87.6 (3.5)	9.3 (7.3) 5.1 (3.8) 3.8 (3.2)
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	
Prompt-based zero-shot Multitask FT zero-shot	50.8 63.2	51.7 65.7	49.5 61.8	50.8 65.8	51.3 74.0	61.9 81.6	49.7 63.4	
Prompt-based FT [†] Multitask Prompt-based FT + task selection	68.3 (2.3) 70.9 (1.5) 73.5 (1.6)	70.5 (1.9) 73.4 (1.4) 75.8 (1.5)	77.2 (3.7) 78.7 (2.0) 77.4 (1.6)	64.5 (4.2) 71.7 (2.2) 72.0 (1.6)	69.1 (3.6) 74.0 (2.5) 70.0 (1.6)	74.5 (5.3) 79.5 (4.8) 76.0 (6.8)	65.5 (5.3) 67.9 (1.6) 69.8 (1.7)	

Our main results using RoBERTa-large. †: Result in (GFC20);

[GFC20] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL'2020.

Experiments: zero-shot vision language task

Conditional context optimization for CLIP model



CoCoOp

Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.

Experiments: zero-shot vision language task

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

Backbone	Zero-shot	Multitask finetune		
ViT-B32	69.9	71.4		

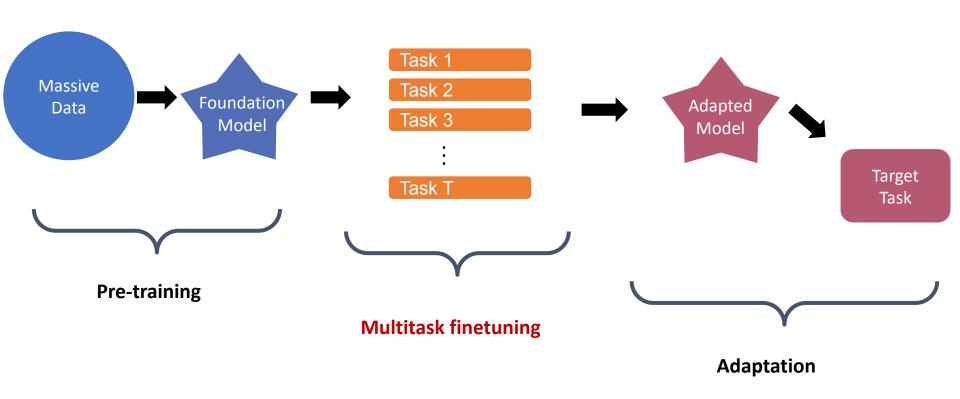
Effects of multitask finetuning

Future Work

 Theoretically: How would we quantify the relationship of data between multitask and target task? Concrete and well-motivated problem instances satisfying the task diversity assumptions for instantiating the error guarantee.

 Empirically: Does task diversity provide any insights on data selection in multitask finetuning? Can we design better strategies for constructing and choosing finetuning task?

Take Home Message



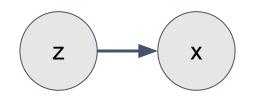
Thanks!

Appendix

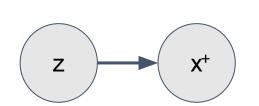
Problem Setup - Contrastive pre-training

- $(z, z^{-}) \sim \eta^{2}$, $x, x^{+} \sim \mathcal{D}(z)$, $x^{-} \sim \mathcal{D}(z^{-})$
- Contrastive loss:

$$\mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})} + e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$$



positive pair





Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

- ullet Suppose target task is $\,\mathcal{T}_0$
- We want to bound $\mathcal{L}_{sup}(\mathcal{T}_0,\phi)$
- ullet let ζ denote the conditional distribution of $(z_1,z_2)\sim \eta^2$ conditioned on $z_1
 eq z_2$

Definition 1 (Averaged representation difference)

$$ar{d}_{\zeta}(\phi, ilde{\phi}) := \underset{\mathcal{T} \sim \zeta}{\mathbb{E}} \left[\mathcal{L}_{sup}(\mathcal{T}, \phi) - \mathcal{L}_{sup}(\mathcal{T}, ilde{\phi}) \right] = \mathcal{L}_{sup}(\phi) - \mathcal{L}_{sup}(ilde{\phi})$$

