3 _' ,-' ......
— T 8
. S N = . ' IV };_, : : 8./
m — :’ ' v SN § ‘wr’ 1] 4 -, v

The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning

Zhenmei Shi*, Jiefeng Chen*, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, Somesh Jha

UW-Madison, Google, XaiPient
MLOPT 2023




New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning = pre-training + adaptation
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New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning = pre-training + adaptation
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The history and evolution of pre-trained models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning = pre-training + adaptation
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Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.
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Label Efficiency

Figures from: https://www.youtube.com/watch?v=U6uFOIURcDO&ab channel=ShusenWang, 2020
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Q: Can we gain two key properties simultaneously?

Label Efficiency

Figures from: https://www.youtube.com/watch?v=U6uFOIURcDO&ab channel=ShusenWang, 2020
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https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang

Trade-off of Label Efficiency and Universality

Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR10.
From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)
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Intro - Contrastive Learning
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Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020
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Intro - Contrastive Learning
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Maximize agreement
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Invariant - Birds; Spurious - Background

Figures from: Avoiding spurious correlations via logit correction, 2023
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Q1: What features are learned by contrastive learning?
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Q1: What features are learned by contrastive learning?
Al: Contrastive Learning = Generalized Nonlinear PCA. Encodes

almost all invariant features but removes the others.

Q2: Is it always good to encode almost all invariant features?



Question?

Al: Contrastive Learning = Generalized Nonlinear PCA. Encodes
almost all invariant features but removes the others.

Q2: Is it always good to encode almost all invariant features?
A2: No! More Diverse data — Target task features down-weighted
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Problem Setup - Hidden representation data model

e Hidden representation space z € Z C R over distribution e

O

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023
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Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Problem Setup - Hidden representation data model

e Hidden representation space z € Z C R over distribution e
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Problem Setup - Hidden representation data model

e Hidden representation space z € Z C R over distribution e
e Invariant feature )}, Spurious feature [/, RU U = [d], RNU = ()
o L — g(z) , g is a generative function; Y depends on Z as well

L ¢ c P hypothesis class of representation functions, e.g, ResNet, ViT

e Contrastive Loss 1;161(% E<x,x+’x—),\,ppre [f (gb(x)—r(¢(a?+) _ §b(£l?_)))]

e |n SimCLR, we have multiple negative pairs and g(t) = log(l —+ exp(—t))

F ‘,




Q1: What features are learned by contrastive learning?
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Q1: What features are learned by contrastive learning?

® C(Contrastive Loss glelg E(x7$+7$_)NDPre V (¢($)T(gb($+) - gb(a:_)))}

e pCAon ¢(x) min—Espllé(r) - Eynpld(z)][I*] = —Eonplll¢(z) — ¢ol|]

* 0. = Elé(z) | 2R] > El¢(g9(2)) | 2R]

Principal Component Analysis

Figures from: Wikipedia



Q1: What features are learned by contrastive learning?

® C(Contrastive Loss glél(% E(a?,x“Laﬂ?_)NDpre [Z (¢($)T(¢($+) - gb(:lj_)))}

e pCAon ¢(x) min—Espllé(r) - Eynpld(z)][I*] = —Eonplll¢(z) — ¢ol|]

* 0. = Elp(z) | 2r| = E|o(9(2)) | 2R]

Theorem (Contrastive Learning is Generalized Nonlinear PCA)
If £(t) = —t, Contrastive Learning is equivalent to PCA on ¢, ..
Moreover, if @ is linear function, it is equivalent to linear PCA on ¢~ .



Q1: What features are learned by contrastive learning?

e Contrastive Loss glel(% E(ﬂ?»ﬂC“Lax_)NDpre V (gb(x)T(gb($+) _ gb(:v_)))}

o bcaon §(z) M —Eonp[|9(@) — Ernpld(@)]I] = ~Eannllé(@) — o)l

* 0. = Elo(x) | 2r] = E[o(9(2)) | 2R]

Theorem (Encode Invariant Feature; Remove Spurious Feature)
If (1) is convex, decrease, lower-bound, and 2r — Z is one-to-one,
with regular assumption, the optimal representation ¢ satisfies:

(1) ¢"does not encode spurious feature: ¢* o g(z) L 2y

(2) ®*only encodes invariant feature whose “variance” large enough,
and encoding strength increases when “variance” becomes larger.
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Q2: Is it always good to encode almost all invariant features?
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A2: Trade-off Comes from Feature Weighting

* Input: linearly generated from features
* Label: linear on shared/private features

. Shared Private Irrelevant
features features features

* Pre-train a linear representation and then learn
Bl linear classifiers

* Best representation: weight shared/private
features equally

* Pre-trained on only Task 1 v.s.
Pre-trained on mixture of all tasks

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.



A2: Trade-off Comes from Feature Weighting

. Shared Private irrelevant  * Input: linearly generated from features
features features features * Label: linear on shared/private features
0|00 :
* Pre-trained on Task 1:
* Recover features for Task 1 but not for others
0/0]0 * Good prediction on Task 1 but not on others

* Pre-trained on mixture of all tasks:
* Recover all shared/private features

Task T . 0jojojoo . * Up-weights the shared features by O(V/T)
» 0(\T) worse on Task 1 but better on average

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.



