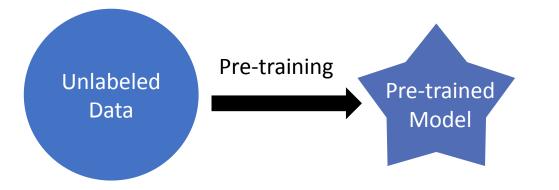


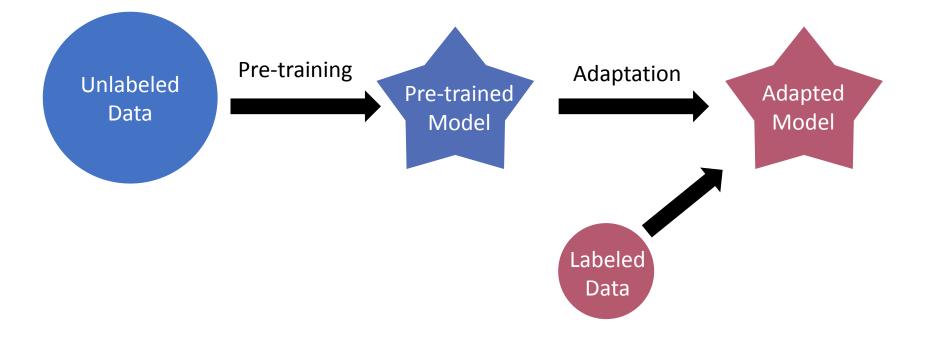
The **Trade-off** between **Universality** and **Label Efficiency** of Representations from Contrastive Learning

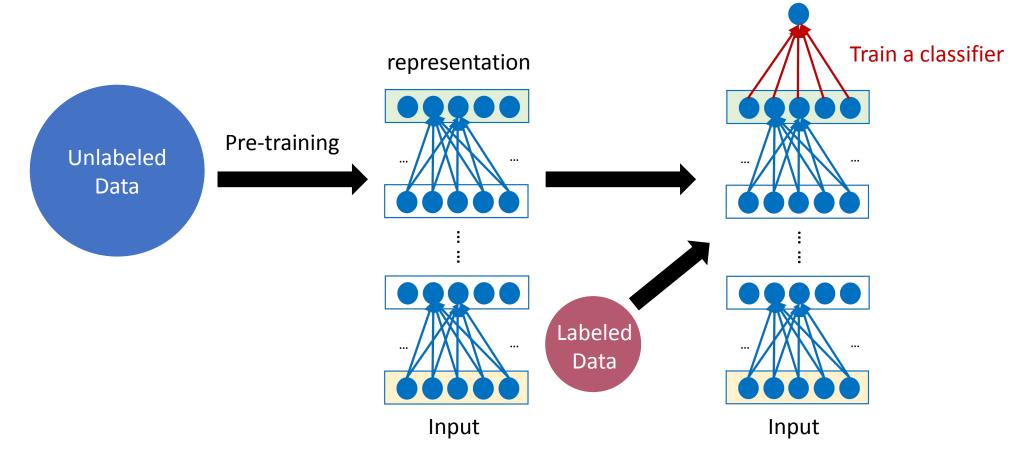
Zhenmei Shi*, Jiefeng Chen*, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, Somesh Jha

