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Statistical Learning Theory Basics

e Given: training data (x;, y;)i— i.i.d. from unknown distribution D

* Learn model f from hypothesis class H by minimizing training loss
n
~ 1
L(F) == €(F @), )
i=1

* Goal: / has small test loss on future data (generalization)

L(f) = E(x,y)~2) [2(f (x),y)]



Statistical Learning Theory Basics

 To analyze generalization performance:
L(f) = L(f) +L(f) = L)
< L(f) + suppen L(h) — L(h)

| |
Optimization Generalization gap

i . . capacity(H
Often analyzed via convex Often analyzed via uniform convergence bounds: g i)

optimization #samples



New Challenges in Analyzing Deep Learning

 To analyze generalization performance:

L(f)

L(f)+L(f) - L)
< L(f) + suppey L(h) — L(h)

Optimization Generalization gap

Y f:low training loss
and low test loss

* f': low training loss
but high test loss

Non-Convex Optimization
Via Gradient Descent

uniform bounds too loose



Fundamental Questions of Neural Networks

Approximation
Two layer-neural-network can approximate any Lipschitz function.

Optimization (challenging, non-convex!)
Why neural-network can find good solution on training data?

Generalization

Why the network also accurate on new test instances?



Recent Work on Optimization of NNs

Why neural networks success?

e Neural Tangent Kernel (NTK regime or lazy learning regime):
o Key idea: with heavy overpara, in a close neighborhood of random init, the
optimization is almost convex
o Limitation: impractical overpara; generalization only for simple datasets;
approximately a kernel method (fixed feature, no feature learning)
e F[eature learning beyond NTK
o Key idea: on data with specific structure, the training algo exploits the
structure to learn specific features as the neuron weights
o Can handle problems that cannot be handled by fixed feature methods
o Limitation: specific data (mixture of Gaussians, parity etc)




Recent Work on Optimization of NNs

Vs
Can we provide a more general analysis framework?
\

1. for more general data
2. Pin down the principle of feature learning in practical algo

“ )
i1 Yes for two-layer networks



Problem Setting

Two-layer network: y' = g(x) = a” o(Wx + b). Input Fitien Layer Output

La ye r Activation o La ye r
X Bias b

Weight W
Input #1 —— Weight a
Input #2 — 02y C)\
o5,
Vi

ot — (t-1) _p(y, (L(g(r—n))

Train: gradient descent

6 denotes W, b and a.



Example: Gradient Descent on Mixture of Gaussians
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Mixture of 3 Gaussians, each being a class



Example: Gradient Descent on Mixture of Gaussians

Input Hidden Layer Output
Activation o Layer

o(Wx+b)
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The weight vectors of neurons at random initialization



Example: Gradient Descent on Mixture of Gaussians

The activation region of one neuron (colored in red)



Example: Gradient Descent on Mixture of Gaussians

The weight vectors of neurons after one gradient update



Example: Gradient Descent on Mixture of Gaussians

The activation region of one red neuron after one gradient update



Intuition

)
@)

Gradient captures useful features of data
These features as neuron weights can lead to good performance

(c) Top Eigenvector of Feature Matrices on CelebA Prediction Tasks

Lipstick Eyebrows 5 o’clock shadow Necktie Smiling

Rosy Cheeks

Deep Network

Feature Matrix:

wlw,

RFM

nFeature Matrix:

3 V@) V)"
i=1
Correlation 0.999 0.999 0.999 0.999 0.999 0.999
Deep Network Test Acc. 90.53% 75.71% 85.88% 88.77% 89.83% 87.22%
RFM-T Test Acc. 91.62% 78.11% 88.18% 90.39% 91.24% 88.72%

Visualization of Gradient Feature vs Weight Feature. From: Feature learning in neural networks and kernel machines that recursively learn features (2022).



It's time for a

TH 18

Gradient Features

* Consider network f(x) = ¥; a; ReLU(w;' x > b;)

* Binary classification, loss 2(yf (x)) input Hidden Layer output

Layer Activation o Layer
Weight W

e Gradient of a neuron
« E[¢'(yf (%)) -y 1w x > b;x]

Weight a

m Out
put
~/

y'=a - o(Wx+b)

a - o(Wx+b)




Gradient Features

* Consider network f (x) = Y; a; ReLU(w;' x > b;)
* Binary classification, loss Z(yf(x))
* Gradient of a neuron

o< E[€'(yf(x)) -y 1w x> b;|x]

Definition (Simplified Gradient Vector)

For any w € R?%, b € R, a Simplified Gradient Vector is defined as

G(w,b) := Ex y)~pyxI[w ' x > B]]. (2)



Gradient Features

» Gradient Features: directions close to the Simplified Gradient Vectors

! |
bS] L] o = N w S




Gradient Feature Induced Networks

 Gradient Features as neuron weights can lead to good performance
* Induced networks: networks using gradient features as neuron weights
* Optimal approximation using induced networks:

Definition (Optimal Approximation via Gradient Features)

The Optimal Approximation network and loss using gradient feature induced
networks Fg , B, s are defined as:

f* ::argminfefdrBF sLD(f)’ OPTd,r,BF,S = min Lp(f) (6)
v f€Fdr.Bp,s



Unified Analysis Framework for Two-Layer NNs

Main Theorem (informal)
Two-layer networks can in poly-time w.h.p. achieve test loss close to
the optimal approximation loss by Gradient Feature Induced Networks.

-~ General framework that
1. captures the feature learning from gradients, and
2. gives poly error bounds for prototypical problems



Proof Sketch

*First learns good features s.t. there is a good classifier on the heurons

Gradient
Update




Proof Sketch

*First learns good features s.t. there is a good classifier on the neurons
* Then learns a good classifier

* For illustration, suppose freezing the neurons after learning features
*Only need to learn second layer weights: Convex!

*In general, the neuron weights do not change significantly
Learning second layer weights is similar to convex (Online convex opt)



Fundamental Questions of Neural Networks

Our focus:

Optimization (challenging, non-convex!)

Why neural-network can find good solution on training data?
Feature Learning (Beyond NTK) + Online Convex Optimization

Generalization
Why the network also accurate on new test instances?

Implicit Regularization / Simplicity Bias



Applications of the Framework

 Case studies on prototypical problems:
* Mixtures of Gaussians
* Parity functions
* Linear data
* Multiple-index data models + polynomial labeling functions

* Explaining some intriguing empirical phenomena
* Beyond the Kernel Regime
« Simplicity Bias
* Lottery Ticket Hypothesis
 Learning over Different Data Distributions
* New Perspectives about Roadmaps Forward



Take-home Message

A general analysis framework for two-layer networks; unifies several
recent work, provides new results

Key ideas:

« Gradient captures useful features of data
» Exploits the structure of the data
» Needs overparameterization to hit useful gradient features

* These features as neuron weights can lead to good performance

« Strong approximation power of neural networks: traditionally viewed as an
obstacle for optimization; here it's an advantage for learning

Future directions:
» Multiple layers

* Now only early-stage feature learning: 1 step gradient + almost convex optimization