Trade-off of Label Efficiency and Universality

Contrastive learning ResNet18 backbone via MoCo, then classify on CIFAR10.
From left to right, incrementally add to pre-training: CINIC-10 (C), SVHN (S), GTSRB (G), and ImageNet32 (I)
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Trade-off of Label Efficiency and Universality

Contrastive learning, then classify on ImageNet-Bird (B).

From left to right, incrementally add to pre-training: ImageNet-Bird (B), ImageNet-Vehicle (V),
ImageNet-Cat/Ball/Shop/Clothing/Fruit (+), and ImageNet (ALL)
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(a) MoCo v3 (backbone VIT-S) (b) SimSiam (backbone ResNet50)

[SCL+23] Shi, Chen, Li, Raghuram, Wu, Liang, Jha. The Trade-off between Universality and Label Efficiency of Representations from Contrastive Learning. ICLR’2023.



Solution 1 - Contrastive Regularization
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Solution 1 - Contrastive Regularization
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1. Contrastive pre-training
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Figures from: SimCSE: Simple Contrastive Learning of Sentence Embeddings, 2021. Figures from: Learning Transferable Visual Models From Natural Language Supervision, 2021.



Solution 1 - Contrastive Regularization
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Figures from: SimCSE: Simple Contrastive Learning of Sentence Embeddings, 2021.

1. Contrastive pre-training
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Figures from: Learning Transferable Visual Models From Natural Language Supervision, 2021.

CLIP MoCo v3 SimCSE
Method ImageNet SVHN GTSRB CIFAR-10 SVHN GTSRB IMDB AGNews
LP 77.84+0.02 63.44+001  86.56+0.01 95.824+0.01  61.9240.01  75.3740.01 86.49+0.16  87.7610.66
FT 83.65+0.01  78.2240.18 90.741+006 | 96.1740.12  65.361+0.33  76.454+0.29 | 92.31+026 93.57+0.23
Ours 84.94+0.09 78.72+0.37 92.01+0.28 96.71+0.10 66.29+0.20 81.28+0.10 92.85+0.03 93.94-+0.02




Solution 2 - Few-Shot Multitask Finetuning

e CLIP pretraining model.

 Few-Shot: 5 training sample for each target class.

* Few-Shot Multitask finetuning on mini-Imagenet training classes.
* Few-Shot evaluate on mini-Imagenet target classes.

[XSW+23] Xu, Shi, Wei, Li, Liang. Improving Foundation Models for Few-Shot Learning via Multitask Finetuning. ICLR’2023 workshop.



Solution 2 - Few-Shot Multitask Finetuning

e CLIP pretraining model.

 Few-Shot: 5 training sample for each target class.

* Few-Shot Multitask finetuning on mini-Imagenet training classes.
* Few-Shot evaluate on mini-Imagenet target classes.

Backbone Direct Adaptation  Finetuning
ViT-B32 83.03 +0.24 89.07 £ 0.20
ResNet50 78.36 + 0.25 81.19 £ 0.25

Table 1: Effects of multitask finetuning.

[XSW+23] Xu, Shi, Wei, Li, Liang. Improving Foundation Models for Few-Shot Learning via Multitask Finetuning. ICLR’2023 workshop.



Future Work

® Any other better paradigm than Contrastive Learning + Linear Probing? May be Prompt?

context tokens
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Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.



Future Work

® Any other better paradigm than Contrastive Learning + Linear Probing? May be Prompt?
® Do the other self-supervised learning methods have a similar trade-off, e.g., MAE, GPT4?

context tokens \‘
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oo B ﬁ
W E encoder

MRS . Image Encoder
< [

Meta-Net .

CoCoOp Mask Autoencoder

Figures from: Conditional Prompt Learning for Vision-Language Models, 2022. Figures from: Masked Autoencoders Are Scalable Vision Learners, 2021.
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Theorem (Encode Invariant Feature; Remove Spurious Feature)
If (1) is convex, decrease, lower-bound, and 2r — Z is one-to-one,
with regular assumption, the optimal representation ¢ satisfies:

(1) ¢"does not encode spurious feature: ¢* o g(z) L 2y

(2) ®*only encodes invariant feature whose “variance” large enough,
and encoding strength increases when “variance” becomes larger.

E(zot ) [£(¢() " [$(zT) — ¢(z7)]) ]
=Ez2+ 2-) [£(($09(2) T (@0 g(zF) — pog(z7))) ]
=E,, .-y [E[£((¢09(2) (pog(z") —pog(z7))) | 2r, 25 ] ]
>R, .= [L(E[(¢og(2)T(og(z") —d09(z7)) | 2r, 25 ] ) ]
=E(,..-) [((Elpog(2) | zr]" (Elpog(z*) | zr] —E[pog(=7) | z5]) ) ]

= B :2 ((b;abm = cbjﬂz&” ’

(
)