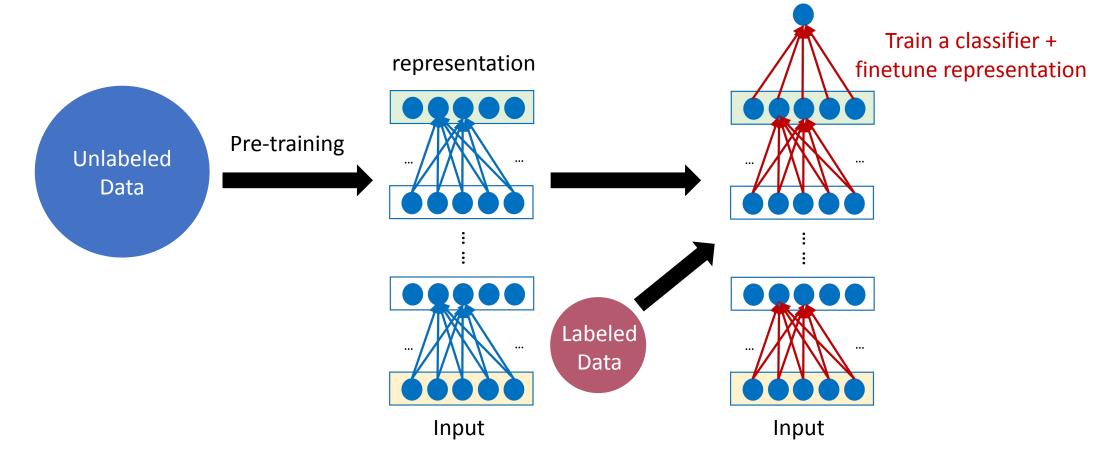
UW-Madison, Google, XaiPient

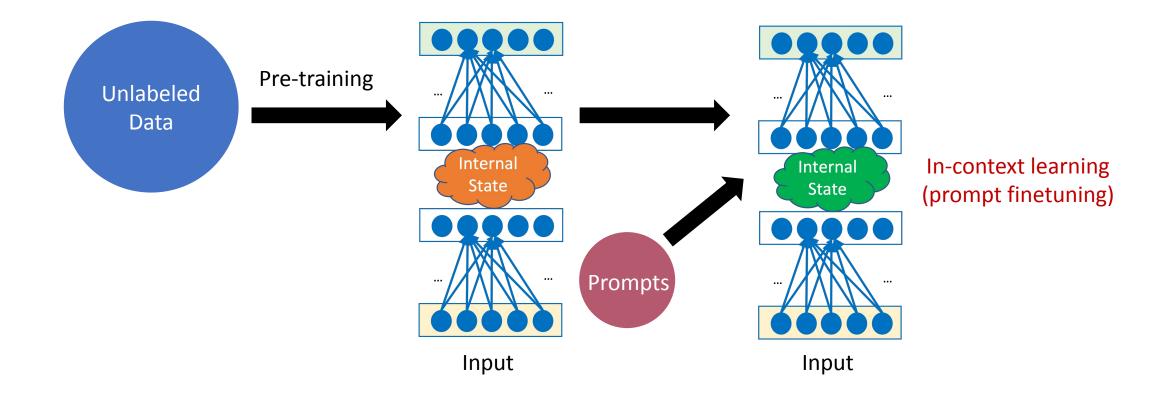
MLOPT 2023



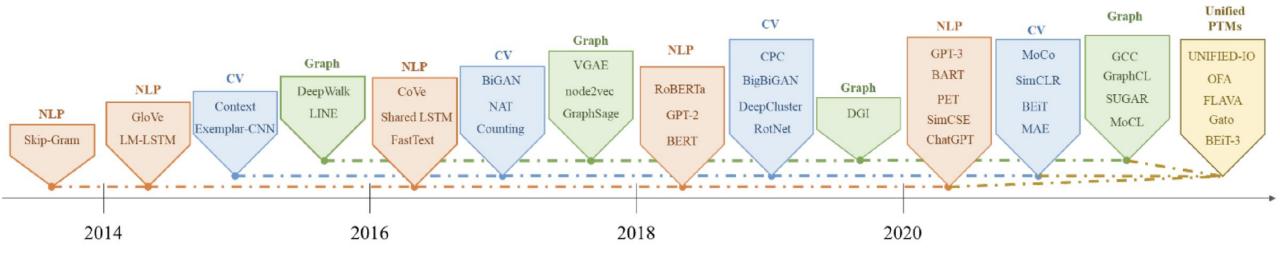








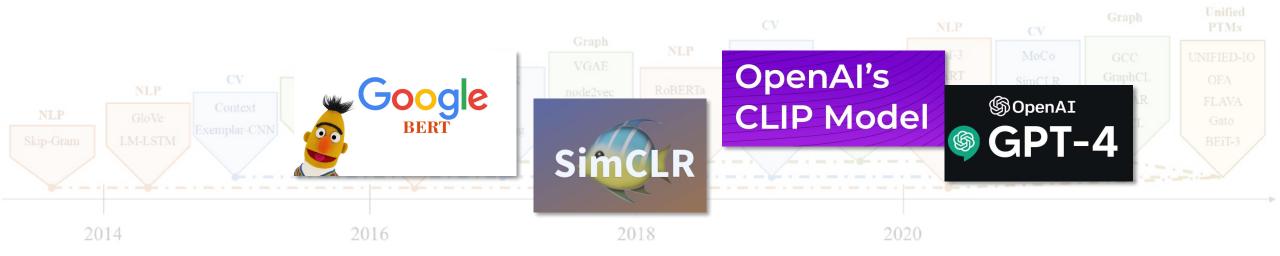
Paradigm shift: supervised learning → pre-training + adaptation



The history and evolution of pre-trained models

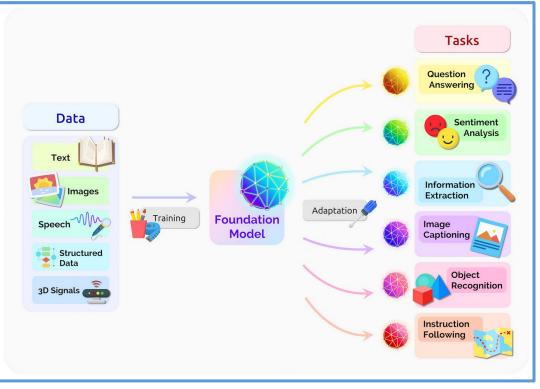
Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.

Paradigm shift: supervised learning → pre-training + adaptation



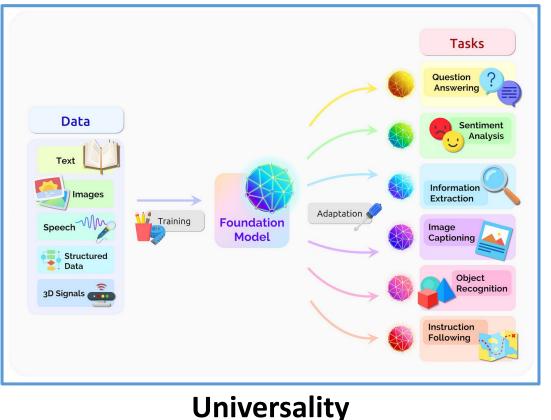
The history and evolution of pre-trained models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



Universality

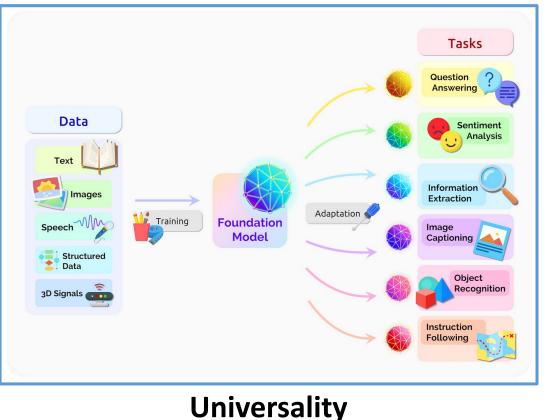
Figures from: On the opportunities and risks of foundation models, 2021.



Label Efficiency

Figures from: On the opportunities and risks of foundation models, 2021.

Figures from: <u>https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang</u>, 2020



Label Efficiency

Figures from: On the opportunities and risks of foundation models, 2021.

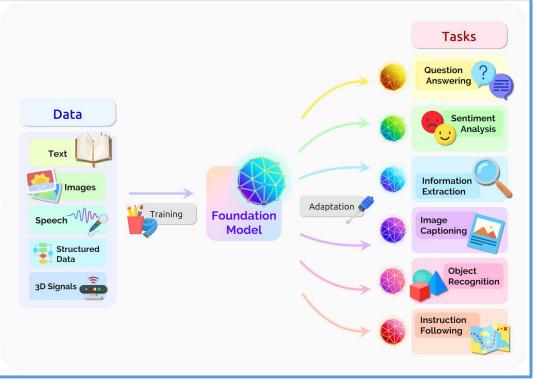
Figures from: <u>https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang</u>, 2020

mean

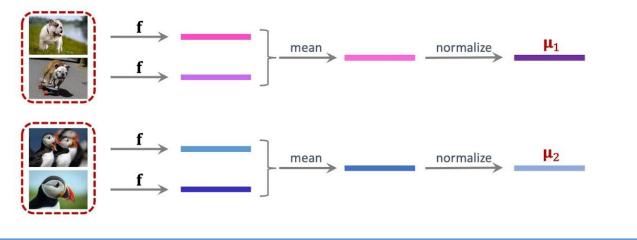
Q: Can we gain two key properties simultaneously?

 μ_2

normalize



Few-Shot Learning: Pretraining + Fine Tuning



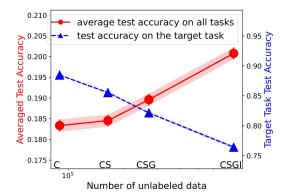
Universality

Label Efficiency

Figures from: On the opportunities and risks of foundation models, 2021.

Figures from: <u>https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang</u>, 2020

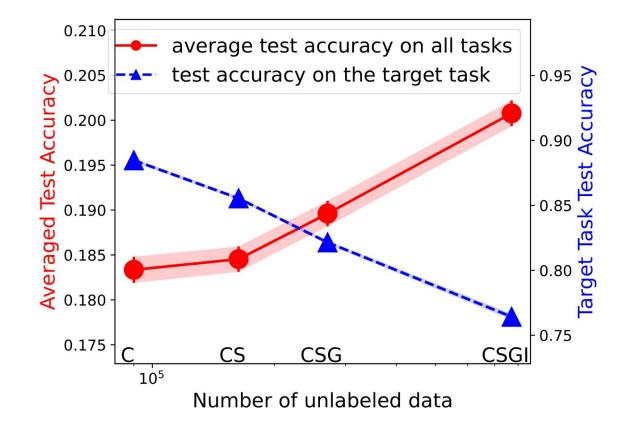
Q: Can we gain two key properties simultaneously? A: A **trade-off** exists at least for **contrastive learning**!