Definition 2 (worst-case representation difference)

$$d_{\mathcal{C}_0}(\phi, ilde{\phi}) := \sup_{\mathcal{T}_0 \subseteq \mathcal{C}_0} \left[\mathcal{L}_{ ext{sup}} \ \left(\mathcal{T}_0, \phi
ight) - \mathcal{L}_{ ext{sup}} \ \left(\mathcal{T}_0, ilde{\phi}
ight)
ight]$$

$$(\nu,\epsilon)$$
-diversity: For any $\phi, ilde{\phi}\in\Phi,\,d_{\mathcal{C}_0}(\phi, ilde{\phi})\leq ar{d}_{\zeta}(\phi, ilde{\phi})/
u+\epsilon$

- ullet Suppose target task is $\,\mathcal{T}_0$
- ullet let ζ denote the conditional distribution of $(z_1,z_2)\sim \eta^2$ conditioned on $z_1
 eq z_2$
- (ν,ϵ) -diversity: For any $\phi, \tilde{\phi} \in \Phi, \ d_{\mathcal{C}_0}(\phi,\tilde{\phi}) \leq \bar{d}_{\zeta}(\phi,\tilde{\phi})/\nu + \epsilon$
- ullet Suppose there is ϕ^* such that supervised loss are small across all tasks

Theorem 1 (Contrastive pre-training loss(baseline))

Suppose in pre-training we have $\hat{\mathcal{L}}_{un}(\hat{\phi}) \leq \epsilon_0$, then:

$$\mathcal{L}_{sup}(\mathcal{T}_0, \hat{\phi}) - \mathcal{L}_{sup}(\mathcal{T}_0, \phi^*) \leq \frac{1}{
u} \left[\frac{1}{1- au} (2\epsilon_0 - au) - \mathcal{L}_{sup}(\phi^*) \right] + \epsilon$$

- ullet Suppose target task is $\,\mathcal{T}_0$
- let ζ denote the conditional distribution of $(z_1,z_2)\sim\eta^2$ conditioned on $z_1\neq z_2$
- (ν,ϵ) -diversity: For any $\phi, \tilde{\phi} \in \Phi, \ d_{\mathcal{C}_0}(\phi,\tilde{\phi}) \leq \bar{d}_{\zeta}(\phi,\tilde{\phi})/\nu + \epsilon$

Theorem 2 (Multitask finetuning loss(Ours))

Suppose we solve multitask finetuning optimization with empirical loss smaller than $\epsilon_1 = \frac{\alpha}{3} \frac{1}{1-\tau} (2\epsilon_0 - \tau)$ and got ϕ' . If:

$$M \ge \Omega\left(\frac{1}{\epsilon_1}\left[\mathcal{R}_M\left(\Phi\left(\epsilon_0\right)\right) + \frac{1}{\epsilon_1}\log\left(\frac{1}{\delta}\right)\right]\right), \quad Mm \ge \Omega\left(\frac{1}{\epsilon_1}\left[\mathcal{R}_{Mm}\left(\Phi\left(\epsilon_0\right)\right) + \frac{1}{\epsilon_1}\log\left(\frac{1}{\delta}\right)\right]\right)$$

Then with prob $1-\delta$,

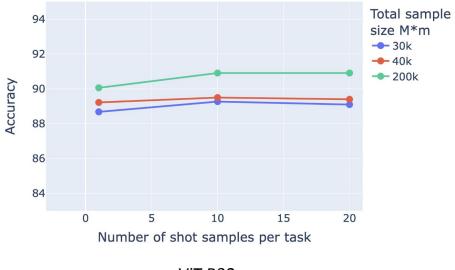
$$\mathcal{L}_{sup}(\mathcal{T}_0, \phi') - \mathcal{L}_{sup}(\mathcal{T}_0, \phi^*) \le \frac{1}{\nu} \left[\alpha \frac{1}{1 - \tau} (2\epsilon_0 - \tau) - \mathcal{L}_{sup}(\phi^*) \right] + \epsilon$$

Remark

- Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce error on target task by $\frac{1}{\nu}\left[(1-\alpha)\frac{1}{1-\tau}(2\epsilon_0-\tau)\right]$ where finetuning sample complexity is $\Theta\left(\frac{1}{\alpha\epsilon_0}\right)$
- Comparing to traditional supervised learning, self-supervised pre-training reduce error by $O\left(\frac{1}{Mm}\left[\mathcal{R}_{Mm}(\Phi)-\mathcal{R}_{Mm}\left(\Phi(\epsilon_0)\right)\right]\right)$

Experiments: Few-shot Vision tasks

5-way accuracy (%) on mini-ImageNet, 1/10/20 image per class in target task



ViT-B32

Accuracy with varying number shot images