Domain Generalization via Nuclear Norm Regularization Zhenmei Shi*, Yifei Ming*, Ying Fan*, Frederic Sala, Yingyu Liang University of Wisconsin-Madison ## Intro - Domain Generalization Train on multiple training domains, e.g., Sketch + Cartoon + Art. Test on **new/unseen** domain, e.g., Photo. #### **PACS** dataset Source: Deeper, broader and artier domain generalization. ICCV 2017. #### Intro - More Datasets Bottle Chair Glasses Bike airplane #### **OfficeHome** # bicycle bird strawberry flower pizza bracelet bus bucket cello foot snorkel butterfly cup #### Terra Incognita **DomainNet** 6 domains, 345 classes, 586,575 images Source: In Search of Lost Domain Generalization. ICLR 2021. ## Intro - Domain Labels With domain labels Without domain labels (ours) Source: Domain Generalization Using a Mixture of Multiple Latent Domains. AAAI 2020. # Intro - Invariant/Spurious Feature Waterbirds dataset Invariant - Birds; Spurious - Background Source: Avoiding spurious correlations via logit correction, ICLR 2023 ## Intro - Invariant/Spurious Feature #### Waterbirds dataset Invariant - Birds; Spurious - Background Source: Avoiding spurious correlations via logit correction, ICLR 2023 #### Hidden representation data model: - e : environment (background) - y : label (bird) - ze: spurious feature - zc: invariant feature - x : input (image) ## Motivation - ERM Learn Good Features Empirical Risk Minimization already learn features sufficient for domain generalization: - ERM : train on training domains. - Linear : train on training domains => Linear Probing on unseen domain. - End-to-End: train on training + unseen domain. Evaluate on the unseen domain. Source: Domain-adjusted regression or: Erm may already learn features sufficient for out-of-distribution generalization, 2023 ## Motivation - ERM Learn Good Features - Main Issue: features in ERM can be arbitrarily mixed: spurious features are hard to disentangle from invariant features. - **Idea:** low-dimensional (parsimonious) structures => minimal information retrieved from ERM solution from training domains by controlling the **rank** => avoid domain overfitting. - Hypothesis: spurious features have lower correlation with labels than invariant features. ## Question #### Question: Can ERM benefit from rank regularization of the extracted feature for better domain generalization? #### Answer: Yes, ERM with Nuclear Norm Regularization (ERM-NU). Nuclear norm is convex envelope to the rank function. # Method - Setup #### Hidden representation data model: - e : environment (background) - y : label (bird) - ze: spurious feature - zc: invariant feature - x : input (image) a: linear head Φ: feature extractor, e.g., ResNet 50 ## Method - Objective Function $$\min_{\mathbf{a},\Phi} \underbrace{\mathcal{L}(\mathbf{a},\Phi)}_{\text{RM}} + \lambda \underbrace{\|\Phi(\mathbf{X})\|_*}_{\text{NU}}$$ $$\stackrel{\mathbf{z}_e}{\underset{\star}{\overset{\star}{\star}}} \underbrace{\|\Phi(\mathbf{X})\|_*}_{\text{NU}}$$ $$\mathbf{z}_e$$ $$\mathbf{z}_c$$ NU can select a subset of ERM solutions that extract the smallest possible information for classification => reduce the effect of spurious features for better generalization. ## **Experiment - Simulation** In-distribution (ID) / training: - x1 and y has strong correlation. - x2 and y has weak correlation. Out-of-distribution (OOD) / unseen: - x1 and y has the same correlation. - x2 and y change the correlation. NU significantly reduces the OOD error rate, while keep small ID error. # Experiment - Real Dataset | Algorithm | VLCS | PACS | OfficeHome | TerraInc | DomainNet | Average | |--------------------------------------|-----------------------|-------------------------|-------------------------|----------------|----------------|---------| | MMD [†] (CVPR 18) [10] | 77.5 ± 0.9 | 84.6 ± 0.5 | 66.3 ± 0.1 | 42.2 ± 1.6 | 23.4 ± 9.5 | 58.8 | | Mixstyle [‡] (ICLR 21) [27] | 77.9 ± 0.5 | 85.2 ± 0.3 | 60.4 ± 0.3 | 44.0 ± 0.7 | 34.0 ± 0.1 | 60.3 | | GroupDRO [†] (ICLR 19) [28] | 76.7 ± 0.6 | 84.4 ± 0.8 | 66.0 ± 0.7 | 43.2 ± 1.1 | 33.3 ± 0.2 | 60.7 | | IRM [†] (ArXiv 20) [6] | 78.5 ± 0.5 | 83.5 ± 0.8 | 64.3 ± 2.2 | 47.6 ± 0.8 | 33.9 ± 2.8 | 61.6 | | ARM [†] (ArXiv 20) [29] | 77.6 ± 0.3 | 85.1 ± 0.4 | 64.8 ± 0.3 | 45.5 ± 0.3 | 35.5 ± 0.2 | 61.7 | | $VREx^{\dagger}$ (ICML 21) [14] | 78.3 ± 0.2 | 84.9 ± 0.6 | 66.4 ± 0.6 | 46.4 ± 0.6 | 33.6 ± 2.9 | 61.9 | | CDANN [†] (ECCV 18) [8] | 77.5 ± 0.1 | 82.6 ± 0.9 | 65.8 ± 1.3 | 45.8 ± 1.6 | 38.3 ± 0.3 | 62.0 | | AND-mask* (ICLR 20)[30] | 78.1 ± 0.9 | 84.4 ± 0.9 | 65.6 ± 0.4 | 44.6 ± 0.3 | 37.2 ± 0.6 | 62.0 | | DANN [†] (JMLR 16) [7] | 78.6 ± 0.4 | 83.6 ± 0.4 | 65.9 ± 0.6 | 46.7 ± 0.5 | 38.3 ± 0.1 | 62.6 | | RSC [†] (ECCV 20) [31] | 77.1 ± 0.5 | 85.2 ± 0.9 | 65.5 ± 0.9 | 46.6 ± 1.0 | 38.9 ± 0.5 | 62.7 | | MTL [†] (JMLR 21) [32] | 77.2 ± 0.4 | 84.6 ± 0.5 | 66.4 ± 0.5 | 45.6 ± 1.2 | 40.6 ± 0.1 | 62.9 | | Mixup [†] (ICLR 18) [1] | 77.4 ± 0.6 | 84.6 ± 0.6 | 68.1 ± 0.3 | 47.9 ± 0.8 | 39.2 ± 0.1 | 63.4 | | MLDG [†] (AAAI 18) [33] | 77.2 ± 0.4 | 84.9 ± 1.0 | 66.8 ± 0.6 | 47.7 ± 0.9 | 41.2 ± 0.1 | 63.6 | | Fish (ICLR 22) [34] | 77.8 ± 0.3 | 85.5 ± 0.3 | 68.6 ± 0.4 | 45.1 ± 1.3 | 42.7 ± 0.2 | 63.9 | | Fishr* (ICML 22) [35] | 77.8 ± 0.1 | 85.5 ± 0.4 | 67.8 ± 0.1 | 47.4 ± 1.6 | 41.7 ± 0.0 | 64.0 | | SagNet [†] (CVPR 21) [36] | 77.8 ± 0.5 | 86.3 ± 0.2 | 68.1 ± 0.1 | 48.6 ± 1.0 | 40.3 ± 0.1 | 64.2 | | SelfReg (ICCV 21) [37] | 77.8 ± 0.9 | 85.6 ± 0.4 | 67.9 ± 0.7 | 47.0 ± 0.3 | 41.5 ± 0.2 | 64.2 | | CORAL [†] (ECCV 16) [9] | 78.8 ± 0.6 | 86.2 ± 0.3 | 68.7 ± 0.3 | 47.6 ± 1.0 | 41.5 ± 0.1 | 64.5 | | SAM [‡] (ICLR 21) [38] | 79.4 ± 0.1 | 85.8 ± 0.2 | 69.6 ± 0.1 | 43.3 ± 0.7 | 44.3 ± 0.0 | 64.5 | | mDSDI (NeurIPS 21) [39] | 79.0 ± 0.3 | 86.2 ± 0.2 | 69.2 ± 0.4 | 48.1 ± 1.4 | 42.8 ± 0.1 | 65.1 | | MIRO (ECCV 22) [40] | 79.0 ± 0.0 | 85.4 ± 0.4 | 70.5 ± 0.4 | 50.4 ± 1.1 | 44.3 ± 0.2 | 65.9 | | ERM [†] [41] | 77.5 ± 0.4 | 85.5 ± 0.2 | 66.5 ± 0.3 | 46.1 ± 1.8 | 40.9 ± 0.1 | 63.3 | | ERM-NU (ours) | 78.3 \pm 0.3 | $\textbf{85.6} \pm 0.1$ | $\textbf{68.1} \pm 0.1$ | 49.6 ± 0.6 | 43.4 ± 0.1 | 65.0 | | SWAD [‡] (NeurIPS 21) [24] | 79.1 ± 0.1 | 88.1 ± 0.1 | 70.6 ± 0.2 | 50.0 ± 0.3 | 46.5 ± 0.1 | 66.9 | | SWAD-NU (ours) | 79.8 \pm 0.2 | $\textbf{88.5} \pm 0.2$ | 71.3 \pm 0.3 | 52.2 ± 0.3 | 47.1 ± 0.1 | 67.8 | SWAD: Domain Generalization by Seeking Flat Minima NU is effective. ## Experiment - Real Dataset NU is broadly applicable. # Theoretical Analysis #### Theorem (Informal; Linear data and linear model) - The optimal solution for the ERM-NU has high OOD test accuracy. - The optimal solution for the ERM with/without weight decay has low OOD test accuracy (like random guessing). #### **Proof Intuition:** - 1. ERM will encode **all** features correlated with labels, even when the correlation is weak (logistic or cross-entropy loss). - 2. Larger correlation with label => stronger feature encoding. - 3. When OOD has different spurious feature distributions => ERM fails (random guessing). - 4. However, ERM-NU will only encode features that have a large correlation with labels (invariant features) => high OOD test accuracy. # Take Home Message Nuclear Norm Regularization is an - 1. effective - 2. broadly applicable - 3. easy to implement method for domain generalization. Q&A Thanks!