Trade-off of Label Efficiency and Universality

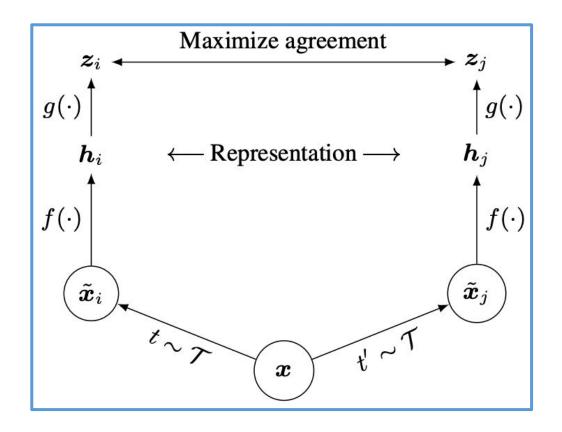
Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR10.

From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)



[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR'2023.

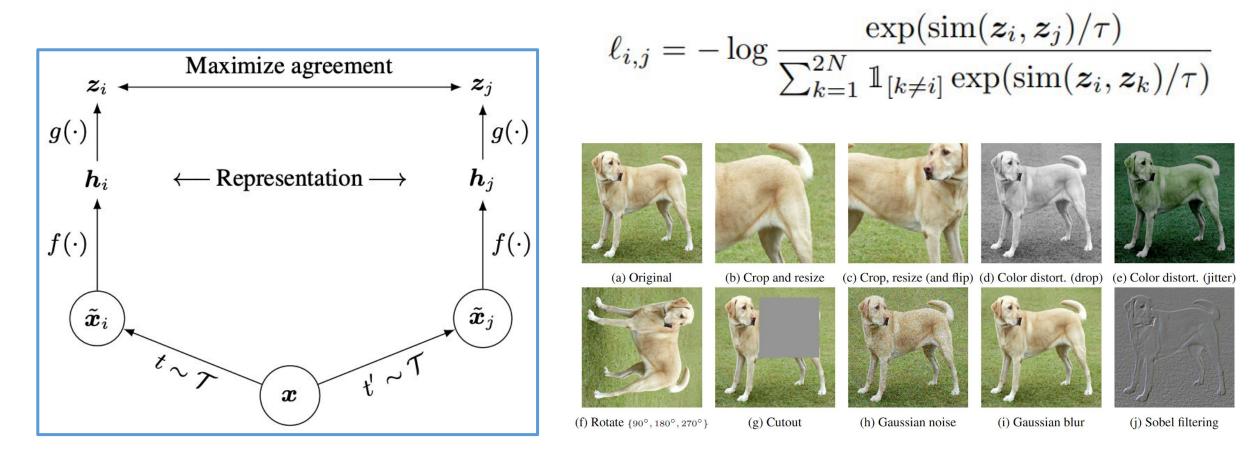
Intro - Contrastive Learning



$$\ell_{i,j} = -\log \frac{\exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\sin(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$

SimCLR - (Image, Image) No need labels

Intro - Contrastive Learning

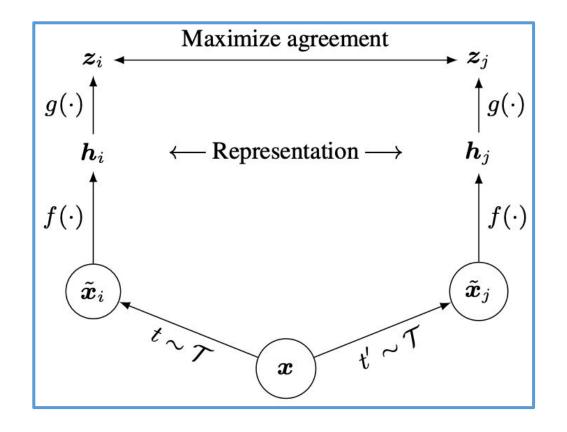


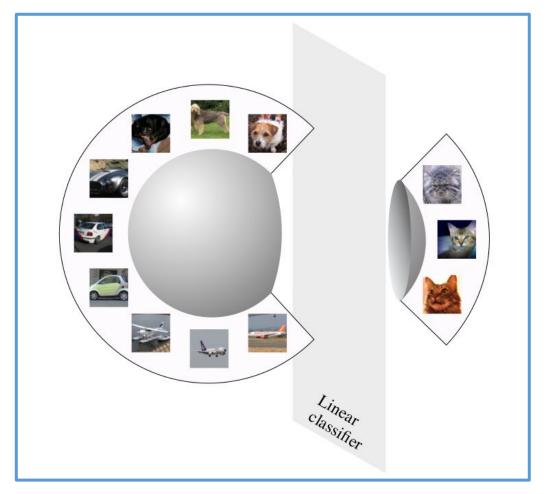
SimCLR - (Image, Image) No need labels

Image Data Augmentation

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Intro - Contrastive Learning





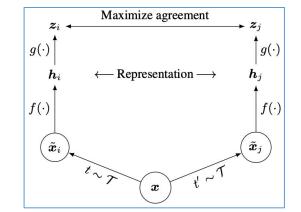
SimCLR - (Image, Image) No need labels

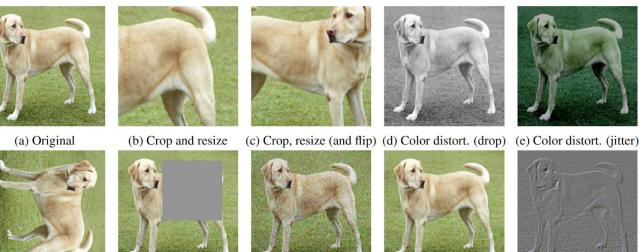
Linear Probing Figures from: Understanding Contrastive Representation Learning through Alignment and

Uniformity on the Hypersphere, 2021.

Intro - Invariant/Spurious Feature

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$





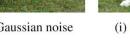
(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

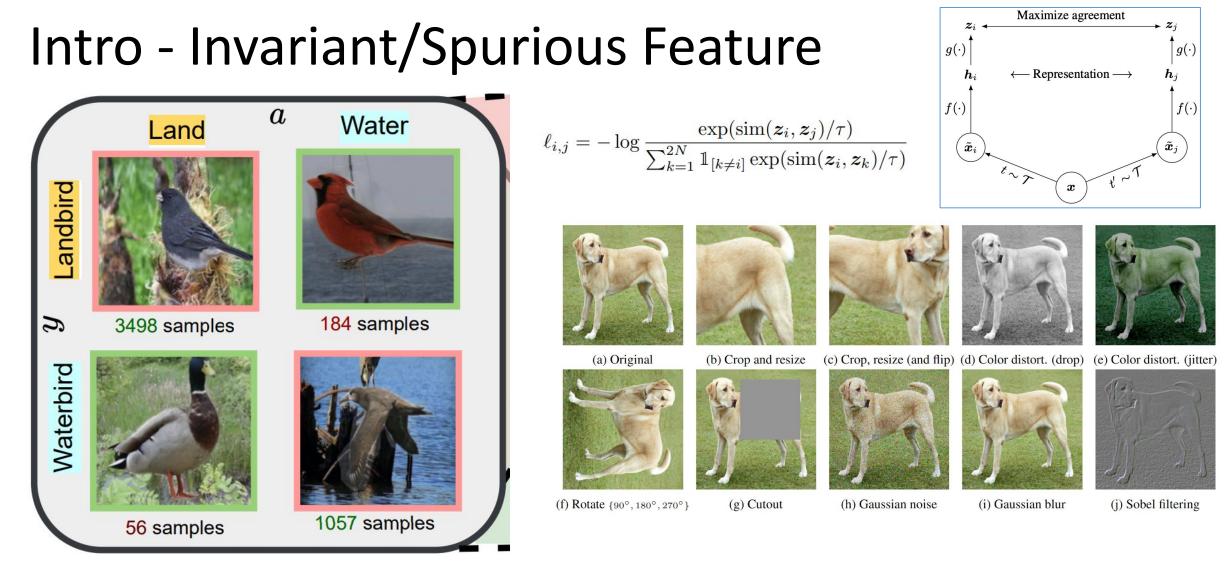
(j) Sobel filtering

Image Data Augmentation Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

(h) Gaussian noise



(i) Gaussian blur



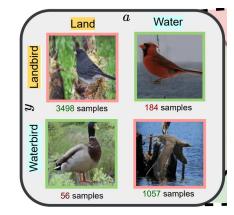
Waterbirds Invariant - Birds; Spurious - Background

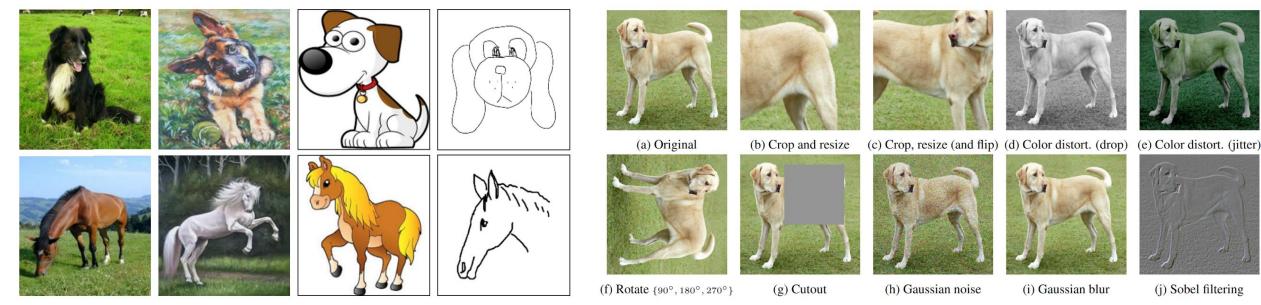
Image Data Augmentation

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Figures from: Avoiding spurious correlations via logit correction, 2023

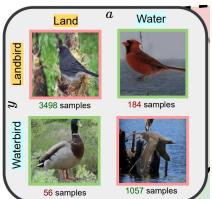
Intro - Invariant/Spurious Feature



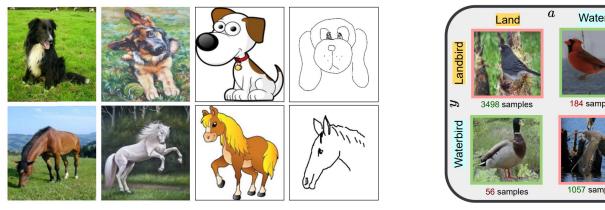


PACS: Photo, Painting, Cartoon, Sketch Invariant - Object; Spurious - Image Style

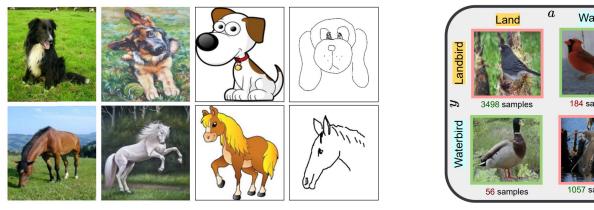
Image Data Augmentation



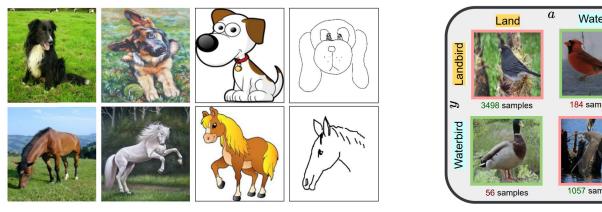
Q1: What features are learned by contrastive learning?



- Q1: What features are learned by contrastive learning?
- A1: Contrastive Learning = Generalized Nonlinear PCA. Encodes almost all invariant features but removes the others.



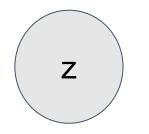
- Q1: What features are learned by contrastive learning?A1: Contrastive Learning = Generalized Nonlinear PCA. Encodes almost all invariant features but removes the others.
- Q2: Is it always good to encode almost **all** invariant features?



Q1: What features are learned by contrastive learning? A1: Contrastive Learning = Generalized Nonlinear PCA. Encodes almost all invariant features but removes the others.

- Q2: Is it always good to encode almost **all** invariant features? A2: No! More Diverse data → Target task features down-weighted
 - → Worse target task performance

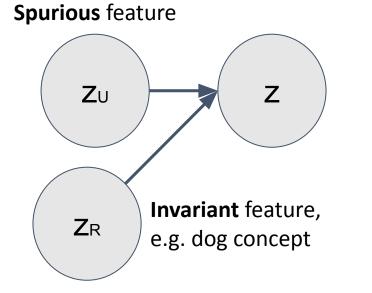
• Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z



Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature U, $\, R \cup U = [d]$, $\, R \cap U = \emptyset$

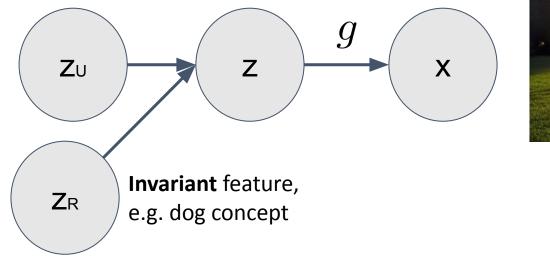


Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature U, $R \cup U = [d]$, $R \cap U = \emptyset$
- x = g(z), g is a generative function; y depends on z as well

Spurious feature



Data Model

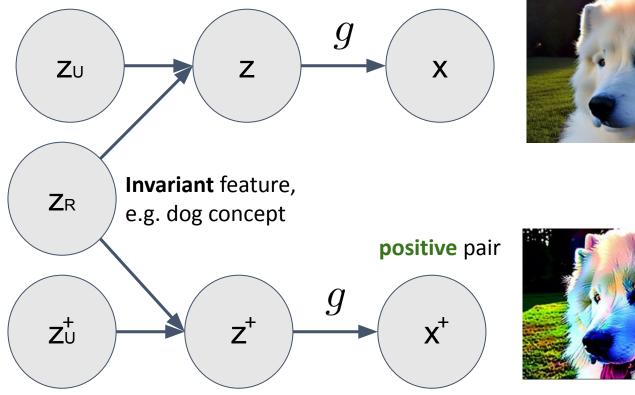
Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

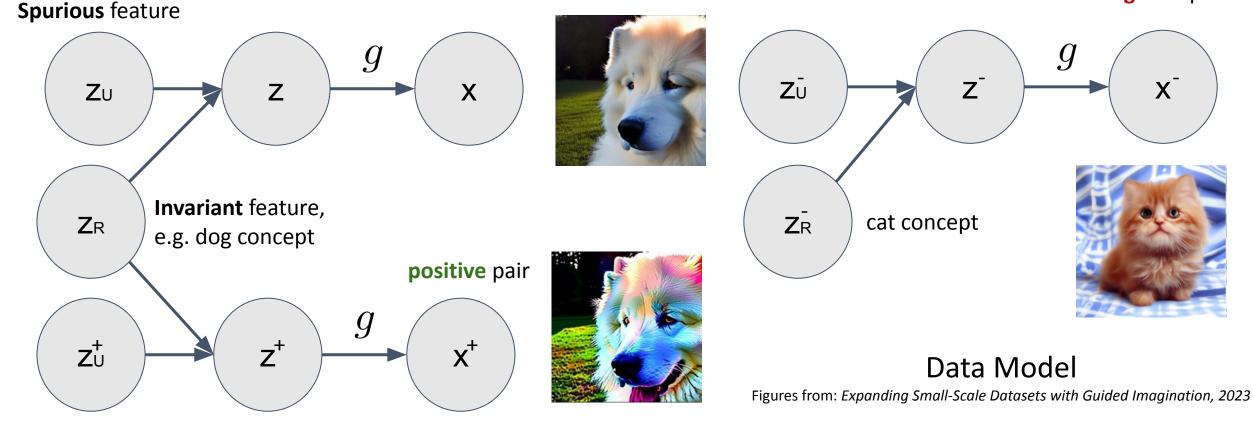
- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature U, $R \cup U = [d]$, $R \cap U = \emptyset$
- x = g(z), g is a generative function; y depends on z as well

Spurious feature

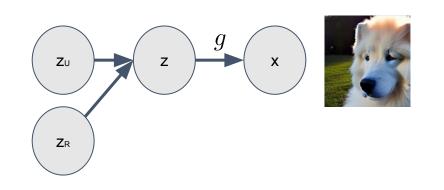


- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature U, $R \cup U = [d]$, $R \cap U = \emptyset$
- x = g(z), g is a generative function; y depends on z as well

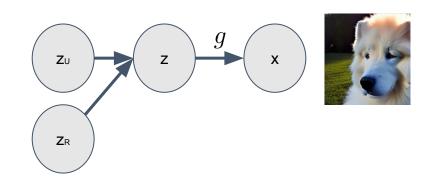
negative pair



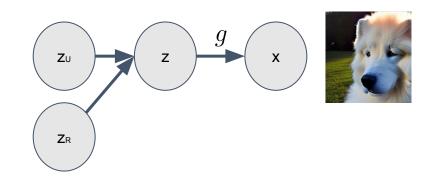
- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature U, $R \cup U = [d]$, $R \cap U = \emptyset$
- x = g(z), g is a generative function; y depends on z as well
- $\phi \in \Phi$ hypothesis class of representation functions, e.g, ResNet, ViT



- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R, Spurious feature U, $R \cup U = [d]$, $R \cap U = \emptyset$
- x = g(z), g is a generative function; y depends on z as well
- $\phi \in \Phi$ hypothesis class of representation functions, e.g, ResNet, ViT
- Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) \phi(x^-)) \right) \right]$

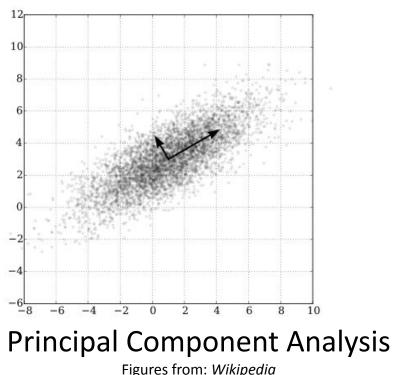


- Hidden representation space $z \in \mathcal{Z} \subseteq \mathbb{R}^d$ over distribution \mathcal{D}_z
- Invariant feature R , Spurious feature $U\!\!\!, \ R\cup U=[d]\!\!\!, \ R\cap U=\emptyset$
- x = g(z), g is a generative function; y depends on z as well
- $\phi \in \Phi$ hypothesis class of representation functions, e.g, ResNet, ViT
- Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) \phi(x^-)) \right) \right]$
- In SimCLR, we have multiple negative pairs and $\ \ell(t) = \log(1 + \exp(-t))$



• Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) - \phi(x^-)) \right) \right]$

- Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) \phi(x^-)) \right) \right]$
- PCA on $\phi(x)$ $\min_{\phi \in \Phi} -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \mathbb{E}_{x' \sim \mathcal{D}}[\phi(x')]\|^2] = -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \phi_0\|^2]$
- $\phi_{z_R} := \mathbb{E}[\phi(x) \mid z_R] = \mathbb{E}[\phi(g(z)) \mid z_R]$

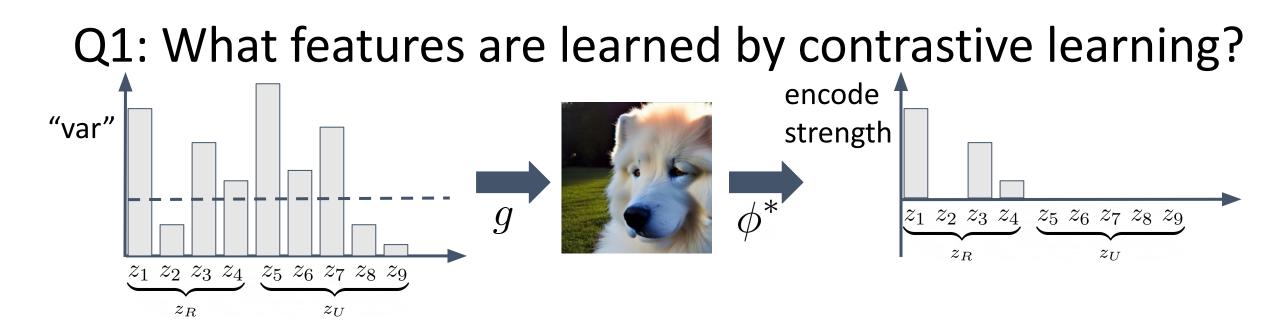


- Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) \phi(x^-)) \right) \right]$
- PCA on $\phi(x)$ $\min_{\phi \in \Phi} -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \mathbb{E}_{x' \sim \mathcal{D}}[\phi(x')]\|^2] = -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \phi_0\|^2]$
- $\phi_{z_R} := \mathbb{E}[\phi(x) \mid z_R] = \mathbb{E}[\phi(g(z)) \mid z_R]$

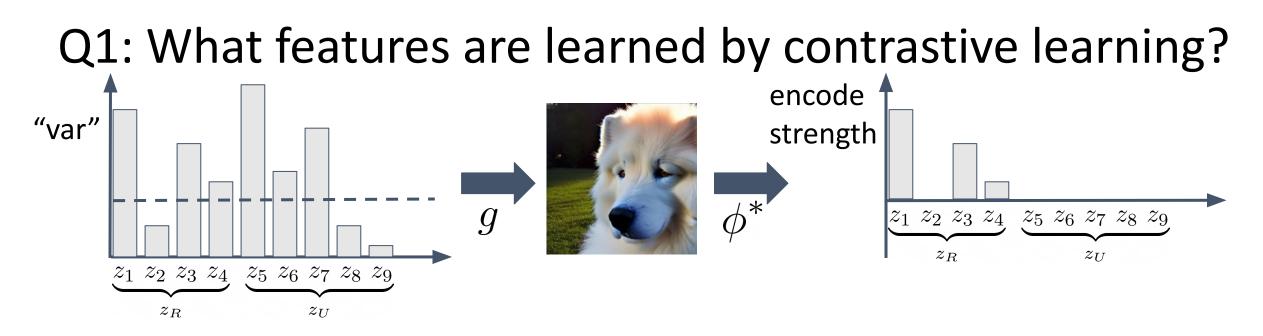
Theorem (Contrastive Learning is Generalized Nonlinear PCA) If $\ell(t) = -t$, Contrastive Learning is equivalent to PCA on ϕ_{z_R} . Moreover, if ϕ is linear function, it is equivalent to linear PCA on ϕ_{z_R} .

- Contrastive Loss $\min_{\phi \in \Phi} \mathbb{E}_{(x,x^+,x^-) \sim \mathcal{D}_{pre}} \left[\ell \left(\phi(x)^\top (\phi(x^+) \phi(x^-)) \right) \right]$
- PCA on $\phi(x)$ $\min_{\phi \in \Phi} -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \mathbb{E}_{x' \sim \mathcal{D}}[\phi(x')]\|^2] = -\mathbb{E}_{x \sim \mathcal{D}}[\|\phi(x) \phi_0\|^2]$
- $\phi_{z_R} := \mathbb{E}[\phi(x) \mid z_R] = \mathbb{E}[\phi(g(z)) \mid z_R]$

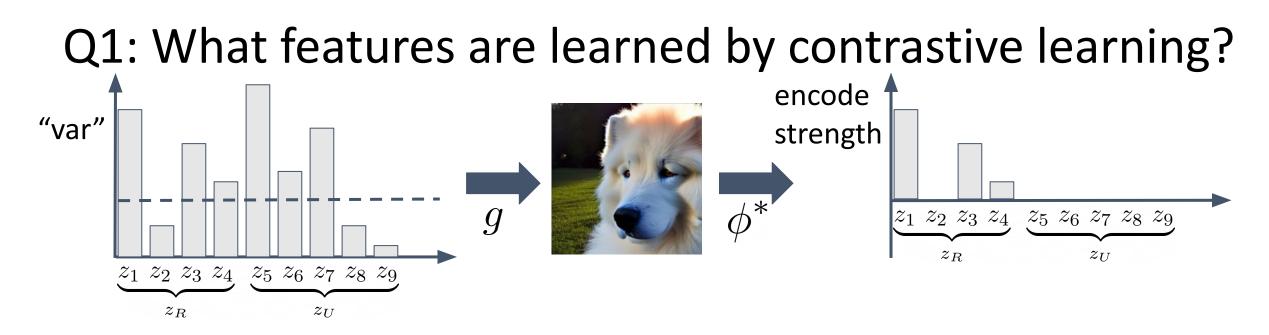
Theorem (Encode Invariant Feature; Remove Spurious Feature) If $\ell(t)$ is convex, decrease, lower-bound, and $z_R \rightarrow x$ is one-to-one, with regular assumption, the optimal representation ϕ^* satisfies: (1) ϕ^* does not encode spurious feature: $\phi^* \circ g(z) \perp z_U$ (2) ϕ^* only encodes invariant feature whose "variance" large enough, and encoding strength increases when "variance" becomes larger.



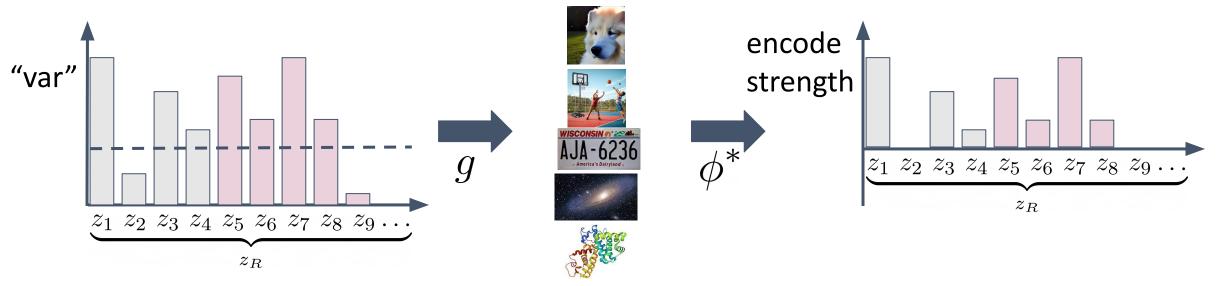
Theorem (Encode Invariant Feature; Remove Spurious Feature) If $\ell(t)$ is convex, decrease, lower-bound, and $z_R \rightarrow x$ is one-to-one, with regular assumption, the optimal representation ϕ^* satisfies: (1) ϕ^* does not encode spurious feature: $\phi^* \circ g(z) \perp z_U$ (2) ϕ^* only encodes invariant feature whose "variance" large enough, and encoding strength increases when "variance" becomes larger.



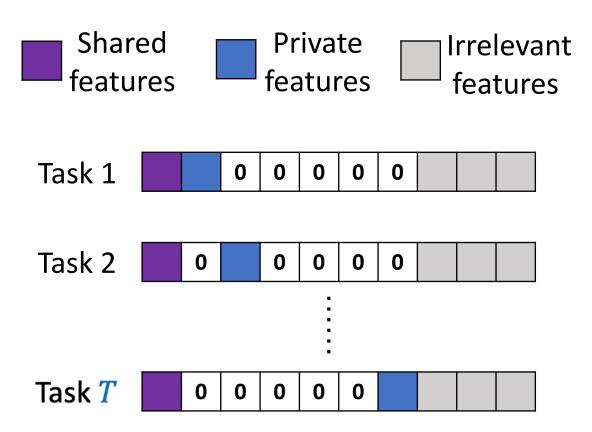
Q2: Is it always good to encode almost **all** invariant features?



Q2: Is it always good to encode almost **all** invariant features?

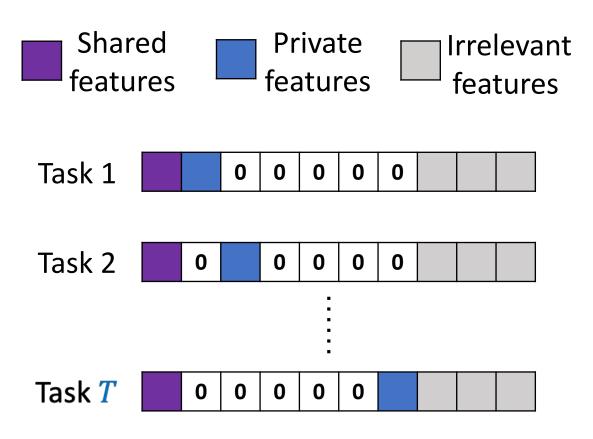


A2: Trade-off Comes from Feature Weighting



- Input: linearly generated from features
- Label: linear on shared/private features
- Pre-train a linear representation and then learn linear classifiers
- Best representation: weight shared/private features equally
- Pre-trained on only Task 1 v.s. Pre-trained on mixture of all tasks

A2: Trade-off Comes from Feature Weighting

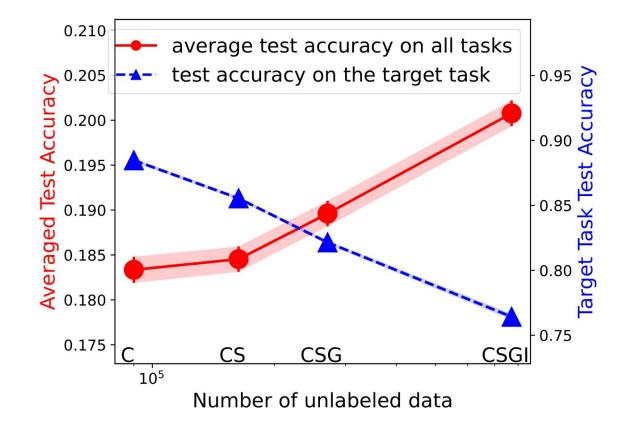


- Input: linearly generated from features
- Label: linear on shared/private features
- Pre-trained on Task 1:
 - Recover features for Task 1 but not for others
 - Good prediction on Task 1 but not on others
- Pre-trained on mixture of all tasks:
 - Recover all shared/private features
 - Up-weights the shared features by $O(\sqrt{T})$
 - $O(\sqrt{T})$ worse on Task 1 but better on average

Trade-off of Label Efficiency and Universality

Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR10.

From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)

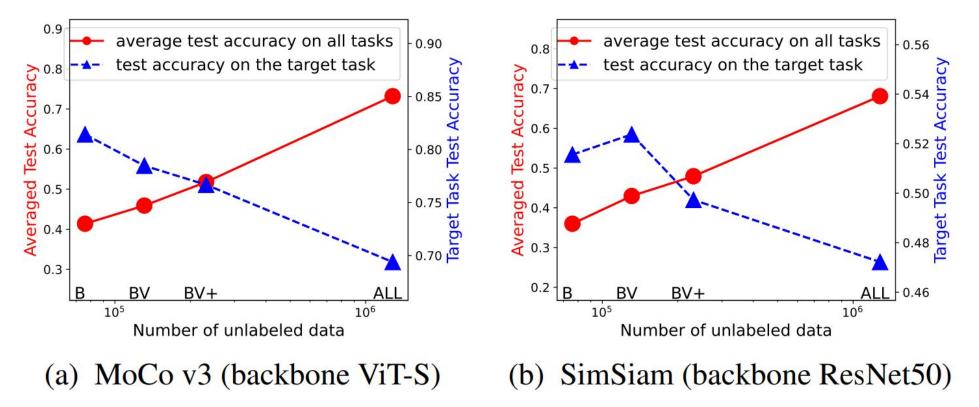


[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR'2023.

Trade-off of Label Efficiency and Universality

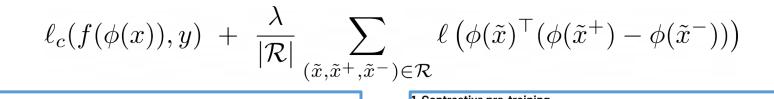
Contrastive learning, then classify on ImageNet-Bird (B).

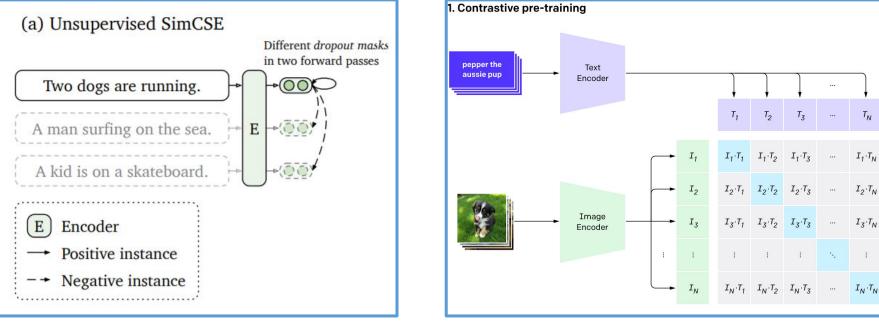
From left to right, incrementally add to pre-training: ImageNet-Bird (B), ImageNet-Vehicle (V), ImageNet-Cat/Ball/Shop/Clothing/Fruit (+), and ImageNet (ALL)



Solution 1 - Contrastive Regularization $\ell_c(f(\phi(x)), y) + \frac{\lambda}{|\mathcal{R}|} \sum_{(\tilde{x}, \tilde{x}^+, \tilde{x}^-) \in \mathcal{R}} \ell\left(\phi(\tilde{x})^\top (\phi(\tilde{x}^+) - \phi(\tilde{x}^-))\right)$

Solution 1 - Contrastive Regularization



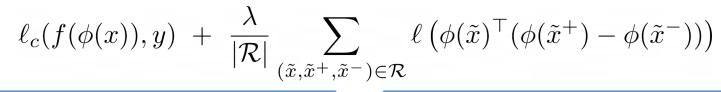


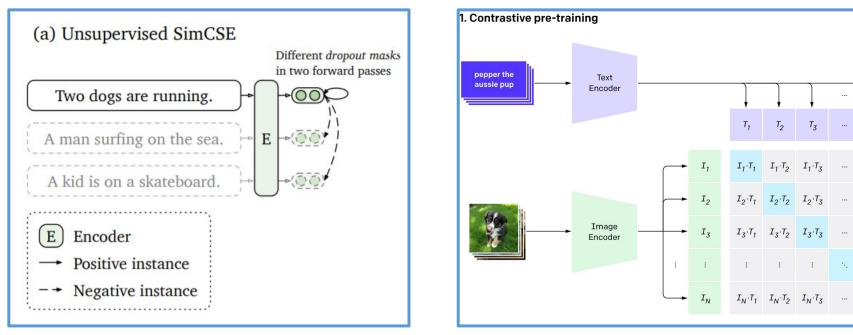
SimCSE - (Text, Text) Figures from: *SimCSE: Simple Contrastive Learning of Sentence Embeddings, 2021.*

Figures from: Learning Transferable Visual Models From Natural Language Supervision, 2021.

CLIP - (Image, Text)

Solution 1 - Contrastive Regularization





SimCSE - (Text, Text) Figures from: SimCSE: Simple Contrastive Learning of Sentence Embeddings, 2021. CLIP - (Image, Text) Figures from: Learning Transferable Visual Models From Natural Language Supervision, 2021.

 $I_2 \cdot T_N$

 $I_3 \cdot T_N$

 $I_N \cdot T_N$

	CLIP			MoCo v3			SimCSE	
Method	ImageNet	SVHN	GTSRB	CIFAR-10	SVHN	GTSRB	IMDB	AGNews
LP	77.84 ± 0.02	63.44 ± 0.01	$86.56 {\pm} 0.01$	95.82±0.01	61.92 ± 0.01	75.37 ± 0.01	86.49±0.16	87.76±0.66
FT	83.65 ± 0.01	78.22 ± 0.18	90.74±0.06	96.17±0.12	65.36±0.33	76.45 ± 0.29	92.31±0.26	93.57±0.23
Ours	84.94±0.09	78.72±0.37	92.01±0.28	96.71±0.10	66.29±0.20	81.28±0.10	92.85±0.03	93.94±0.02

Solution 2 - Few-Shot Multitask Finetuning

- CLIP pretraining model.
- Few-Shot: 5 training sample for each target class.
- Few-Shot Multitask finetuning on mini-Imagenet training classes.
- Few-Shot evaluate on mini-Imagenet target classes.

Solution 2 - Few-Shot Multitask Finetuning

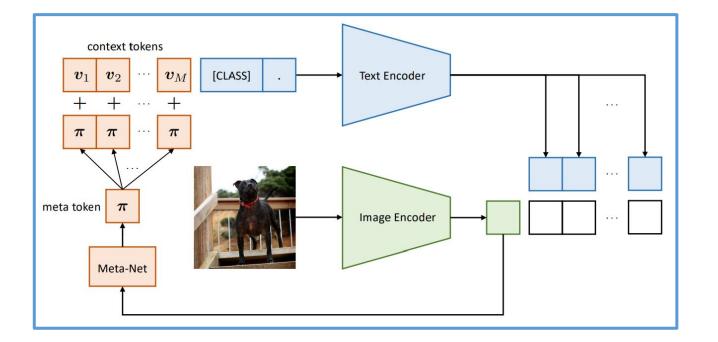
- CLIP pretraining model.
- Few-Shot: 5 training sample for each target class.
- Few-Shot Multitask finetuning on mini-Imagenet training classes.
- Few-Shot evaluate on mini-Imagenet target classes.

Backbone	Direct Adaptation	Finetuning
ViT-B32	83.03 ± 0.24	$\textbf{89.07} \pm 0.20$
ResNet50	78.36 ± 0.25	$\textbf{81.19} \pm 0.25$

Table 1: Effects of multitask finetuning.

Future Work

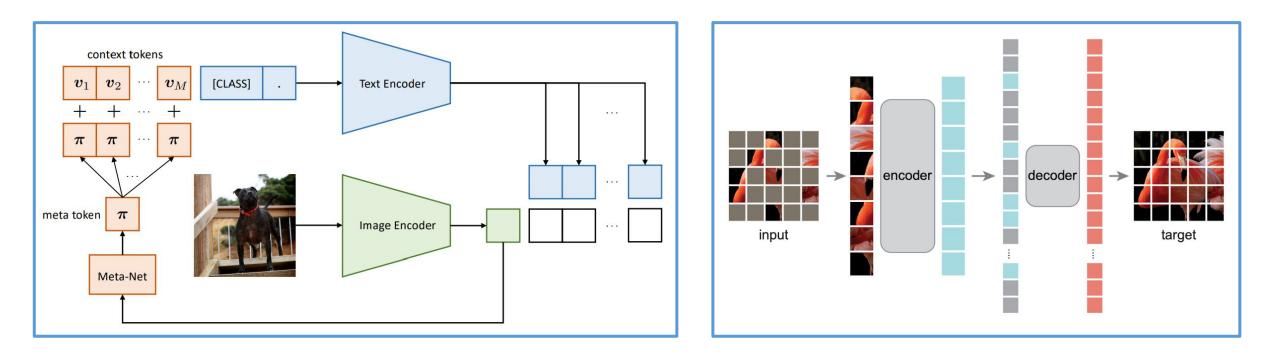
• Any other better paradigm than Contrastive Learning + Linear Probing? May be Prompt?



CoCoOp Figures from: *Conditional Prompt Learning for Vision-Language Models, 2022.*

Future Work

- Any other better paradigm than Contrastive Learning + Linear Probing? May be Prompt?
- Do the other self-supervised learning methods have a similar trade-off, e.g., MAE, GPT4?

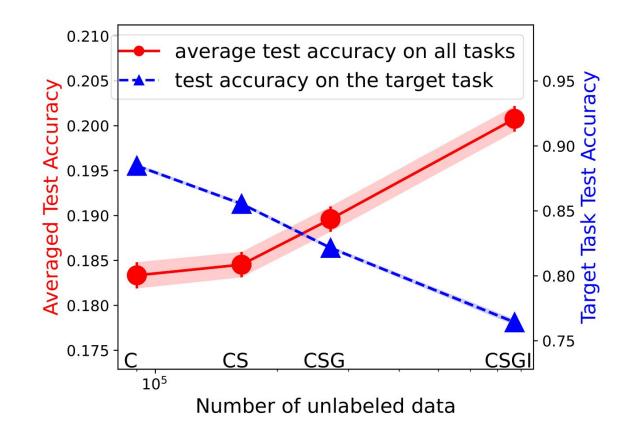


CoCoOp Figures from: *Conditional Prompt Learning for Vision-Language Models, 2022.*

Mask Autoencoder

Figures from: Masked Autoencoders Are Scalable Vision Learners, 2021.

Take Home Message



MLOPT 2023

Theorem (Encode Invariant Feature; Remove Spurious Feature) If $\ell(t)$ is convex, decrease, lower-bound, and $z_R \to x$ is one-to-one, with regular assumption, the optimal representation ϕ^* satisfies: (1) ϕ^* does not encode spurious feature: $\phi^* \circ g(z) \perp z_U$ (2) ϕ^* only encodes invariant feature whose "variance" large enough, and encoding strength increases when "variance" becomes larger.

$$\begin{split} & \mathbb{E}_{(x,x^+,x^-)} \left[\ell \left(\phi(x)^\top [\phi(x^+) - \phi(x^-)] \right) \right] \\ &= \mathbb{E}_{(z,z^+,z^-)} \left[\ell \left((\phi \circ g(z))^\top (\phi \circ g(z^+) - \phi \circ g(z^-)) \right) \right] \\ &= \mathbb{E}_{(z_R,z_R^-)} \left[\mathbb{E} \left[\ell \left((\phi \circ g(z))^\top (\phi \circ g(z^+) - \phi \circ g(z^-)) \right) \mid z_R, z_R^- \right] \right] \right] \\ &\geq \mathbb{E}_{(z_R,z_R^-)} \left[\ell \left(\mathbb{E} \left[(\phi \circ g(z))^\top (\phi \circ g(z^+) - \phi \circ g(z^-)) \mid z_R, z_R^- \right] \right) \right] \\ &= \mathbb{E}_{(z_R,z_R^-)} \left[\ell \left(\mathbb{E} [\phi \circ g(z) \mid z_R]^\top \left(\mathbb{E} [\phi \circ g(z^+) \mid z_R] - \mathbb{E} [\phi \circ g(z^-) \mid z_R^-] \right) \right) \right] \\ &= \mathbb{E}_{(z_R,z_R^-)} \left[\ell \left(\phi_{z_R}^\top \phi_{z_R} - \phi_{z_R}^\top \phi_{z_R^-} \right) \right], \end{split}$$